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GLOBAL PROPERTIES FOR A VIRUS PROPAGATION
MODEL WITH STAGED PROGRESSION

Paul Georgescu1

Abstract. We consider the global dynamics of a virus propagation model
in which infective cells pass through several successive stages, assuming that
the incidence of infection and the removal rate of the virus are nonlinear func-
tions given in an abstract, unspecified form. Suitable Lyapunov functionals
are constructed to establish the existence of a threshold parameter, the basic
reproduction number R0 of the system. It is shown that if R0 > 1, then the
disease-free equilibrium is unstable and the endemic equilibrium is globally
asymptotically stable (the disease remains endemic, that is), while if R0 ≤ 1
then there is no endemic equilibrium and the disease-free equilibrium is glob-
ally asymptotically stable (the disease dies out, that is).

2000 Mathematics Subject Classification: 92D30, 34D20.

1. Introduction

We consider a compartmental model for the propagation of a virus in vivo with
staged progression of the infective cells through several stages with distinct
infectivity. This model is understood to be appropriate especially for diseases
with slow progression such as tuberculosis, where the latent period ranges
from months to decades and the average infectious period is comparatively
short (usually a few months), some infective individuals never progressing to
the infectious state. See Okuonghae and Korobeinikov [19] for a model for
the transmission of tuberculosis in Nigeria. In this regard, it is assumed that
the infection pathway is virus-to-cell (as opposed to an infected cell-to-cell
pathway) and that new viruses are produced by infected cells only in the last
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infectious stage. We denote by S the concentration of cells in the susceptible
(uninfected) stage, by E the concentration of cells in the exposed (latent,
incubating) stage, by I1, I2, . . . , In the concentration of cells in the successive
infection stages from the first through the last and by V the concentration of
viral cells.

Motivated by these considerations, we introduce the compartmental model
to be studied in the form

S ′ = g(S)− c(S)f(V ),
E ′ = c(S)f(V )− c1i(E),
I ′1 = c2i(E)− k1p1(I1),

I ′j = k̃j−1pj−1(Ij−1)− kjpj(Ij), 2 ≤ j ≤ n,

V ′ = k̃npn(In)− r(V ).

(1)

In the above model, g(S) denotes the intrinsic growth rate of the susceptible
class, which includes both the production of new cells and their removal due
to natural causes, all newly produced cells being susceptible. The movement
of exposed cells into the infected class and the removal of exposed cells are
denoted by c2i(E) and c1i(E), respectively. By kjpj(Ij), 1 ≤ j ≤ n, we denote
the removal of the infective cells in the j-th stage, while k̃j, 1 ≤ j ≤ n − 1,
describes the progression of infective cells from the j-th stage to the j + 1-th
stage. The production of free virus cells from infected cells in the n-th stage is
denoted by k̃npn(In) and the removal rate of viral cells is denoted by r(V ). It
is also assumed that the disease transmission is characterized by the infection
rate c(S)f(V ), where c(S) denotes the contact function at concentration S and
f(V ) denotes the force of infection by virus at concentration V . All functions
g, c, f , r, pj, 1 ≤ j ≤ n, are assumed to be nonlinear and all constants kj, k̃j,
1 ≤ j ≤ n, are assumed to be positive.

The stability of many disease transmission models depends in a decisive
fashion upon the so-called basic reproduction number R0, defined as the aver-
age number of new infections caused by a single carrier (infective individual or
viral cell) when introduced in a totally susceptible population at equilibrium.
In this regard, it is often the case that if R0 < 1 then the disease dies out and
the disease-free equilibrium is globally asymptotically stable.

If R0 > 1, then any carrier causes, in average, more than one infection
and the disease is expected to remain endemic. However, proving the global
stability of the endemic equilibrium in the case in which R0 > 1, whenever
this is feasible, is a comparatively more difficult task. It is perhaps worth
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mentioning that the global stability of the so-called SEIR (susceptible-exposed-
infective-removed) model for the case in which R0 > 1 has been obtained as
late as 1995 by Li and Muldowney in [18], their approach being essentially
geometrical, relying on the fact that three-dimensional competitive systems
satisfy Poincaré-Bendixson property. For the case in which the system is not
competitive, another approach, due also to Li and Muldowney [17], is to show
that the system satisfies a Poincaré-Bendixson property which is robust under
C1-perturbations.

