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This paper investigates the onset of nontrivial periodic solutions for an integrated pest
management model which is subject to pulsed biological and chemical controls. The bio-
logical control consists in the periodic release of infective individuals, while the chemical
control consists in periodic pesticide spraying. It is assumed that both controls are used
with the same periodicity, although not simultaneously. To model the spread of the disease
which is propagated through the release of infective individuals, an unspecified force of
infection is employed.
The problem of finding nontrivial periodic solutions is reduced to showing the existence of
nontrivial fixed points for the associated stroboscopic mapping of time snapshot equal to
the common period of controls. The latter problem is in turn treated via a projection
method. It is then shown that once a threshold condition is reached, a stable nontrivial
periodic solution emerges via a supercritical bifurcation.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Synthetic pesticides were initially viewed as a miraculous way of controlling pest populations. However, it has been
quickly noticed that heavy pesticide use creates on a long run more problems than it solves. In some situations, due to
the survival of pest individuals which are genetically predisposed to pesticide resistance and to a rapid reproductive rate,
repeated pesticide use selects the resistant pest individuals, and the entire pest population becomes resistant in a short time.
Moreover, when pesticides are used to control a given pest species, its natural predators may be removed from the environ-
ment as well as a side effect; that may actually cause for a long term an increase in the size of the pest population, instead of
the expected reduction. If the pest is living out of reach or just hiding, then pesticides may simply have no effect on the pest
population. Finally, many pesticides are known to cause environmental problems and to damage human health.

An integrated pest management (IPM) strategy is considered to be more effective and less damaging to the environment
than using pesticides alone. This approach involves the use of a wide array of controls, which includes mechanical, biological
and chemical controls. The emphasis is put on the control of the pest population, not on its eradication, as the later might be
unfeasible or counterproductive. Generally, an IPM strategy is considered successful when the pest population is stabilized
under the economic injury level (EIL), defined by Stern et al. [16] as ‘‘the amount of pest injury which justifies the cost of
using controls or the lowest pest density which causes economic damage”.
. All rights reserved.
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In general, biological controls are of much less environmental concern and of lower cost than pesticides. Also, they might
be more effective if are applied correctly, and are self-regulating up to some extent. To use biological controls effectively,
detailed knowledge of the pest and of its natural enemies is needed. One approach to biological control consists in the peri-
odic release of parasitoids, pathogens or natural predators of target pests. Another possible approach is to release pests
which are infected in laboratories, with the purpose of spreading a disease in the targeted pest population, on the grounds
that infective pests usually cause less environmental damage and are less likely to reproduce. This is the approach to bio-
logical control which we consider in the present paper.

Regarding the disease which is spread through the periodic release of infective pests, it has been observed [11,8,7] that
the dependence on the size of the infective population I plays a more prominent role than the dependence on size of the
susceptible pest population S, as far as the incidence rate of the infection is concerned. Consequently, an incidence rate of
type gðIÞS may be an appropriate choice in many situations. (See also [2,5,15,17], in which particular rates of this type
are employed.) In the following, we shall use a general incidence rate of type gðIÞS to model the transmission of the disease,
under a few natural assumptions on the nonlinear force of infection g.

As far as chemical controls are concerned, the synthetic pesticides are used in IPM strategies only as the last resort, when
deemed an absolute necessity, and are specifically chosen to target the pest species to be controlled.

A central problem for IPM strategies is to choose the appropriate moment for using each type of control. To account for
the fact that pesticides cannot be sprayed continuously, we use a model introduced in Georgescu and Moros�anu [4], where
the biological and chemical controls are employed in an impulsive and periodic fashion, with the same periodicity but not
simultaneously. The choice of using impulsive controls is, in our opinion, justified since for certain pesticides the effect fol-
lows shortly after application and also since the size of the infective pest population grows immediately after the release of
infective individuals. Consequently, such changes can be modeled as immediate jumps in the population sizes. In this regard,
a general account of the theory of impulsive ordinary differential equations can be found in Bainov and Simeonov [1].

An unified approach of dealing with the existence of nontrivial periodic solutions for a large class of two dimensional sys-
tems of differential equations, which are impulsively perturbed in a periodic fashion by means of possibly nonlinear controls,
has been devised in Lakmeche and Arino [9]. Their approach consists in reformulating the problem of finding nontrivial peri-
odic solutions as a fixed point problem for the associated stroboscopic mapping and solving the latter by the methods of
bifurcation theory. Specifically, a projection method is employed. The subsequent theoretical findings were applied to the
study of a particular model arising from the chemotherapeutic treatment of tumors, originally introduced by Panetta
[14], that features nonlinearities of logistic type and linear impulses.

In this paper, we employ the method and some of the notations introduced in [9], although our model is structurally dif-
ferent from Panetta’s in the sense that it is not a competitive model (it is actually neither competitive nor cooperative). Nota-
bly, we establish the bifurcation of nontrivial periodic solutions for a nonlinear force of infection expressed in a general form
and employ two distinct types of impulsive controls, biological and chemical. The approach devised by Lakmeche and Arino is
also employed, among others, by Lu et al. [12] for a predator–pest model that is a subject to pulsed use of insecticides, and by
the same authors in [13] for a SIR epidemic model with horizontal and vertical transmission which is subject to pulsed vac-
cination. See also [10], where the bifurcation of nontrivial periodic solutions for a Kolmogorov-type system arising from het-
erogeneous tumor therapy by several drugs with instantaneous effects administered one at a time is studied by this method.

This paper is organized as follows: in Section 2, we formulate our impulsive control model and state its stability and per-
sistence properties. A basic reproduction number R0 is then constructed and it is shown that R0 is a threshold parameter for
this model, as far as the stability of the trivial periodic solution is concerned. In Section 3, we introduce a few definitions and
notations and reformulate the problem of finding nontrivial periodic solutions as a fixed point problem. The latter problem is
then treated through the use of a projection method and the onset of nontrivial periodic solutions is consequently estab-
lished on condition that R0 ¼ 1. Our findings are then discussed in Section 4. Finally, some more technical computations used
to prove the above results are deferred to Appendices A–E.

