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We analyze the dynamics of a disease propagation model with relapse under the assump-
tion that the incidence of infection is given in an abstract, possibly bi-nonlinear form. Suf-
ficient conditions for the local stability of equilibria are obtained by means of Lyapunov’s
second method and it is shown that global stability can be attained under suitable mono-
tonicity conditions. The persistence of the system is then investigated and it is established
that the basic reproduction number R0 is a threshold parameter for the stability of the sys-
tem. Alternate Lyapunov functionals are also introduced, being observed that the originat-
ing functional template generalizes both quadratic and Volterra functionals.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

To model the propagation of a human or animal disease, it is often convenient to subdivide the total population, depend-
ing on disease status, into a small, tractable group of epidemiological classes, or compartments, the result being called a com-
partmental model. Among the most often considered compartments are the class of susceptible individuals (S), the class of
infective individuals (I) and the class of recovered individuals (R), while other classes may be added for increased accuracy.
Upon contracting the disease, the susceptible individuals enter the infective class and then, after their infective period ends,
enter the recovered class.

However, in diseases such as herpes and human and bovine tuberculosis, recovered individuals may experience relapse
and reenter the infective class. For herpes (see, for instance, Blower et al. [1] or Wildy et al. [26]), it has been observed that an
individual, once infected, remains infected all his life, passing regularly through episodes of relapse of infectiousness. For
tuberculosis, relapse can be caused by incomplete treatment or by latent infection, being observed that HIV-positive patients
are significantly more likely to relapse than HIV-negative patients, although it is often difficult to differentiate relapse from
reinfection (see Cox et. al. [2]). Also, it has been observed in [27] that the dominant force for attenuating the decline in tuber-
culosis incidence in Hong Kong is endogenous reactivation of latent infection, being also noted that public health interven-
tions focusing solely on reducing transmission may not ease the burden caused by endogenous reactivation in the short and
medium term.

A SIRI model for the spread of herpes with bilinear incidence and constant population size has been introduced by Tudor
[23], being shown that the basic reproduction number is a threshold parameter for the stability of the system. Further, it has
been observed in [23] that this model is also appropriate for the propagation of pseudorabies in swine. The results of [23]
have been extended by Moreira and Wang [20] to allow for the use of an incidence term featuring a more general depen-
dence on the size of the susceptible class, use being made of Lyapunov’s direct method and of an analysis of Liénard’s
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equation to establish a similar global stability threshold. A more general SIRI model, formulated as a integrodifferential sys-
tem with the fraction PðtÞ of recovered individuals remaining in the recovered class t time units after the recovery expressed
in an abstract form has been proposed and analyzed in van den Driessche and Zou [5], certain threshold stability results
being obtained by particularizing PðtÞ. See also van den Driessche et al. [3] for an analysis of a related SEIRI model.

Lyapunov’s second method is a robust tool which has been used to establish the local or global stability of equilibria for
large classes of models arising in mathematical biology and mathematical epidemiology, including certain models of pred-
ator–prey interaction and disease transmission. A Lyapunov functional of type Vðx; yÞ ¼ c1 x� x� � x� ln x

x�
� �

þ
c2 y� y� � y� ln y

y�

� �
has been first used by Volterra in [25] to discuss the stability of a predator–prey ecosystem. To relate

the specific form of this functional with our subsequent analysis, note here that V can be expressed under the equivalent
form Vðx; yÞ ¼ c1

R x
x�

s�x�
s dsþ c2

R y
y�

s�y�

s ds. This approach (and Lyapunov functional) has been vastly generalized by Harrison
in [10], who discussed the stability of a predator–prey interaction of a very general form using a Lyapunov functional which
is neither logarithmic, like Volterra’s, nor quadratic.

In recent years, a systematic study regarding the use of Lyapunov’s second method to discuss the stability of various mod-
els of disease propagation and predation has been made by Korobeinikov and his coworkers. See, for instance, Korobeinikov
[12–14], Korobeinikov and Maini [15], Melnik and Korobeinikov [19]. See also Guo et al. [9] for a graph theoretic approach to
the task of constructing suitable functionals, McCluskey [16–18] for a stability analysis of delayed SIR and SIRS models,
Georgescu and Hsieh [8] for an analysis of a SEIV model with nonlinear incidence of infection and removal expressed in
an abstract form, Yuan and Wang [28] for the study of a SEIR model with nonlinear incidence and group mixing. For a survey
on the use of Lyapunov functionals to establish the stability of disease propagation models, see also Fall et. al. [6]. However,
Lyapunov’s second method has been comparatively less successful for models with relapse or loss of immunity than for
models lacking these features.