A different (and simpler) path towards proving global stability results for
mathematical epidemiology models has been taken by Korobeinikov and Maini
[14,15] (see also Korobeinikov [11,12,13]), who used Lyapunov functionals of
type

∑
iAi(Xi(t)−X∗i lnXi(t)), where Ai are properly selected constants, Xi

is the population size of the i-th compartment and X∗i is its equilibrium level.
The first Lyapunov functional of this type has actually been used by Volterra
in [21], but for the analysis of a two-dimensional predator-prey model, the cel-
ebrated Lotka-Volterra model. See also Goh [6], who uses a related functional
to study the stability of a n-dimensional Lotka-Volterra model and Harrison
[8], for the study of a two-dimensional predator-prey system which vastly gen-
eralizes Lotka-Volterra model, also by Lyapunov’s method.

Similarly, Lyapunov’s method is used in Georgescu and Hsieh [3] to study
the global dynamics of a SEIV model with nonlinear incidence of infection and
removal rate and in Georgescu and Hsieh [2] to discuss the global properties of
a stage-structured predator-prey model with stage structure for the predator.
See also Guo, Li and Shuai [7], Yuan and Wang [22] for recent results in this
area which establish the global stability of certain classes of multigroup models.
This paper attempts to enlarge the results obtained in [3], where the case of a
single infective stage has been discussed.

2. Basic assumptions and the well-posedness of the model

We assume that c, f , r, pj, 1 ≤ j ≤ n, are real functions of class C1 defined
at least on [0,∞) such that

c(0) = f(0) = r(0) = i(0) = 0; pj(0) = 0, 1 ≤ j ≤ n,

and that g is a real function of class C1 defined at least on [0,∞) with g(0) > 0
such that the equation g(S) = 0 has a single strictly positive solution S0. We
also assume that the following hypotheses hold.
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(M) f
r

is nonincreasing, g is strictly decreasing, c, i, pj, 1 ≤ j ≤ n, are strictly
increasing.

(L) limx→∞ g(x) < 0, limx→∞ i(x) = limj→∞ pj(x) = +∞, 1 ≤ j ≤ n.

(D)
∫ 1
0+

1
ϕ(τ)

dτ = +∞ for ϕ ∈ {c, f, i, pj, 1 ≤ j ≤ n}.

(G) g(S) ≤ a1 − a2S for s ≥ 0, i(E) ≥ aiE for E ≥ 0, pj(I) ≥ apI for I ≥ 0
and 1 ≤ j ≤ n, r(V ) ≥ arV for V ≥ 0; a1, a2, ai, ap, ar > 0.

From the above, it follows that the system (1) admits a single disease-free
equilibrium (S0, 0, 0, . . . , 0, 0), which we shall denote in the following by E0.
We shall also denote (I1, I2, . . . , In) by I.

It can be easily seen that (1) has a unique saturated solution for any given
initial data and that Q1 = [0,∞)n+3 is an invariant set for (1), that is, a
solution which starts in Q1 remains there on its whole interval of existence, by
noting that the vector (R1, R2, . . . , Rn+3) of the right-hand sides of (1) points
inside Q1 at all points of ∂Q1.