2. The model and its stability properties

In the following, we consider the model which has been studied in [4] from the viewpoint of finding sufficient conditions
for the global stability of the susceptible pest-eradication solution and for the persistence of the disease, respectively. We
also attempt to establish a certain bifurcation result which complements those already obtained in [4]. We denote by SðtÞ
and IðtÞ the sizes of the susceptible and infective pest population, respectively, at time t, and suppose that all pests are either
susceptible or infective.

In [4], the following impulsively controlled system has been formulated to describe the variation of S and I:
I0ðtÞ ¼ gðIðtÞÞSðtÞ �wIðtÞ; t 6¼ ðnþ l� 1ÞT; t 6¼ nT;

S0ðtÞ ¼ SðtÞhðSðtÞÞ � gðIðtÞÞSðtÞ; t 6¼ ðnþ l� 1ÞT; t 6¼ nT;

DIðtÞ ¼ �d2IðtÞ; t ¼ ðnþ l� 1ÞT;
DSðtÞ ¼ �d1SðtÞ; t ¼ ðnþ l� 1ÞT;
DIðtÞ ¼ l; t ¼ nT;

DSðtÞ ¼ 0; t ¼ nT:

ð2:1Þ
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Here, T > 0, 0 < l < 1, DuðtÞ ¼ uðtþÞ � uðtÞ for u 2 fS; Ig, 0 6 d1; d2 < 1, n 2 N�, w > 0 and hð0Þ ¼ r > 0. Assume that the func-
tions h and g satisfy the following hypotheses:

(H1) h is decreasing on ½0;1Þ, limS!1hðSÞ < �w, S7!ShðSÞ locally Lipschitz on ð0;1Þ,
(H2) gðIÞ is increasing and globally Lipschitz on ½0;1Þ, and gð0Þ ¼ 0.

Under these assumptions, it has been shown in [4] that the initial value problem for the system (2.1) is biologically well-
posed in the sense that to any positive initial data ðIð0Þ; Sð0ÞÞ there corresponds a positive solution ðIðtÞ; SðtÞÞ which is
globally defined, and if the initial data is strictly positive component-wise, then the solution is also strictly positive compo-
nent-wise as well. It has also been shown in [4, Lemma 3.3] that all solutions of (2.1) are bounded.

We now introduce a few stability properties of the subsystem:
I0ðtÞ ¼ �wIðtÞ; t 6¼ nT; ðnþ l� 1ÞT;
DIðtÞ ¼ �d2IðtÞ; t ¼ ðnþ l� 1ÞT;
DIðtÞ ¼ l; t ¼ nT;

Ið0þÞ ¼ I0;

ð2:2Þ
which is used to describe the dynamics of the susceptible pest-eradication state. It has been seen in [4] that the system
formed with the first three equations of (2.2) has a periodic solution I� such that all the solutions of (2.2) tend to I� as
t !1. More precisely, I� is given by
I�ðtÞ ¼ e�wtI�ð0þÞ for t 2 ð0; lT�;
I�ðtÞ ¼ e�wtI�ð0þÞð1� d2Þ for t 2 ðlT; T�;
where, by the T-periodicity requirement,
I�ð0þÞ ¼ l
1� e�wTð1� d2Þ

: ð2:3Þ
It has also been shown in [4, Theorems 4.1 and 5.1], that the susceptible pest-eradication periodic solution ðI�;0Þ, called also
in the following the trivial periodic solution, is globally asymptotically stable provided that:
Z T

0
gðI�ðtÞÞdt � lnð1� d1Þ > rT;
while if the opposite inequality is satisfied, then the susceptible pest-eradication solution loses its stability and the system
(2.1) becomes uniformly persistent. We shall now be concerned with the threshold situation, that is, the case when:
Z T

0
gðI�ðtÞÞdt � lnð1� d1Þ ¼ rT: ð2:4Þ
Let us briefly discuss biological meaning of (2.4). Suppose that ðIðtÞ; SðtÞÞ approaches the trivial periodic solution ðI�;0Þ. Then,
as the incidence rate of the infection is of the form gðIÞS, the integral

R T
0 gðI�ðtÞÞdt approximates the normalized loss of sus-

ceptible pests for a period due to their movement to the infective class, while since the production of newborn susceptible
pests is given by ShðSÞ and hð0Þ ¼ r, rT approximates the normalized gain of susceptible pests for a period. A correction term
� lnð1� d1Þ accounts for the loss of the susceptible pests due to pesticide spraying. Then the threshold condition represents
the fact that the total normalized loss of susceptible pests for a period due to the infection or pesticide spraying balances the
total normalized gain of newborn susceptible pests for a period.

Let us define the basic reproduction number R0 associated with (2.1) as
R0 ¼
R T

0 gðI�ðsÞÞds� lnð1� d1Þ
rT

:

Note that the above-defined R0, although being, as usual, a measure for the virulence of infection, cannot be interpreted in
the usual sense. This happens since in the classical situation the survival of the susceptible pest population is usually
unquestioned, the alternative endings being either an infection-free state or an endemic state where the infective pest pop-
ulation persists alongside the susceptible pest population. Moreover, in the classical situation, the basic reproduction num-
ber is defined as the average number of new infections caused by a single infective individual which is introduced in a totally
susceptible population; that is, it is defined based on the dynamics of the system near the infective pest-eradication equi-
librium. For the impulsively controlled system (2.1), the outcome is different. Due to the pulsed supply of infective pests
at t ¼ nT , the survival of the infective population is unquestioned. Therefore, the alternative endings now are either a sus-
ceptible pest-eradication state, or an endemic state. Moreover, as seen in the discussion above, our definition of the basic
reproduction number R0 is based on the dynamics of the system near the susceptible pest-eradication periodic solution,
as opposed to what happens in the classical case. This explains why the dynamics of (2.1) is structurally different from that
of the unperturbed system, composed of the first two equations in (2.1).
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With this notation, the threshold condition (2.4) can simply be rewritten as R0 ¼ 1. According to the above discussion,
if R0 > 1, then the susceptibles are depleted too fast, due to infection and to pesticide spraying, and the system tends to
the susceptible pest-eradication periodic solution. If R0 < 1, then the system becomes uniformly persistent. See [4] for
details.