We consider a compartmental model which divides the total population into susceptible individuals (S), infective individ-
uals (I) and recovered individuals (R) and describes the transmission of a contagious disease with relapse, in the form
dS
dt
¼ nðSÞ � cðSÞf ðIÞ; ð1Þ

dI
dt
¼ cðSÞf ðIÞ � c1uðIÞ þ k1cðRÞ;

dR
dt
¼ c2uðIÞ � k2cðRÞ:
The intrinsic growth rate of the susceptible class, which includes recruitment due to birth and immigration, as well as losses
due to natural death, is given by nðSÞ. The incidence rate of infection is given by cðSÞf ðIÞ, where cðSÞ is a contact function and
f ðIÞ represents the force of infection. The progression of infectious individuals to the recovered class is given by c2uðIÞ, while
c1uðIÞ represent the total movement of infectious individuals outside of the infective class due to their progression to the
recovered class, death due to natural causes and disease-related death. The displacement of recovered individuals to the
infective class due to relapse is given by k1cðRÞ, while the total movement of recovered individuals outside of the recovered
class due to relapse and to death due to natural causes is given by k2cðRÞ. For obvious biological reasons, it is assumed that
c1 > c2 and k2 > k1.

For nðSÞ ¼ K� lS; cðSÞ ¼ S; f ðIÞ ¼ bI;uðIÞ ¼ I; cðRÞ ¼ R; c1 ¼ aþ jþ l; c2 ¼ j; k1 ¼ c; k2 ¼ cþ l, one obtains the model
dS
dt
¼ K� lS� bSI;

dI
dt
¼ bSI � ðaþ jþ lÞI þ cR;

dR
dt
¼ jI � ðlþ cÞR;
which has been discussed by Vargas-deLeón in [24]. In the above model, K is the constant recruitment rate of susceptibles
due to birth and immigration, l is the natural death rate of the population, a is the disease-induced death rate, c is the re-
lapse rate and b is the average number of adequate contacts for an infective individual. Also, for
nðSÞ ¼ l� lS; f ðIÞ ¼ I;uðIÞ ¼ I; cðRÞ ¼ R; c1 ¼ jþ l; c2 ¼ j; k1 ¼ c; k2 ¼ cþ l, one obtains the model
dS
dt
¼ l� lS� cðSÞI;

dI
dt
¼ cðSÞI � ðjþ lÞI þ cR;

dR
dt
¼ jI � ðlþ cÞR;
analyzed by Moreira and Wang in [20], the meaning of the parameters being as indicated above.
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2. The well-posedness of the model

In this section, we shall discuss the global existence of the solutions of (1) and their positivity for suitable initial data,
establishing the well-posedness of the model in a biological sense. To this purpose, we assume that c; f ;u; c;n are real C1

functions defined at least on ½0;1Þ which satisfy the following positivity and growth conditions

(P) cð0Þ ¼ f ð0Þ ¼ uð0Þ ¼ cð0Þ ¼ 0;nð0Þ > 0; cðtÞ; f ðtÞ;uðtÞ; cðtÞ > 0 for t > 0.

(G) uðIÞ 6 cuI for I P 0; cðRÞ 6 ccR for R P 0;nðSÞ 6 K� cnS for S P 0;
R 1

0þ
1

f ðsÞ ds ¼ þ1, where K; cn; cu; cc > 0.

Note that (G) also implies that
R 1

0þ
1

uðsÞds ¼
R 1

0þ
1

cðsÞds ¼ þ1. Also, we assume that the equation nðSÞ ¼ 0 has a single solu-

tion S0 and the following sign conditions are satisfied
(SGN) ðnðSÞ � nðS0ÞÞðS� S0Þ < 0; ðcðSÞ � cðS0ÞÞðS� S0Þ > 0 for all S – S0; S P 0.

It is easy to see that conditions (SGN) are satisfied provided that n and c are strictly decreasing and strictly increasing,
respectively. Due to the sign and positivity conditions (SGN) and (P), it is easily seen that (1) admits a single disease-free
equilibrium ðS0;0;0Þ, which will be denoted by E0.