One also sees thatS + E +
c1
2c2

I1 +
c1
2c2

n∑
j=2

j−1∏
i=1

k̃i
2ki

 Ij +
c1
2c2

(
n∏
i=1

k̃i
2ki

)
V )

′

≤ K̃ − δ̃

S + E +
c1
2c2

I1 +
c1
2c2

n∑
j=2

j−1∏
i=1

k̃i
2ki

 Ij +
c1
2c2

(
n∏
i=1

k̃i
2ki

)
V


for suitable K̃, δ̃, from which we deduce that

F =
{

(S,E, I, V ) ∈ Q1, S + E + c1
2c2
I1 + c1

2c2

∑n
j=2

(∏j−1
i=1

k̃i

2ki

)
Ij

+ c1
2c2

(∏n
i=1

k̃i

2ki

)
V ≤ K̃

δ̃

}
is a feasible region (obviously, neither minimal nor unique) for (1). In the
following, we shall assume without further notice that all admissible initial
data belong to F .

It is also possible to prove, as done in Georgescu, Hsieh and Zhang [4],
that if we denote Q2 = (0,∞)n+3, then F ∩Q2 is also a feasible region for (1).
Regarding the behavior of solutions which start on the boundary of Q2, it is
seen that all solutions which start on [OS tend to S0 remaining on [OS, while
they enter Q2 (and stay there) otherwise.
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Let us define the basic reproduction number of the virus by

R0 = c(S0)
c2
c1

 n∏
j=1

k̃j
kj

 f ′(0)

r′(0)
. (2)

In this regard, a derivation of R0 can be performed as in van den Driessche
and Watmough [20]. We rearrange the system as

E ′

I ′

...
I ′n
V ′

S ′


=



c(S)f(V )
0
...
0
0
0


−



c1i(E)
−c2i(E) + k1p1(I1)

...

−k̃n−1pn−1(In−1) + knpn(In)

−k̃npn(In) + r(V )
−g(S) + c(S)f(V )


= F − V .

At the disease-free equilibrium E0, the Jacobi matrices of F and V are

DF(E0) =

(
F 0
0 0

)
, DV(E0) =

(
V 0
J1 J2

)
,

where the infection matrix F and the transition matrix V are given by

F =


0 0 . . . 0 c(S0)f

′(0)
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

 ,

V =


c1i
′(0) 0 . . . 0 0

−c2i′(0) k1p
′
1(0) . . . 0 0

0 −k̃1p
′
1(0) . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . −k̃n−1p
′
n−1(0) knp

′
n(0)

 .

Then, as derived in [20], R0 is the largest eigenvalue of the next generation
matrix FV −1, from which (2) follows.

3. The stability of the disease-free equilibrium
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We have previously seen that the system (1) admits a single disease-free equi-
librium E0 regardless of the value of R0. We now turn our attention to the
study of its stability. To this purpose, let us consider the following Lyapunov
functional

U1(S,E, I, V ) =
∫ S

S0

c(τ)− c(S0)

c(τ)
dτ + E +

c1
c2

n∑
j=1

j−1∏
i=1

ki

k̃i

 Ij +
c1
c2

(
n∏
i=1

ki

k̃i

)
V,

(3)
with the convention that

∏0
i=1

ki

k̃i
= 1. Since c is strictly increasing, it is seen

that U1 increases whenever any of |S − S0|, E, Ij, 1 ≤ j ≤ n, V increases and
U1 ≥ 0, with equality if and only if (S,E, I, V ) = E0. We now compute the
derivative of U1 along the solutions of (1). It is seen that

·
U1 (S,E, I, V )

=

(
1− c(S0)

c(S)

)
(g(S)− c(S)f(V )) + (c(S)f(V )− c1i(E))

+
c1
c2

(c2i(E)− k1p1(I1)) +
c1
c2

n∑
j=2

j−1∏
i=1

ki

k̃i

 (k̃j−1pj−1(Ij−1)− kjpj(Ij))

+
c1
c2

(
n∏
i=1

ki

k̃i

)
(k̃npn(In)− r(V ))

=

(
1− c(S0)

c(S)
g(S)

)
+ c(S0)f(V )− c1

c2

(
n∏
i=1

ki

k̃i

)
r(V ).

Since g(S0) = 0, we may deduce that

·
U1 (S,E, I, V ) =

(
1− c(S0)

c(S)

)
(g(S)− g(S0)) (4)

+
c1
c2

(
n∏
i=1

ki

k̃i

)
r(V )

[
c(S0)

c2
c1

f(V )

r(V )

(
n∏
i=1

k̃i
ki

)
− 1

]
.