3. The fixed point approach

We now proceed to study bifurcation, which occurs at R0 ¼ 1. To this purpose, we shall employ a fixed point argument.
We denote by Uðt; U0Þ the solution of the (unperturbed) system consisting of the first two equations of (2.1) for the initial
data U0 ¼ ðu1

0; u
2
0Þ; also, U ¼ ðU1;U2Þ. We define the mappings I1; I2 : R2 ! R2 by
I1ðx1; x2Þ ¼ ðð1� d2Þx1; ð1� d1Þx2Þ; I2ðx1; x2Þ ¼ ðx1 þ l; x2Þ
and the map F : R2 ! R2 by
Fðx1; x2Þ ¼ ðgðx1Þx2 �wx1; x2hðx2Þ � gðx1Þx2Þ:
Furthermore, let us define W : ½0;1Þ � R2 ! R2 by
WðT;U0Þ ¼ I2ðUðð1� lÞT; I1ðUðlT; U0ÞÞÞÞ; WðT;U0Þ ¼ ðW1ðT; U0Þ;W2ðT; U0ÞÞ:
It is easy to see that W is actually the stroboscopic mapping associated to the system (2.1), which puts in correspondence the
initial data U0 at 0+ with the subsequent state of the system WðT;U0Þ at T+, where T is the stroboscopic time snapshot. The
idea of using a stroboscopic mapping is motivated not by the periodicity of the functional coefficients which appear in
the first two equations of (2.1) (which are in this particular situation not periodic), as usual, but by the periodicity of the
impulsive controls.

We reduce the problem of finding a periodic solution of (2.1) to a fixed point problem. Here, U is a periodic solution of
period T for (2.1) if and only if its initial data Uð0Þ ¼ U0 is a fixed point for WðT; �Þ. Consequently, to establish the existence
of nontrivial periodic solutions of (2.1), one needs to prove the existence of nontrivial fixed points of W.

By the chain rule, we note that:
DXWðT;XÞ ¼ DXUðð1� lÞT; I1ðUðlT; XÞÞÞ
1� d2 0

0 1� d1

� �
DXUðlT; XÞ:
We are interested in the bifurcation of nontrivial periodic solutions near ðI�;0Þ. Assume that X0 ¼ ðx0;0Þ is the starting point
for the trivial periodic solution ðI�;0Þ, where x0 ¼ I�ð0þÞ, I�ð0þÞ being given by (2.3). To find a nontrivial periodic solution of
period s with initial data X, we need to solve the fixed point problem X ¼ Wðs;XÞ, or, denoting s ¼ T þ �s, X ¼ X0 þ X,
X0 þ X ¼ WðT þ �s;X0 þ XÞ:
Let us define:
Nð�s;XÞ ¼ X0 þ X �WðT þ �s;X0 þ XÞ ¼ ðN1ð�s;XÞ;N2ð�s;XÞÞ: ð3:1Þ
At the fixed point, Nð�s;XÞ ¼ 0. Let us denote:
DXNð0; ð0;0ÞÞ ¼ a00 b00
c00 d00

 !
:

It follows that:
a00 ¼ 1� ð1� d2Þe�wT ; ð3:2Þ

b00 ¼ �e�wT ð1� d2Þ
Z lT

0
gðI�ðsÞÞeðrþwÞs�

R s

0
gðI�ðsÞÞds dsþ ð1� d1Þ

Z T

lT
gðI�ðsÞÞeðrþwÞs�

R s

0
gðI�ðsÞÞds ds

" #
; ð3:3Þ

c00 ¼ 0; ð3:4Þ

d00 ¼ 1� ð1� d1ÞerT�
R T

0
gðI�ðsÞÞds

: ð3:5Þ
(See Appendix A for details.) A necessary condition for the bifurcation of nontrivial periodic solutions near ðI�;0Þ is then
det½DXNð0; ð0;0ÞÞ� ¼ 0: ð3:6Þ
Since DXNð0; ð0;0ÞÞ is an upper triangular matrix and a00 ¼ 1� ð1� d2Þe�wT > 0 always, it consequently follows that d00 ¼ 0 is
necessary for the bifurcation. It is easy to see that d00 ¼ 0 is equivalent to (2.4) or to R0 ¼ 1. It now remains to show that this
necessary condition is sufficient as well. This assertion represents the statement of the following theorem, which is our main
result.

Theorem 1. A supercritical bifurcation occurs at R0 ¼ 1, in the sense that there is e > 0 such that for all 0 < ~e < e there is a stable
positive nontrivial periodic solution of (2.1) with period T þ ~e.
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Proof 1. With the above notations, it is seen that:
dimðKer½DXNð0; ð0; 0ÞÞ�Þ ¼ 1;
and a basis in Ker½DXNð0; ð0;0ÞÞ� is � b00
a00
;1

� �
. Then the equation Nð�s;XÞ ¼ 0 is equivalent to:
N1ð�s; aY0 þ zE0Þ ¼ 0; N2ð�s; aY0 þ zE0Þ ¼ 0;
where
E0 ¼ ð1;0Þ; Y0 ¼ � b00
a00
;1

� �
and X ¼ aY0 þ zE0 represents the direct sum decomposition of X using the projections onto Ker½DXNð0; ð0;0ÞÞ� (the central
manifold) and Im½DXNð0; ð0;0ÞÞ� (the stable manifold). See [3, Section 2.4], or [6], for details.

