Grading of Problem 1.

Problem 1 Let n be a nonzero natural number and $f : \mathbb{R} \to \mathbb{R} - \{0\}$ be a function such that f(2014) = 1 - f(2013). Let $x_1, x_2, x_3, \ldots, x_n$ be ral numbers not equal to each other. If

$$\begin{vmatrix} 1 + f(x_1) & f(x_2) & f(x_3) & \dots & f(x_n) \\ f(x_1) & 1 + f(x_2) & f(x_3) & \dots & f(x_n) \\ f(x_1) & f(x_2) & 1 + f(x_3) & \dots & f(x_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f(x_1) & f(x_2) & f(x_3) & \dots & 1 + f(x_n) \end{vmatrix} = 0,$$
(1)

prove that f is not continuous.

Grading:

4 points: Calculate determinant:

$$\begin{vmatrix} 1 + f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n) & f(x_2) & f(x_3) & \dots & f(x_n) \\ 1 + f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n) & 1 + f(x_2) & f(x_3) & \dots & f(x_n) \\ 1 + f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n) & f(x_2) & 1 + f(x_3) & \dots & f(x_n) \\ & \vdots & & \vdots & \vdots & \ddots & \vdots \\ 1 + f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n) & f(x_2) & f(x_3) & \dots & 1 + f(x_n) \end{vmatrix} =$$

$$(1+f(x_1)+f(x_2)+f(x_3)+\ldots+f(x_n))\begin{vmatrix} 1 & f(x_2) & f(x_3) & \ldots & f(x_n) \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{vmatrix}$$

The last determinant is equal to 1, therefore (from the equality given in the problem):

$$1 + f(x_1) + f(x_2) + f(x_3) + \ldots + f(x_n) = 0$$

2 points:

$$f(2014) + f(2013) + f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n) = 0.$$
 (I)

4 points: Suppose that f is continuous and obtain a contradiction.

REMARK If it is proving that for some continuous function the equality (1) it is not true: 1 point.

SEEMOUS 2014

March 5 - 9, Iași, România

Grading for Problem 2. Consider the sequence (x_n) given by

$$x_1 = 2$$
, $x_{n+1} = \frac{x_n + 1 + \sqrt{x_n^2 + 2x_n + 5}}{2}$, $n \ge 2$.

Prove that the sequence $y_n = \sum_{k=1}^n \frac{1}{x_k^2 - 1}$, $n \ge 1$ is convergent and find its limit.

Solution. It is clear that $x_n > 0 \ \forall n \ge 1$ and then

$$\sqrt{x_n^2 + 2x_n + 5} > \sqrt{(x_n + 1)^2} = x_n + 1, \quad \forall n \ge 1.$$

Thus,

$$x_{n+1} > \frac{x_n + 1 + x_n + 1}{2} = x_n + 1$$
 $\forall n \ge 1.$

It follows, by induction, that $x_n > x_1 + n = 2 + n \ \forall n \ge 1$ and then $x_n \to \infty$.

Now, using the definition of x_{n+1} we get:

$$(2x_{n+1} - x_n - 1)^2 = x_n^2 + 2x_n + 5,$$

$$4x_{n+1}^2 - 4x_{n+1}(x_n+1) + (x_n+1)^2 = (x_n+1)^2 + 4$$
, and from here

$$x_{n+1}^2 - 1 = x_{n+1}(x_n + 1) \Rightarrow \frac{x_{n+1}}{x_{n+1}^2 - 1} = \frac{1}{x_n + 1}.$$

But one can write

$$\frac{x_{n+1}}{x_{n+1}^2 - 1} = \frac{1}{x_{n+1} + 1} + \frac{1}{x_{n+1}^2 - 1}$$

and then

$$\frac{1}{x_{n+1}^2 - 1} = \frac{1}{x_n + 1} - \frac{1}{x_{n+1} + 1} \qquad \forall n \ge 1.$$

......4 points

Finally,

$$y_n = \sum_{k=1}^n \frac{1}{x_k^2 - 1} = \frac{1}{3} + \sum_{k=2}^n \left(\frac{1}{x_{k-1} + 1} - \frac{1}{x_k + 1} \right) = \frac{1}{3} + \frac{1}{3} - \frac{1}{x_n + 1}.$$

Since $x_n \to \infty$ we get $y_n \to \frac{2}{3}$.

Remark. The convergence of (y_n) can be proved noticing that $x_n > n+2$ imply $\frac{1}{x_n^2-1} < \frac{1}{n^2}$ and thus

$$y_n = \sum_{k=1}^n \frac{1}{x_k^2 - 1} < \sum_{k=1}^n \frac{1}{k^2}.$$

SEEMOUS 2014

March 5 - 9, Iaşi, România

Grading for Problem 3. Let $A \in \mathcal{M}_n(\mathbb{C})$ and $a \in \mathbb{C}^*$ such that $A - A^* = 2aI_n$, where $A^* = (\bar{A})^t$.

- (a) Show that $|\det A| \ge |a|^n$
- (b) Show that if $|\det A| = |a|^n$ then $A = aI_n$.

a)

• proof for $a = i \cdot b, b \in \mathbb{R}$	2 points
• proof for $B^* = B$	1 point
• relation $\lambda_B \in \mathbb{R}$	2 points
• relation $\lambda_A = \lambda_B + a = \lambda_B + ib$	2 points
• Relation	
$ det(A) = \lambda_{1_A} \cdot \lambda_{2_A} \cdot \dots \cdot \lambda_{n_A} \ge b ^n = a ^n \dots$	1 point

South Eastern European Mathematical Olympiad for University Students Iaşi, Romania March 7, 2014

Grading scheme for problem 4

- a) \rightarrow 3 points
- 1 point for applying a convergence theorem without arguing it.
- 3 points for a correct solution either by using a convergence theorem or by differentiating an integral with parameter.
- b) \rightarrow 7 points

•

$$x_n = n^2 \int_0^n \frac{\arctan \frac{x}{n}}{x(x^2+1)} dx - n\frac{\pi}{2}$$

• 1 point:

$$x_n = y_n - z_n$$
, where
 $y_n = n^2 \int_0^n \frac{\arctan \frac{x}{n}}{x(x^2 + 1)} dx - n \int_0^n \frac{dx}{1 + x^2}$
 $z_n = n \int_n^\infty \frac{dx}{1 + x^2}$.

• 4 points:

$$\lim_{n \to \infty} y_n = \int_0^1 \frac{\arctan t - t}{t^3} dt.$$

• 1 point:

$$\lim_{n \to \infty} y_n = \frac{1}{2} - \frac{\pi}{4}.$$

• 1 point:

$$\lim_{n \to \infty} z_n = 1.$$

Hence

$$\lim_{n \to \infty} x_n = -\frac{1}{2} - \frac{\pi}{4}.$$

Note: Any other approach which can be completed to a right solution will obtain a corresponding amount of points.