First, since Nagumo’s tangency condition (see, for instance, Pavel [21] for details) is satisfied on the boundary of ½0;1Þ3,
the system (1) has a unique solution ðS; I;RÞ for positive initial data, which remains positive on its maximal interval of
existence.

Let us now choose 1 < a < c1k2
c2k1

and define
G : R3 ! R; GðS; I;RÞ ¼ Sþ I þ c1

ac2
R:
It follows that
dG
dt
6 K� cnS� c1 1� 1

a

� �
cuI � c1

c2

k2

a
� 1

� �
ccR;
and consequently
dG
dt
þ dG 6 K;
where
d ¼min cn; c1 1� 1
a

� �
cu;

c1

c2

k2

a
� 1

� �
cc

� �
: ð2Þ
This implies that
F ¼ ðS; I;RÞ 2 ½0;1Þ3;GðS; I;RÞ 6 K
d

� 	
;

is a feasible domain for (1) which also attracts all solutions starting in ½0;1Þ3. Note that GðE0Þ ¼ GðS0;0;0Þ ¼ S0 and, by (SGN)
and the continuity of n;nðS0Þ ¼ 0. From (G) and (2), one sees that
0 ¼ nðS0Þ 6 K� cnS0 6 K� dS0;
and consequently GðE0Þ 6 K
d, which implies that E0 2 F.

In what follows, we shall consider only the behavior of solutions starting (and remaining) in this feasible domain. Obvi-
ously, such solutions are a priori bounded. Also, it is seen that ð0;1Þ3 \ F is an invariant set for (1) and the only x-limit point
of (1) on the boundary of F is E0.

Let us also define the basic reproduction number R0 by
R0 ¼
k2

c1k2 � c2k1
cðS0Þ

f 0ð0Þ
u0ð0Þ :
In this regard, the derivation of R0 can be performed by means of the next generation method as in [4], noting that
d
dt

I

R

S

0
B@

1
CA ¼

cðSÞf ðIÞ
0
0

0
B@

1
CA�

c1uðIÞ � k1cðRÞ
�c2uðIÞ þ k2cðRÞ

cðSÞf ðIÞ � nðSÞ

0
B@

1
CA ¼ F � V:
At the disease-free equilibrium E0, one has
DFðE0Þ ¼
F O2;1

O1;2 0

� �
; DVðE0Þ ¼

V O2;1

J1 J2

� �
;
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where the infection matrix F and the transition matrix V are given by
F ¼
cðS0Þf 0ð0Þ 0

0 0

� �
; V ¼

c1u0ð0Þ �k1c0ð0Þ
�c2u0ð0Þ k2c0ð0Þ

� �
;

and
J1 ¼ cðS0Þf 0ð0Þ 0ð Þ; J2 ¼ �n0ðS0Þ:
Consequently,
FV�1 ¼ 1
c1k2 � c2k1

f 0ð0Þ
u0ð0Þ

cðS0Þk2 cðS0Þk1

0 0

� �
;

and since R0 is the leading eigenvalue of FV�1, the conclusion follows.
For a biological interpretation of the quantities used in the definition of R0, one sees that 1

c1u0 ð0Þ
is the average time spent by

an individual in the infective class in the first pass (an infective individual may return to the infective class after relapse) if
the second equation is replaced by its linearization near the disease-free equilibrium. Since the probability of surviving the
infective class is c2

c1
and the probability of surviving the recovered class is k1

k2
, the average time spent by an individual in the

infective class (on multiple passes) is
TI ¼
1

c1u0ð0Þ
þ 1

c1u0ð0Þ
c2k1

c1k2
þ 1

c1u0ð0Þ
c2k1

c1k2

� �2

þ . . . ¼ k2

c1k2 � c2k1

1
u0ð0Þ :
Then the number of secondary infections caused by I infectives in a totally susceptible population (S ¼ S0) on multiple passes
is cðS0Þf ðIÞTI and consequently the number of new infections caused by a single infective is
cðS0Þ
f ðIÞ

I
k2

c1k2 � c2k1

1
u0ð0Þ :
Passing to limit as I! 0, one deduces the expression of R0 which is indicated above.