Let us denote:
f1ð�s; a; zÞ ¼ N1ð�s; aY0 þ zE0Þ; f 2ð�s; a; zÞ ¼ N2ð�s; aY0 þ zE0Þ: ð3:7Þ
Firstly, we see that:
of1

oz
ð0;0; 0Þ ¼ oN1

ox1
ð0; ð0;0ÞÞ ¼ a00 6¼ 0:
Therefore, by the implicit function theorem, one may solve the equation f1ð�s; a; zÞ ¼ 0 near ð0;0;0Þwith respect to z as a func-
tion of �s and a, and find z ¼ zð�s; aÞ such that zð0;0Þ ¼ 0 and
f1ð�s; a; zð�s; aÞÞ ¼ N1ð�s; aY0 þ zð�s; aÞE0Þ ¼ 0:
Moreover,
oz
oa
ð0;0Þ ¼ 0;

oz
o�s
ð0;0Þ ¼ � w

a00
I�ðTÞ:
(See Appendix B for details.)
It now remains to study the solvability of the equation:
f2ð�s; a; zð�s; aÞÞ ¼ 0; ð3:8Þ
or the equivalent equation:
N2ð�s; aY0 þ zð�s; aÞE0Þ ¼ 0: ð3:9Þ
Eq. (3.9) is called the ‘‘determining equation” and the number of its solutions equals the number of periodic solutions of
(2.1). We now proceed to solving (3.8) (or, equivalently, (3.9)). Let us denote:
f ð�s; aÞ ¼ f2ð�s; a; zð�s; aÞÞ: ð3:10Þ
First, it is easy to see that:
f ð0;0Þ ¼ Nð0; ð0;0ÞÞ ¼ 0:
We determine the Taylor expansion of f around ð0;0Þ. For this, we compute the first order partial derivatives of
o�s ð0;0Þ and

of
oa ð0;0Þ and observe that:
of
o�s
ð0;0Þ ¼ of

oa
ð0;0Þ ¼ 0:
(See Appendix C for the proof of this fact.)
Furthermore, it is observed in Appendix E that:
A ¼ o2f
oa2 ð0;0Þ ¼ 0; B ¼ o2f

oao�s
ð0;0Þ < 0; C ¼ o2f

o�s2 ð0;0Þ > 0;
and hence,
f ð�s; aÞ ¼ Ba�sþ C
a2

2
þ oð�s; aÞð�s2 þ a2Þ:
By denoting �s ¼ ka (where k ¼ kðaÞ), we obtain that (3.8) is equivalent to:
Bkþ C
k2

2
þ oða; kaÞð1þ k2Þ ¼ 0:
Since B < 0 and C > 0, this equation is solvable with respect to k as a function of a. Moreover, here k � � 2B
C > 0.
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This implies that there is a supercritical bifurcation to a nontrivial periodic solution near a period T which satisfies the
sufficient condition for the bifurcation (2.4). It is noteworthy that since this periodic solution appears via a supercritical
bifurcation, the nontrivial periodic solution is stable. That is, there is e > 0 such that for all 0 < a < e there is a stable positive
nontrivial periodic solution of (2.1) with period T þ �sðaÞ which starts in X0 þ aY0 þ zð�sðaÞ; aÞE0. Here, X0, Y0, E0, z, �s are as
defined above. h
4. Conclusion

The focus of this paper is the behavior of an impulsively controlled integrated pest management model. To limit the
damaging potential of the pest population, a biological control, consisting in the release of infective pests, and a chemical
control, consisting in pesticide spraying, are applied in a periodic fashion, with the same period, but not simultaneously. An
unspecified nonlinear force of infection is assumed to describe the transmission of the disease which is spread through the
release of infective individuals, and it is assumed that the infective pest population neither damages the crops, nor
reproduces.

Our model is then investigated from the viewpoint of bifurcation theory. We investigate the existence of nontrivial peri-
odic solutions by introducing the corresponding stroboscopic mapping and investigating its nontrivial fixed points. It is
shown that once a threshold condition is reached, then the trivial periodic solution loses its stability. This stability is trans-
ferred to a newly emerging nontrivial periodic solution which appears via a supercritical bifurcation. This threshold condi-
tion may be expressed in terms of a balance condition for the susceptible class, or in terms of a basic reproduction number
associated to the model. In precise terms, a nontrivial periodic solution corresponds to a persistent susceptible pest popu-
lation, while a nontrivial periodic solution with small amplitude, below the economic injury level, indicates that the pest
management strategy is still successful.

We have to add a remark upon the significance of the threshold condition (2.4). In the case in which gðIÞ is a linear func-
tion, gðIÞ ¼ bI, then the threshold condition is
1
T

Z T

0
I�ðsÞds ¼ r þ ð1=TÞ lnð1� d1Þ

b
:

We define IC ¼ rþð1=TÞ lnð1�d1Þ
b as an ‘‘epidemic threshold”. It is then seen from the above and Theorem 1 that nontrivial

periodic solutions ðI; SÞ appear when the average of the susceptible pest-eradication periodic solution over a period
reaches the epidemic threshold IC . As mentioned above, if the average of I� is greater than IC , then the susceptible
pest-eradication periodic solution is globally stable, while if the average of I� is less than IC , then the system (2.1) is
uniformly persistent.
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Appendix A. The first order partial derivatives of U1, U2