We may now obtain the following global stability result.

Theorem 1 Suppose that R0 ≤ 1. Then the disease-free equilibrium E0 is
globally asymptotically stable in Q1.

Proof. From (4) and the monotonicity conditions (M), it is seen that
·
U1≤ 0

on Q2, with equality if and only if S = S0 and R0 = 1. Since the only invariant
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set within the set of points for which S = S0 is E0, it follows that E0 is globally
asymptotically stable in Q2, by LaSalle’s invariance principle (see LaSalle [16]
or Khalil [10]). The remarks regarding the behavior of the solutions starting
on the boundary of ∂Q2 complete the proof.

We now further consider the case in which R0 > 1 . Under this assumption,
it will be shown that the disease-free equilibrium E0 is unstable.

In this regard, it is said that (1) is uniformly persistent (or permanent) in
D if there is ε0 > 0 (not depending on the initial data) such that any solution
of (1) which starts in intD satisfies

lim inf
t→∞

S(t) ≥ ε0, lim inf
t→∞

E(t) ≥ ε0, lim inf
t→∞

Ij(t) ≥ ε0, 1 ≤ j ≤ n,

lim inf
t→∞

V (t) ≥ ε0.

The biological significance of the notion of persistence is that the disease
remains endemic in the long term. In mathematical terms, all solutions with
strictly positive initial data are eventually uniformly bounded away from the
boundary. Of course, this mutually excludes any sort of stability of the disease-
free equilibrium. See also Butler, Freedman and Waltman [1] for weaker no-
tions of persistence.

Let us consider the following the quasi-Lyapunov function

U2(S,E, I, V ) = E +
c1
c2

n∑
j=1

j−1∏
i=1

ki

k̃i

 Ij +
c1
c2

(
n∏
i=1

ki

k̃i

)
V.

In a way similar to the derivation of (4), it is seen that

·
U2 (S,E, I, V ) = c(S)f(V )− c1

c2

(
n∏
i=1

ki

k̃i

)
r(V ). (5)

We may now obtain the following persistence result

Theorem 2 Suppose that R0 > 1. Then (1) is uniformly persistent.

Proof. From (5), we note that

·
U2 (S,E, I, V ) =

c1
c2

(
n∏
i=1

ki

k̃i

)
r(V )

[
c(S0)

c2
c1

f(V )

r(V )

(
n∏
i=1

k̃i
ki

)
− 1

]

and consequently
·
U2> 0 on a small vicinity of E0. It is also seen that E0 is

the unique (and therefore isolated) compact invariant set on the boundary of
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the feasible domain, its stable manifold being included in the boundary of Q2.
The conclusion now follows from Theorem 4.1 of Hofbauer and So [9]. See also
Georgescu and Moroşanu [5] for a different approach to the persistence of a
related system.

4. The existence and stability of the endemic equilibrium

We now try to find a necessary and sufficient condition for the existence of a
positive (endemic) equilibrium E∗ = (S∗, E∗, I∗, V ∗), where I∗ = (I∗1 , I

∗
2 , . . . , I

∗
n),

prior to studying its stability. To this purpose, let us observe that S∗, E∗, I∗, V ∗

should satisfy the following system of equilibrium conditions

g(S∗) = c(S∗)f(V ∗), c(S∗)f(V ∗) = c1i(E
∗), c2i(E

∗) = k1p1i(I
∗
1 ), (6)

k̃j−1p
∗
j−1(I

∗
j−1) = kjp

∗
j(I
∗
j ), 2 ≤ j ≤ n, k̃npn(I∗n) = r(V ∗).

To solve (6), let us define

F1(S, V ) = g(S)− c(S)f(V ),

F2(S, V ) = c(S)f(V )− c1
c2

(
n∏
i=1

ki

k̃i

)
r(V ).