3. The stability of the disease-free equilibrium

In what follows, we shall be concerned with the stability of the disease-free equilibrium E0.
We consider the Lyapunov functional
U1ðS; I;RÞ ¼
Z S

S0

cðsÞ � cðS0Þ
cðsÞ dsþ I þ k1

k2
R:
Due to the sign condition (C), it is seen that U1 increases whenever any of jS� S0j; I;R increases and U1ðS; I;RÞP 0, with
U1ðS; I;RÞ ¼ 0 if and only if ðS; I;RÞ ¼ E0, that is, E0 is a minimum point for U1. Also limS!0U1ðS; I;RÞ ¼ þ1, due to the growth
conditions (G), and consequently the level sets of U1 do not have limit points on the boundary of ð0;1Þ3. We now compute
the time derivative of U1 along the solutions of (1).

Lemma 3.1. The time derivative of U1 along the solutions of (1) is
_U1 ¼
cðSÞ � cðS0Þ

cðSÞ

� �
ðnðSÞ � nðS0ÞÞ þ

c1k2 � c2k1

k2
R0f ðIÞu

0ð0Þ
f 0ð0Þ �uðIÞ

� �
: ð3Þ
Proof. By direct computations, it is seen that
_U1 ¼
cðSÞ � cðS0Þ

cðSÞ

� �
ðnðSÞ � cðSÞf ðIÞÞ þ ðcðSÞf ðIÞ � c1uðIÞ þ k1cðRÞÞ þ

k1

k2
ðc2uðIÞ � k2cðRÞÞ

¼ cðSÞ � cðS0Þ
cðSÞ

� �
nðSÞ � cðS0Þf ðIÞ �

c1k2 � c2k1

k2
uðIÞ:
Since nðS0Þ ¼ 0, we may deduce that
_U1 ¼
cðSÞ � cðS0Þ

cðSÞ

� �
ðnðSÞ � nðS0ÞÞ þ

c1k2 � c2k1

k2

k2cðS0Þ
c1k2 � c2k1

f ðIÞ �uðIÞ
� �

;

from which the conclusion follows. h

We are now ready to establish our first stability result, which gives an estimation for the domain of attraction associated
with the disease-free equilibrium E0.
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Fig. 1. I as a function of t for rf 2 f2;3;4g, respectively for rf 2 f10;11;12g.
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Theorem 3.1. Suppose that there is IDF > 0 such that
f ðIÞ
uðIÞ 6

f 0ð0Þ
u0ð0Þ

1
R0

for I 2 ð0; IDFÞ ð4Þ
and let m ¼ U1ðS0; IDF ;0Þ. Then the disease-free equilibrium E0 is locally asymptotically stable and its domain of attraction includes
the set
D1
m ¼ fðS; I;RÞ 2 ð0;1Þ� ½0;1Þ

2; U1ðS; I;RÞ < mg:
Proof. First, due to the sign conditions (SGN), it is seen that _U1ðS; I;RÞP 0 for I 2 ð0; IDFÞ, with equality if and only if S ¼ S0

and either I ¼ 0 or the equality holds in (4). Also, for I P IDF ; _U1ðS; I;RÞP U1ðS0; IDF ;0Þ ¼ m. Consequently, if ðS; I;RÞ 2 D1
m, then

I < IDF , which implies that _U1ðS; I;RÞ 6 0 on D1
m.

We now find the invariant subsets within
~P1 ¼ ðS; I;RÞ 2 D1
m; _U1ðS; I;RÞ ¼ 0

n o
:

It is easily seen that if ðS; I;RÞ 2 ~P1 then S ¼ S0 and consequently I ¼ 0 and the only invariant subset of ~P1 is fðS0;0;0Þg. The
use of LaSalle’s invariance principle (see, for instance, Khalil [11]) concludes the proof. h

Although Theorem 3.1 is seemingly a local stability result, it will be seen in what follows that it ensures the global sta-
bility of the disease-free equilibrium under a suitable monotonicity condition.