By formally deriving the equation:
d
dt
ðUðt; X0ÞÞ ¼ FðUðt; X0ÞÞ;
which characterizes the dynamics of the unperturbed flow associated to the first two equations in (2.1), one obtains that:
d
dt
½DXUðt; X0Þ� ¼ DXFðUðt; X0ÞÞDXUðt; X0Þ: ð4:1Þ
This relation will be integrated in what follows in order to compute the components of DXUðt; X0Þ explicitly. Firstly, it is clear
that:
Uðt; X0Þ ¼ ðU1ðt; X0Þ;0Þ:
We then deduce that (4.1) takes the particular form:
d
dt

oU1
ox1

oU1
ox2

oU2
ox1

oU2
ox2

 !
ðt; X0Þ ¼

�w gðU1ðt; X0ÞÞ
0 r � gðU1ðt; X0ÞÞ

� � oU1
ox1

oU1
ox2

oU2
ox1

oU2
ox2

 !
ðt; X0Þ; ð4:2Þ
the initial condition for (4.2) at t ¼ 0 being:
DXUð0; X0Þ ¼ I2: ð4:3Þ
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Here, I2 is the identity matrix in M2ðRÞ. It follows that:
d
dt

oU2

ox1
ðt; X0Þ

� �
¼ ðr � gðU1ðt; X0ÞÞÞ

oU2

ox1
ðt; X0Þ;
and consequently,
oU2

ox1
ðt; X0Þ ¼ e

R t

0
ðr�gðU1ðs;X0ÞÞÞds oU2

ox1
ð0; X0Þ:
This implies, using the initial condition (4.3), that:
oU2

ox1
ðt; X0Þ ¼ 0 for t P 0: ð4:4Þ
To compute oU1
ox1
ðt; X0Þ, oU1

ox2
ðt; X0Þ and oU2

ox2
ðt; X0Þ, one sees from (4.2) that:
d
dt

oU1

ox1
ðt; X0Þ

� �
¼ �w

oU1

ox1
ðt; X0Þ;

d
dt

oU1

ox2
ðt; X0Þ

� �
¼ �w

oU1

ox2
ðt; X0Þ þ gðU1ðt; X0ÞÞ

oU2

ox2
ðt; X0Þ;

d
dt

oU2

ox2
ðt; X0Þ

� �
¼ r � gðU1ðt; X0ÞÞð Þ oU2

ox2
ðt; X0Þ:

ð4:5Þ
Using one more time the initial condition (4.3), one deduces that:
oU1

ox1
ðt; X0Þ ¼ e�wt;

oU1

ox2
ðt; X0Þ ¼ e�wt

Z t

0
gðU1ðs; X0ÞÞeðrþwÞs�

R s

0
gðU1ðs;X0ÞÞds ds;

oU2

ox2
ðt; X0Þ ¼ ert�

R t

0
gðU1ðs;X0ÞÞds

:

ð4:6Þ
From (3.1), one obtains that:
DXNð0; ð0;0ÞÞ ¼ I2 � DXWðT;X0Þ;
which implies:
DXNð0; ð0;0ÞÞ ¼ a00 b00
0 d00

 !
;

with a00, b00, d00 given by
a00 ¼ 1� ð1� d2Þ
oU1

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ

oU1

ox1
ðlT; X0Þ; ð4:7Þ

b00 ¼ � ð1� d2Þ
oU1

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ

oU1

ox2
ðlT; X0Þ þ ð1� d1Þ

oU1

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ

oU2

ox2
ðlT; X0Þ

� �
; ð4:8Þ

d00 ¼ 1� ð1� d1Þ
oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ

oU2

ox2
ðlT; X0Þ: ð4:9Þ
Consequently, one may explicitly determine a00, b00, d00 using (4.6) and obtain that:

a00 ¼ 1� ð1� d2Þe�wT ; ð4:10Þ

b00 ¼ � ð1� d2Þe�wð1�lÞT e�wlT
Z lT

0
gðI�ðsÞÞeðrþwÞs�

R s

0
gðI�ðsÞÞds ds

"

þð1� d1Þe�wð1�lÞT
Z ð1�lÞT

0
gðU1ðs; I1ðUðlT; X0ÞÞÞÞeðrþwÞs�

R s

0
gðU1ðs;I1ðUðlT;X0ÞÞÞÞds ds � erlT�

R lT

0
gðI�ðsÞÞds

#

¼ �
"
ð1� d2Þe�wT

Z T

0
gðI�ðsÞÞeðrþwÞs�

R s

0
gðI�ðsÞÞds ds

þð1� d1Þe�wð1�lÞT
Z ð1�lÞT

0
gðI�ðsþ lTÞÞeðrþwÞs�

R s

0
gðI�ðsþlTÞÞds ds � erlT�

R lT

0
gðI�ðsÞÞds

#

¼ �e�wT ð1� d2Þ
Z lT

0
gðI�ðsÞÞeðrþwÞs�

R s

0
gðI�ðsÞÞds dsþ ð1� d1Þ

Z T

lT
gðI�ðsÞÞeðrþwÞs�

R s

0
gðI�ðsÞÞds ds

" #
; ð4:11Þ
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d00 ¼ 1� ð1� d1Þerð1�lÞT�
R ð1�lÞT

0
gðU1ðs;I1ðUðlT;X0ÞÞÞÞdserlT�

R lT

0
gðI�ðsÞÞds ¼ 1� ð1� d1ÞerT�

R ð1�lÞT

0
gðI�ðsþlTÞÞds�

R lT

0
gðI�ðsÞÞds

¼ 1� ð1� d1ÞerT�
R T

0
gðI�ðsÞÞds

: ð4:12Þ
Appendix B. The partial derivatives of z at ð0;0Þ

From the implicit function theorem, it follows that:
oN1

ox1
ð0; ð0;0ÞÞ � b00

a00

� �
þ oN1

ox2
ð0; ð0; 0ÞÞ þ oN1

ox1
ð0; ð0;0ÞÞ oz

oa
ð0;0Þ ¼ 0
and consequently,
a00 �
b00
a00

� �
þ b00 þ a00

oz
oa
ð0;0Þ ¼ 0;
and hence we obtain that:

oz
oa
ð0;0Þ ¼ 0: ð4:13Þ
The computations required to find oz
o�s ð0;0Þ are somewhat more complicated, as oN1

o�s ð0; ð0;0ÞÞ is not known beforehand, unlike
oN1
ox1
ð0; ð0;0ÞÞ and oN1

ox2
ð0; ð0;0ÞÞ. Again, by the implicit function theorem, it follows from (3.7) that:
oz
o�s
ð0;0Þ ¼ oU1

o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� lÞ þ oU1

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d2Þ

oU1

o�s
ðlT; X0Þ � lþ

oU1

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �

þ oU1

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

o�s
ðlT; X0Þ � lþ

oU2

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �
:

