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Problem 1. Let n be a nonzero natural number and f : R — R\ {0} be a function
such that f(2014) =1 — f(2013). Let 1,29, 3, ..., 2, be real numbers not equal to
each other. If
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prove that f is not continuous.

Problem 2. Consider the sequence (z,) given by
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Prove that the sequence y,, = Z pramEE n > 1 is convergent and find its limit.
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Problem 3. Let A € M,(C) and a € C, a # 0 such that A — A* = 2al,,, where
A* = (A)! and A is the conjugate of the matrix A.

(a) Show that |det A| > |a|”
(b) Show that if |[det A| = |a|" then A = al,.
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Problem 4. a) Prove that lim n/—ndx =
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b) Find the limit lim n n/—ndx - =
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