Corollary 3.1. Suppose that R0 6 1 and the following monotonicity condition holds
(M1) f

u is decreasing.
Then the disease-free equilibrium E0 is globally asymptotically stable.
Proof. Since f
u is decreasing, one sees that
f ðIÞ
uðIÞ 6 lim

I!0

f ðIÞ
uðIÞ ¼

f 0ð0Þ
u0ð0Þ for all I > 0;
which implies that (4) is satisfied for all I > 0. Consequently, IDF and m can be chosen arbitrarily large and E0 is globally
asymptotically stable. h

Note that condition (M1) is trivially satisfied if f and u are linear functions, case in which f
u is a constant function. Also,

(M1), which assumes that the functional quotient between the force of infection and the removal rate of infectives is
decreasing, is a natural prerequisite for the global stability of the disease-free equilibrium. Note that the stability conditions
employed in Corollary 3.1 do not depend explicitly on c, although R0 does depend on the functional quotient k1

k2
between the

displacement of the infectives to the recovered class, k1c, and the removal rate of the recovered, k2c.
It also appears, from numerical simulations, that condition (M1) may have a significant impact on the dynamics of the

solutions when R0 6 1. In this regard, let us consider nðSÞ ¼ K� lS; f ðIÞ ¼ bI
1þrf I ;uðIÞ ¼ I

1þru I ; cðRÞ ¼ I
1þrcR ; c1 ¼ aþ

jþ l; c2 ¼ j; k1 ¼ c; k2 ¼ cþ l, with K ¼ 2:5;l ¼ 0:2; b ¼ 0:04;a ¼ 0:2;j ¼ 0:6; rf 2 f2;3;4g; ru ¼ 8; rc ¼ 8. In this situation,

R0 ¼ 0:714 < 1 and f
u ðIÞ ¼

1þruI
1þrf I , which is increasing, rather than decreasing, as condition (M1) requires. We have represented

on the Fig. 1 below the graph of I as a function of t for rf ¼ 2 (the fastest growth), rf ¼ 3 and rf ¼ 4 and (the slowest growth)
and the initial data Sð0Þ ¼ 100; Ið0Þ ¼ 1;Rð0Þ ¼ 0. Also, it is useful to note that graph of R shares the same quasi-linear shape
and that Ið10000Þ ¼ 1276:4 (for rf ¼ 2), respectively Ið10000Þ ¼ 564:8 (for rf ¼ 3) and Ið10000Þ ¼ 191:8 (for rf ¼ 4), that is,
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the size of the infected class continues to grow. However, changing the value of rf to rf 2 f10;11;12g drastically alters the
shape of the graph of I, as seen from the figure below, in which rf ¼ 12 corresponds to the fastest decay, and rf ¼ 10 corre-
sponds to the slowest decay, even though the value of R0 does not change.

4. The existence of the endemic equilibrium and the persistence of infection

We shall now discuss the existence of an endemic equilibrium, denoted in what follows by E�, where E� ¼ ðS�; I�;R�Þ. To
this purpose, we assume that the following strict monotonicity and limit conditions are satisfied, in addition to the positivity
and growth conditions (P) and (G) mentioned above

(SM) c; c; f are strictly increasing, f
u is decreasing, n is strictly decreasing
ðLIÞlim
R!1

cðRÞ > c2nð0Þ
c1k2 � k2c1

; lim
I!1

f ðIÞ > n
c

c�1 1
R0

cðS0Þ
� �� �

:

Note that the limit conditions (LI) are trivially satisfied if limR!1cðRÞ ¼ limI!1f ðIÞ ¼ þ1, as it is the case for models with
bilinear incidence of infection and constant relapse rate.

To ensure the existence of E�, the following equilibrium relations need to be satisfied
nðS�Þ � cðS�Þf ðI�Þ ¼ 0; cðS�Þf ðI�Þ � c1uðI�Þ þ k1cðR�Þ ¼ 0; ð5Þ

c2uðI�Þ ¼ k2cðR�Þ:

Consequently, necessarily
nðS�Þ � cðS�Þf ðI�Þ ¼ 0; cðS�Þf ðI�Þ � c1k2 � c2k1

k2
uðI�Þ ¼ 0: ð6Þ
Theorem 4.1. Suppose that conditions (SM) and (LI) are satisfied. Then (1) admits an endemic equilibrium E� if and only if R0 > 1.
Proof. Let us note first that if R0 6 1, then there is no endemic equilibrium. Indeed, suppose that ðS�; I�;R�Þ verifies (5). Then,
since u