Since
oU2

ox1
ðlT; X0Þ ¼ 0; ð4:14Þ

oU2

o�s
ðlT; X0Þ ¼ 0; ð4:15Þ
it follows that:
oz
o�s
ð0;0Þ ¼ oU1

o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� lÞ þ oU1

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d2Þ

oU1

o�s
ðlT; X0Þ � lþ

oU1

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �
;

and consequently,
oz
o�s
ð0;0Þ 1� oU1

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d2Þ

oU1

ox1
ðlT; X0Þ

� �

¼ oU1

o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� lÞ þ oU1

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d2Þ

oU1

o�s
ðlT; X0Þ � l:
From (4.7), it now follows that:
oz
o�s
ð0;0Þ ¼ 1

a00

oU1

o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� lÞ þ oU1

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d2Þ

oU1

o�s
ðlT; X0Þ � l

� �
:

Consequently, one may obtain that:
oz
o�s
ð0;0Þ ¼ 1

a00
½�wI�ðTÞð1� lÞ þ ð1� d2Þe�wð1�lÞTð�wI�ðlTÞÞ � l� ¼ � w

a00
½I�ðTÞð1� lÞ þ e�wð1�lÞT I�ðlTþÞ � l�

¼ � w
a00
½I�ðTÞð1� lÞ þ I�ðTÞ � l� ¼ � w

a00
I�ðTÞ:
Appendix C. The first order partial derivatives of f at ð0;0Þ

By (3.1), (3.7) and (3.10), it is easy to see that:
of
oa
ð�s; aÞ ¼ o

oa
½a�W2ðT þ �s;X0 þ aY0 þ zð�s; aÞE0Þ� ¼ 1� o

oa
½U2ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞ�

¼ 1� oU2

ox1
ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞ � ð1� d2Þ
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� oU1

ox1
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ �

b00
a00
þ oz

oa
ð�s; aÞ

� �
þ oU1

ox2
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ

� �

� oU2

ox2
ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞ � ð1� d1Þ

� oU2

ox1
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ �

b00
a00
þ oz

oa
ð�s; aÞ

� �
þ oU2

ox2
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ

� �
:

It then follows that:
of
oa
ð0;0Þ ¼ 1� oU2

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d2Þ

oU1

ox1
ðlT; X0Þ �

b00
a00
þ oz

oa
ð0;0Þ

� �
þ oU1

ox2
ðlT; X0Þ

� �

� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

ox1
ðlT; X0Þ �

b00
a00
þ oz

oa
ð0;0Þ

� �
þ oU2

ox2
ðlT; X0Þ

� �
:

From (4.14) and
oU2

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ ¼ 0; ð4:16Þ
it is seen that:
of
oa
ð0;0Þ ¼ 1� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

ox2
ðlT; X0Þ ¼ d00 ¼ 0:
Using one more time (3.1), (3.7) and (3.10), it is seen that:
of
o�s
ð�s; aÞ ¼ o

o�s
½a�W2ðT þ �s;X0 þ aY0 þ zð�s; aÞE0Þ� ¼ �

o

o�s
½U2ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞ�

¼ � oU2

o�s
ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞð1� lÞ � oU2

ox1
ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0

þ zð�s; aÞE0ÞÞÞ � ð1� d2Þ
oU1

o�s
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ � lþ

oU1

ox1
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ

oz
o�s
ð�s; aÞ

� �

� oU2

ox2
ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞ � ð1� d1Þ

� oU2

o�s
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ � lþ

oU2

ox1
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ

oz
o�s
ð�s; aÞ

� �
:

Therefore,
of
o�s
ð0;0Þ ¼ � oU2

o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� lÞ � oU2

ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ � ð1� d2Þ

� oU1

o�s
ðlT; X0Þ � lþ

oU1

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �
� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ � ð1� d1Þ

� oU2

o�s
ðlT; X0Þ � lþ

oU2

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �
:

From (4.14)–(4.16) and
oU2

o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ ¼ 0; ð4:17Þ
it follows that:
of
o�s
ð0;0Þ ¼ 0:
Appendix D. The second order partial derivatives of U2

Again, by formally deriving:
d
dt
ðUðt; X0ÞÞ ¼ FðUðt; X0ÞÞ;
as done in Appendix A, one may obtain o2U2
ox2

1
ðt; X0Þ, o2U2

ox2
2
ðt; X0Þ, o2U2

ox1ox2
ðt; X0Þ as the solutions of certain initial value problems. One

sees that:
d
dt

o2U2

ox2
1

ðt; X0Þ
 !

¼ ðr � gðU1ðt; X0ÞÞÞ
o2U2

ox2
1

ðt; X0Þ � g0ðU1ðt; X0ÞÞ
oU1

ox1
ðt; X0Þ

oU2

ox1
ðt; X0Þ
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and since
oU2

ox1
ðt; X0Þ ¼ 0 for t P 0:
It then follows that:
d
dt

o2U2

ox2
1

ðt; X0Þ
 !

¼ ðr � gðU1ðt; X0ÞÞÞ
o2U2

ox2
1

ðt; X0Þ;
and consequently,
o2U2

ox2
1

ðt; X0Þ ¼ ert�
R t

0
gðU1ðs;X0ÞÞds o2U2

ox2
1

ð0; X0Þ:
Since o2U2
ox2

1
ð0; X0Þ ¼ 0, this implies that:
o2U2

ox2
1

ðt; X0Þ ¼ 0 for t P 0:
Also, by a similar argument,
d
dt

o
2U2

ox2
2

ðt; X0Þ
 !

