MATRICES

1 If $A = \begin{pmatrix} 1 & 2 \\ -3 & 1 \\ 1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$, find out which of the products AB and BA are well-

defined and determine that product explicitly.

- 2 1. Let $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$. Find AB and discuss the result.
 - 2. Is it necessarily true that if A, $B \in M_n(\mathbb{C})$, $AB = O_n$, then necessarily $A = O_n$ or $B = O_n$?
- **3** Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Find A^n , $n \in \mathbb{N}$. Can you state a general rule about the powers of a diagonal matrix?
- 4 Explain why the equalities

$$(A+B)^2 = A^2 + 2AB + B^2$$
, $(A+B)(A-B) = A^2 - B^2$

(which are true when A, B are complex numbers) do not necessarily remain valid for A, $B \in M_n(\mathbb{C})$. Do they remain valid when AB = BA?

5 If
$$A = \begin{pmatrix} 4 & 9 \\ -1 & -2 \end{pmatrix}$$
, find A^n , $n \ge 2$.

Hint: Write $A = I_2 + B$, with $B^2 = O_2$. Use the binomial formula.

6 If
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, find A^n , $n \ge 3$.

Hint: Write $A = I_3 + B$, with $B^3 = O_3$. Use the binomial formula.

7 If
$$A = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}$$
 and $P \in \mathbb{R}[X]$, prove that

$$P(A) = \begin{pmatrix} P(a) & P'(a) & \frac{1}{2}P''(a) \\ 0 & P(a) & P'(a) \\ 0 & 0 & P(a) \end{pmatrix}.$$

Hint: Write $A = aI_3 + B$, with $B^3 = O_3$. Use the binomial formula to compute the powers of A.

8 Let
$$R(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
, $\alpha \in \mathbb{R}$.

- 1. Prove that $R(\alpha)R(\beta) = R(\alpha + \beta), \forall \alpha, \beta \in \mathbb{R}$.
- 2. Find $R(\alpha)^n$, $n \ge 2$.
- **9** For $A \in M_n(\mathbb{R})$, let us denote by Tr A (trace of A) the sum of the elements on the main diagonal of A.
- 1. Prove that $\operatorname{Tr}(A+B)=\operatorname{Tr}A+\operatorname{Tr}B$ and $\operatorname{Tr}(aA)=a\operatorname{Tr}A$, for any $a\in\mathbb{R}$ and any $A, B \in M_n(\mathbb{R}).$
- 2. Let $M = \{X \in M_n(\mathbb{R}); \text{Tr } A = 0\}$. Prove that the identity matrix I_n cannot be written as a sum of matrices belonging to *M*.

Hint: How much is the trace of the sum?

3. If
$$\operatorname{Tr}(AA^t) = 0$$
, prove that $A = O_n$.

DETERMINANTS

10 Find
$$D = \begin{vmatrix} 1 & \varepsilon & \varepsilon^2 \\ \varepsilon & \varepsilon^2 & 1 \\ a & b & c \end{vmatrix}$$
, where $a, b, c, \varepsilon \in \mathbb{C}$, $\varepsilon^3 = 1$, $\varepsilon \neq 1$.

11 Find $D = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$, provided that

11 Find
$$D = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$$
, provided that

- 1. a_1, a_2, \ldots, a_9 is an arithmetic progression;
- 2. a_1, a_2, \ldots, a_9 is a geometric progression.

12 Find
$$D = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix}$$
, where x_1, x_2, x_3 are the roots of the equation $x^3 + px + q = 0$.

13 Find
$$D = \begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$
, where $a,b,c \in \mathbb{C}$.

Hint: Use elementary column operations.

14 Let
$$A = \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} \in M_3(\mathbb{C})$$
. By computing det A in two distinct ways, prove that

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - xz - yz).$$

15 Find
$$D = \begin{vmatrix} x & a & b & c \\ a & x & b & c \\ a & b & x & c \\ a & b & c & x \end{vmatrix}$$
, where $a, b, c, x \in \mathbb{C}$..

Hint: Use elementary row operations first.

16 Find
$$D = \begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix}$$
, where $a, b, c \in \mathbb{C}$.

Hint: Expand the squares and use elementary column operations.

17 Find
$$D = \begin{vmatrix} a & b & -a & -b \\ -b & a & b & -a \\ c & d & c & d \\ -d & c & -d & -c \end{vmatrix}$$
, where $a, b, c, d \in \mathbb{C}$.

Hint: Use Laplace rule (expand over the first two rows).

18 Find
$$V(a,b,c) = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$
, where $a,b,c \in \mathbb{C}$..

19 Find
$$V(a_1, a_2, \dots, a_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_n \\ \dots & \dots & \dots \\ a_1^{n-1} & a_2^{n-1} & \dots & a_n^{n-1} \end{vmatrix}$$
.

20 If
$$A, B \in M_2(\mathbb{C})$$
, prove that

1.
$$det(A + B) + det(A - B) = 2(det(A) + det(B));$$

2.
$$det(AB) = det(A) det(B)$$
.

Hint: Usually, $det(A + B) \neq det A + det B!$

21 Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$$
. Prove that

1. The following equality holds

$$A^{2} - (a+d)A + (ad-bc)I_{2} = O_{2}.$$

- 2. If det A = 0, then $A^n = (a + d)^{n-1}A$.
- 3. If there is $n \in \mathbb{N}^*$, $n \ge 2$, such that $A^n = O_2$, then $A^2 = O_2$.
- **22** Let $A \in M_2(\mathbb{R})$ such that $A^2 = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$.
 - 1. Prove that $\det A \in \{-1, 1\}$.
 - 2. Find all matrices *A* that satisfy the above equality.
- **23** Let $A \in M_m(\mathbb{C})$, $B \in M_{m,n}(\mathbb{C})$, $C \in M_{n,m}(\mathbb{C})$, $D \in M_n(\mathbb{C})$. Prove that

$$\det \begin{pmatrix} A & B \\ O & D \end{pmatrix} = \det \begin{pmatrix} A & O \\ C & D \end{pmatrix} = \det A \cdot \det D.$$

Hint: Use Laplace Rule (expand over the first *m* rows).

24 Let
$$A = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$$
, $a \in \mathbb{R}$. Prove that $A^n \neq O_3$, for any $n \in \mathbb{N}^*$.

Hint: If $A^n = O_{3r}$, how much det A should be? Find then the corresponding values of a. Discuss each case.