Since S → F1(S, V ) is strictly decreasing and F1(0, V )F1(S0, V ) < 0 for all
V > 0, it follows that the equation F1(S, V ) = 0 can be uniquely solved with
respect to S as a function of V for all V ≥ 0, that is, there is ψ1 : [0,∞) →
(0,∞) (which is strictly decreasing, with limx→∞ ψ1(x) = 0 and ψ1(0) = S0)
such that S = ψ1(V ) and F1(ψ1(V ), V ) = 0.

Then

F2(V, ψ1(V )) = c(ψ1(V ))f(V )− c1
c2

(
n∏
i=1

ki

k̃i

)
r(V )

=
c1
c2

(
n∏
i=1

ki

k̃i

)
r(V )

[
c(ψ1(V ))

c2
c1

f(V )

r(V )

(
n∏
i=1

k̃i
ki

)
− 1

]
.

Since ψ1 is strictly decreasing and f
r

is nonincreasing, it follows that a necessary
and sufficient condition for the existence of V ∗ is that

lim
V→0

c(ψ1(V ))
c2
c1

f(V )

r(V )

(
n∏
i=1

k̃i
ki

)
− 1 > 0,
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that is, R0 > 1. Note that in this situation V ∗ is unique.
Also, due to the strict monotonicity of i and pj, 1 ≤ j ≤ n, and to the

conditions (L) and (M), it follows that E∗ and I∗j , 1 ≤ j ≤ n, exist and are
also unique, while the existence and uniqueness of S∗ follows from the unique
solvability of the equation F1(S, V

∗) = 0 with respect to S. In view of the
above, we obtain the following existence result.

Theorem 3 There is an endemic equilibrium E∗ of (1) if and only if R0 > 1.
The endemic equilibrium E∗ is unique if it exists.

We continue our analysis with a discussion on the stability of the endemic
equilibrium, assuming that R0 > 1. Let us consider the following Lyapunov
functional

U3(S,E, I, V ) =
∫ S

S∗

c(τ)− c(S∗)
c(τ)

dτ +
∫ E

E∗

i(τ)− i(E∗)
i(τ)

dτ (7)

+
c1
c2

n∑
j=1

j−1∏
i=1

ki

k̃i

∫ Ij

I∗j

pj(τ)− pj(I∗j )

pj(τ)
dτ

+
c1
c2

(
n∏
i=1

ki

k̃i

)∫ V

V ∗

f(τ)− f(V ∗)

f(τ)
dτ.

It is seen that U3 increases whenever any of |S − S∗|, E, Ij, 1 ≤ j ≤ n, V
increases and that U3 ≥ 0, with equality if and only if (S,E, I, V ) = E∗. Also,
due to the divergence conditions (D), U3(S,E, I, V ) tends to +∞ if any of S,
E, Ij, 1 ≤ j ≤ n, V tends to 0.

We now compute the derivative of (7) along the solutions of (1). It is seen
that

·
U3 (S,E, I, V )

=

(
1− c(S∗)

c(S)

)
(g(S)− c(S)f(V )) +

(
1− i(E∗)

i(E)

)
(c(S)f(V )− c1i(E))

+
c1
c2

(
1− p1(I

∗
1 )

p1(I1)

)
(c2i(E)− k1p1(I1))

+
c1
c2

n∑
j=2

j−1∏
i=1

kj

k̃j

(1−
pj(I

∗
j )

pj(Ij)

)
(k̃j−1pj−1(Ij−1)− kjpj(Ij))

+
c1
c2

(
n∏
i=1

ki

k̃i

)(
1− f(V ∗)

f(V )

)
(k̃npn(In)− r(V )).
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Using the equilibrium relations (6), it follows that

·
U3 =

(
1− c(S∗

c(S)

)
g(S) + c(S∗)f(V )− c1i(E∗)

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+ c1i(E

∗)

−c1i(E∗)
p1(I

∗
1 )

p1(I1)

i(E)

i(E∗)
+ c1i(E

∗)

−c1i(E∗)
n∑
j=2

pj(I
∗
j )

pj(Ij)

pj−1(Ij−1)

pj(Ij)
+ (n− 1)cii(E

∗)

−c1i(E∗)
r(V )

r(V ∗)
− c1i(E∗)

f(V ∗)

f(V )

pn(In)

pn(I∗n)
+ c1i(E)

f(V ∗)

f(V )

r(V )

r(V ∗)
.