¼ ðr � gðU1ðt; X0ÞÞÞ
o

2U2

ox2
2

ðt; X0Þ � g0ðU1ðt; X0ÞÞ
oU1

ox2
ðt; X0Þ

oU2

ox2
ðt; X0Þ;
and since
o2U2

ox2
2

ð0; X0Þ ¼ 0;
one may deduce that:
o2U2

ox2
2

ðt; X0Þ ¼ �ert�
R t

0
gðU1ðs;X0ÞÞds

Z t

0
g0ðU1ðs; X0ÞÞ

oU1

ox2
ðs; X0Þ

oU2

ox2
ðs; X0Þe

� rs�
R s

0
gðU1ðs;X0ÞÞds

� �
ds

¼ �ert�
R t

0
gðU1ðs;X0ÞÞds

Z t

0
g0ðU1ðs; X0ÞÞ

oU1

ox2
ðs; X0Þds: ð4:18Þ
Likewise,
d
dt

o2U2

ox1ox2
ðt; X0Þ

 !
¼ ðr � gðU1ðt; X0ÞÞÞ

o2U2

ox1ox2
ðt; X0Þ � g0ðU1ðt; X0ÞÞ

oU1

ox1
ðt; X0Þ

oU2

ox2
ðt; X0Þ;
and since
o2U2

ox1ox2
ð0; X0Þ ¼ 0;
one obtains that:
o2U2

ox1ox2
ðt; X0Þ ¼ �ert�

R t

0
gðU1ðs;X0ÞÞds

Z t

0
g0ðU1ðs; X0ÞÞ

oU1

ox1
ðs; X0Þ

oU2

ox2
ðs; X0Þe

� rs�
R s

0
gðU1ðs;X0ÞÞds

� �
ds

¼ �ert�
R t

0
gðU1ðs;X0ÞÞds

Z t

0
g0ðU1ðs; X0ÞÞ

oU1

ox1
ðs; X0Þds: ð4:19Þ
Appendix E. The second order partial derivatives of f

One notes that:
o2U2

ox1o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ ¼ 0; ð4:20Þ

o2U2

ox2
1

ðð1� lÞT; I1ðUðlT; X0ÞÞÞ ¼ 0; ð4:21Þ

o2U2

ox2
1

ðlT; X0Þ ¼ 0: ð4:22Þ
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Combining (4.20)–(4.22) with (4.14)–(4.17), we obtain:
o2f
o�s2 ð0;0Þ ¼ �

o2U2

os2 ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� lÞ2:
Since,
o2U
o�s2 ðð1� lÞT; I1ðUðlT; X0ÞÞÞ ¼ 0; ð4:23Þ
it is then concluded that:
o2f
o�s2 ð0;0Þ ¼ 0:
We then compute o2 f
oa2 ð0;0Þ. By (4.14) and (4.16), it follows that:
o2f
oa2 ð0;0Þ ¼ �

o

oa
oU2

ox1
ðð1� lÞðT þ�sÞ; I1ðUðlðT þ�sÞ; X0þ aY0þ zð�s;aÞE0ÞÞÞ

� �����
ð�s;aÞ¼ð0;0Þ

� ð1� d2Þ

� oU1

ox1
ðlT; X0Þ �

b00
a00
þ oz

oa
ð0;0Þ

� �
þ oU1

ox2
ðlT; X0Þ

� �

� o

oa
oU2

ox2
ðð1� lÞðT þ�sÞ; I1ðUðlðT þ�sÞ;X0þ aY0þ zð�s;aÞE0ÞÞÞ

� �����
ð�s;aÞ¼ð0;0Þ

� ð1� d1Þ

� oU2

ox1
ðlT; X0Þ �

b00
a00
þ oz

oa
ð0;0Þ

� �
þ oU2

ox2
ðlT; X0Þ

� �
� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ

� o

oa
ð1� d1Þ

oU2

ox1
ðlðT þ�sÞ; X0 þ aY0 þ zð�s;aÞE0Þ �

b00
a00
þ oz

oa
ð�s;aÞ

� �
þ oU2

ox2
ðlðT þ�sÞ;X0þ aY0þ zð�s;aÞE0Þ

� �� �����
ð�s;aÞ¼ð0;0Þ

:

Using again (4.21) and (4.13), it follows that:
o2f
oa2 ð0;0Þ ¼ �2

o2U2

ox1ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þð1� d2Þ �

oU1

ox1
ðlT; X0Þ �

b00
a00

� �
þ oU1

ox2
ðlT; X0Þ

� �
oU2

ox2
ðlT; X0Þ

� o2U2

ox2
2

ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ2
oU2

ox2
ðlT; X0Þ

� �2

� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ � 2

o2U2

ox2ox1
ðlT; X0Þ �

b00
a00

� �
þ o2U2

ox2
2

ðlT; X0Þ
" #

:

Consequently, from (4.18), (4.20), (3.2) and (3.3) one easily gets that:
o2f
oa2 ð0;0Þ > 0:
From (4.14)–(4.16), one may see that:
o
2f

oao�s
ð0;0Þ ¼ � o

oa
oU2

o�s
ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞ

� �����
ð�s;aÞ¼ð0;0Þ

� ð1� lÞ

� o

oa
oU2

ox1
ðð1� lÞðT þ �sÞ; I1ðUðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0ÞÞÞ

� �����
ð�s;aÞ¼ð0;0Þ

� ð1� d2Þ

� oU1

o�s
ðlT; X0Þ � lþ

oU1

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �
� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ � ð1� d1Þ

� o

oa
oU2

o�s
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ � lþ

oU2

ox1
ðlðT þ �sÞ; X0 þ aY0 þ zð�s; aÞE0Þ

oz
o�s
ð�s; aÞ

� �����
ð�s;aÞ¼ð0;0Þ

:

Using again (4.20) and (4.22), one sees that:
o2f
oao�s

ð0;0Þ ¼ � o2U2

ox2o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

ox2
ðlT; X0Þð1� lÞ

� o2U2

ox2ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

ox2
ðlT; X0Þ � ð1� d2Þ

oU1

o�s
ðlT; X0Þ � lþ

oU1

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �

� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ � ð1� d1Þ

o2U2

ox2o�s
ðlT; X0Þ � lþ

o2U2

ox2ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

 !
:



686 P. Georgescu et al. / Applied Mathematics and Computation 202 (2008) 675–687
We now determine the sign of o2 f
oao�s ð0;0Þ. It is seen that:
� o2U2

ox2ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

ox2
ðlT; X0Þ ¼ erð1�lÞT�

R ð1�lÞT

0
gðU1ðs;I1ðUðlT;X0ÞÞÞÞds

�
Z ð1�lÞT

0
g0ðU1ðs; I1ðUðlT; X0ÞÞÞÞe�ws ds

 !
� ð1� d1ÞerlT�

R lT

0
gðU1ðs;X0ÞÞds

¼ erT�
R ð1�lÞT

0
gðI�ðsþlTÞÞds�

R lT

0
gðI�ðsÞÞdsð1� d1Þ

Z ð1�lÞT

0
g0ðI�ðsþ lTÞÞe�ws ds

 !

¼ erT�
R T

0
gðI�ðsÞÞdsð1� d1Þ

Z ð1�lÞT

0
g0ðI�ðsþ lTÞÞe�ws ds

 !
:

From (2.4), it follows that:
� o2U2

ox2ox1
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

ox2
ðlT; X0Þ ¼

Z ð1�lÞT

0
g0ðI�ðsþ lTÞÞe�ws ds:
Likewise,
� o2U2

ox2o�s
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

oU2

ox2
ðlT; X0Þð1� lÞ ¼ � r � gðU1ðð1� lÞT; I1ðUðlT; X0ÞÞÞÞð Þ oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞ

� ð1� d1Þ
oU2

ox2
ðlT; X0Þð1� lÞ

¼ �ðr � gðI�ðTÞÞÞð1� d00Þð1� lÞ ¼ �ðr � gðI�ðTÞÞÞð1� lÞ:
Using the results in Appendices A and B, one may deduce that:
ð1� d2Þ
oU1

o�s
ðlT; X0Þ � lþ

oU1

ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

� �
¼ ð1� d2Þ �wI�ðlTÞ � lþ e�wlT � 1

a00

� �
wI�ðTÞ

� �� �

¼ �wð1� d2Þe�wlT I�ð0þÞ � lþ 1
a00

I�ðTÞ
� �

:

It is seen that:
� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

o2U2

ox2o�s
ðlT; X0Þ � lþ

o2U2

ox2ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

" #

¼ � oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ ðr � gðU1ðlT; X0ÞÞÞ

oU2

ox2
ðlT; X0Þ � l�

oU2

ox2
ðlT; X0Þ

Z lT

0
g0ðI�ðsÞÞe�ws ds

 !
oz
o�s
ð0;0Þ

" #
:

Since d00 ¼ 0, it follows that:
� oU2

ox2
ðð1� lÞT; I1ðUðlT; X0ÞÞÞð1� d1Þ

o2U2

ox2o�s
ðlT; X0Þ � lþ

o2U2

ox2ox1
ðlT; X0Þ

oz
o�s
ð0;0Þ

" #

¼ �ðr � gðI�ðlTÞÞÞ � lþ
Z lT

0
g0ðI�ðsÞÞe�ws ds

 !
� 1

a00
wI�ðTÞ

� �
¼ � ðr � gðI�ðlTÞÞÞ � lþ w

a00

Z lT

0
g0ðI�ðsÞÞe�ws ds

 !
I�ðTÞ

" #
:

It is then deduced that:
o2f
oao�s

ð0;0Þ ¼ �ðr � gðI�ðTÞÞÞð1� lÞ þ
Z ð1�lÞT

0
g0ðI�ðsþ lTÞÞe�ws ds

 !
�wð1� d2Þe�wlT I�ð0þÞ � lþ 1

a00
I�ðTÞ

� �� �

� ðr � gðI�ðlTÞÞÞ � lþ w
a00

Z lT

0
g0ðI�ðsÞÞe�ws ds

 !
I�ðTÞ

" #

¼ � r � lgðI�ðlTÞÞ � ð1� lÞgðI�ðTÞÞ½ � �w
Z ð1�lÞT

0
g0ðI�ðsþ lTÞÞe�wðsþlTÞ ds

 !
ð1� d2Þ I�ð0þÞ � lþ 1

a00
I�ðTÞ

� �

� w
a00

Z lT

0
g0ðI�ðsÞÞe�ws ds

 !
I�ðTÞ:
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This implies that:
o2f
oao�s

ð0;0Þ ¼ � r � lgðI�ðlTÞÞ � ð1� lÞgðI�ðTÞÞ½ � �w
Z T

lT
g0ðI�ðsÞÞe�ws ds

� �
ð1� d2Þ I�ð0þÞlþ 1

a00
I�ðTÞ

� �

� w
a00

Z lT

0
g0ðI�ðsÞÞe�ws ds

 !
I�ðTÞ: ð4:24Þ
We note that:
rT �
Z T

0
gðI�ðsÞÞds ¼ � lnð1� d1Þ > 0
and also, since I� is decreasing on ð0; T�,
Z T

0
gðI�ðsÞÞds ¼

Z lT

0
gðI�ðsÞÞdsþ

Z T

lT
gðI�ðsÞÞds > lTgðI�ðlTÞÞ þ ð1� lÞTgðI�ðTÞÞ:
Consequently, the first term in the right-hand side of (4.24) is negative. Since g is increasing and I� is positive, the other terms
are negative as well and consequently,
o2f
oaos

ð0;0Þ < 0:
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