It is then seen that
·
U3 =

(
1− c(S∗)

c(S)

)
(g(S)− g(S∗)) + c1i(E

∗)

(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)

−c1i(E∗)
[
c(S∗)

c(S)
+
i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p1(I
∗
1 )

p1(I1)

+
n∑
j=2

pj(I
∗
j )

pj(Ij)

pj−1(Ij−1)

pj(Ij)
+
pn(In)

pn(I∗n)

f(V ∗)

f(V )
− (n+ 2)

 .
We are now ready to establish the global stability of the endemic equilibrium.

Theorem 4 Suppose that R0 > 1. Then the endemic equilibrium E∗ is glob-
ally asymptotically stable in Q2.

Proof. From the monotonicity conditions (M), it follows that(
1− c(S∗)

c(S)

)
(g(S)− g(S∗)) ≤ 0

with equality if and only if S = S∗ and that(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)
≤ 0.

Also, from the AM −GM inequality, which says that the arithmetic mean is
at least equal to the geometric mean, it follows that

c(S∗)

c(S)
+
i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p1(I
∗
1 )

p1(I1)
+

n∑
j=2

pj(I
∗
j )

pj(Ij)

pj−1(Ij−1)

pj(Ij)

+
pn(In)

pn(I∗n)

f(V ∗)

f(V )
− (n+ 2) ≥ 0

344



P. Georgescu - Global properties for a virus propagation model . . .

with equality if and only if

c(S∗)

c(S)
=
i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
=

i(E)

i(E∗)

p1(I
∗
1 )

p1(I1)
=
pj(I

∗
j )

pj(Ij)

pj−1(Ij−1)

pj(Ij)
, 2 ≤ j ≤ n,

=
pn(In)

pn(I∗n)

f(V ∗)

f(V )
= 1.

Consequently,
·
U3= 0 if and only if S = S∗ and

i(E

i(E∗)
=

f(V )

f(V ∗)
=
pj(Ij)

pj(I∗j )
, 1 ≤ j ≤ n,=

f(V )

f(V ∗)
. (8)

We now try to find the invariant subsets within the set of points which satisfy
the conditions above. Since S ′ = g(S∗)−c(S∗)f(V ) on these subsets, it follows
that

S ′ = c(S∗)(f(V ∗)− f(V ))

and consequently S ′ = 0 if and only if V = V ∗. From (8), we then deduce that
E = E∗ and Ij = I∗j for 1 ≤ j ≤ n. Consequently, the endemic equilibrium E∗

is the unique such invariant set and consequently it is globally asymptotically
stable on Q2, by LaSalle’s invariance principle.

5. Concluding remarks

Our mathematical findings can be summarized in the following result.

Theorem 5 1. If R0 > 1, then the disease-free equilibrium E0 is unstable
and the system is permanent. There is a single endemic equilibrium E∗,
which is globally asymptotically stable in Q2.

2. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically
stable in Q1 and there is no endemic equilibrium.

From Theorem 5, it is seen that the basic reproduction number R0 is a thresh-
old parameter, governing the stability of both the disease-free and the endemic
equilibrium, not to mention the very existence of the latter. Comparing our
Theorem 5 with the results obtained in Georgescu and Hsieh [2], it is seen
that the SEIV model has a robust structural stability, in the sense that its
stability properties are not affected by the number of stages in the infective
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period. Directions for further research include considering whether or not these
properties are affected by multiple contagion pathways (to allow for infected
cell-to-cell infection pathways of for multiple infective parallel stages) or by in-
creased viral cell production (to suppose that viral cells are produced in each
infective stage).
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