f is increasing,
cðS�Þ ¼ c1k2 � c2k1

k2

uðI�Þ
f ðI�Þ P

c1k2 � c2k1

k2

u0ð0Þ
f 0ð0Þ ¼

1
R0

cðS0ÞP cðS0Þ;
and, since c is strictly increasing, S� P S0. Since f is strictly increasing, f ð0Þ ¼ 0 and
f ðI�Þ ¼ nðS�Þ
cðS�Þ 6

nðS0Þ
cðS0Þ

¼ 0;
this yields a contradiction and consequently there is no endemic equilibrium if R0 6 1.
Suppose now that R0 > 1 and let us define
F1ðS; IÞ ¼ nðSÞ � cðSÞf ðIÞ; F2ðS; IÞ ¼ cðSÞf ðIÞ � c1k2 � c2k1

k2
uðIÞ:
We first discuss the solvability of the equation F1ðS; IÞ ¼ 0. For fixed I,

F1ð0; IÞ ¼ nð0Þ > 0; F1ðS0; IÞ ¼ �cðS0ÞI < 0:
Since n
c is strictly decreasing, it then follows that the equation F1ðS; IÞ ¼ 0 can be uniquely solved with respect to S as a func-

tion of I. That is, there is S ¼ w1ðIÞ such that F1ðS; IÞ ¼ 0. Also, since n
c is strictly decreasing, it follows that w1 is strictly decreas-

ing. It is seen that w1ð0Þ ¼ S0 and
lim
I!1

nðw1ðIÞÞ
cðw1ðIÞÞ

¼ lim
I!1

f ðIÞ > n
c

c�1 1
R0

cðS0Þ
� �� �

;

which, since n
c is strictly decreasing, implies the existence of I0 > 0 such that
w1ðI0Þ < c�1 1
R0

cðS0Þ
� �

:

We now discuss the solvability of the equation F2ðS; IÞ ¼ 0. It is seen that
F2ð0; IÞ < 0;

F2ðS0; IÞ ¼ cðS0Þf ðIÞ �
c1k2 � c2k1

k2
uðIÞ

¼ c1k2 � c2k1

k2
f ðIÞ R0

u0ð0Þ
f 0ð0Þ �

uðIÞ
f ðIÞ

� �
:
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Since R0 > 1 and limI!0
uðIÞ
f ðIÞ ¼

u0 ð0Þ
f 0 ð0Þ ; F2ðS0; IÞ > 0 for I small enough, and consequently the equation F2ðS; IÞ ¼ 0 can be solved

with respect to S as a function of I for I small enough. That is, there is S ¼ w2ðIÞ such that F2ðS; IÞ ¼ 0. Since u
f is increasing,

w2 is increasing. Note that
cðw2ðIÞÞ ¼
1
R0

cðS0Þ
f 0ð0Þ
u0ð0Þ

uðIÞ
f ðIÞ ;
and consequently
cðw2ð0ÞÞ ¼ lim
I!0

cðw2ðIÞÞ ¼
1
R0

cðS0Þ; cðw1ð0ÞÞ ¼ cðS0Þ:
Since c is strictly increasing and R0 > 1, it follows that 0 < w2ð0Þ < w1ð0Þ. Noting that w1 and w2 have positive values, w1 is
strictly decreasing, w2 is increasing and w1ðI0Þ < w2ðI0Þ, it follows that the graphs of w1 and w2 have a single common point
ðS�; I�Þ. That is, there are unique S�; I� such that (6) are satisfied. Also, since c is strictly increasing and (LI) is satisfied, there is a
unique R� such that ðS�; I�;R�Þ verifies (5), which establishes the existence and uniqueness of the endemic equilibrium. h

We continue by analyzing the persistence of infection. Naturally, if R0 > 1, then each infected individual causes in average
more than one secondary infection and consequently the infection is expected to remain endemic. In this regard, the infec-
tion is said to be uniformly persistent, or permanent, if there is e0 > 0 such that lim inf t!1IðtÞP e0 for any solution of (1)
which starts with strictly positive initial data. Note that the permanence of the infection excludes the stability of the dis-
ease-free equilibrium.

We now introduce the notion of an uniform repeller for a semidynamical system, which is an useful mathematical tool to
establish the permanence of infection.

Let p1 be a semidynamical system defined on a closed subset F of a locally compact metric space ðX; dÞ. It is then said that
a subset S of F is a uniform repeller if there is g > 0 such that for each x 2 F n S; lim inf t!1dðp1ðx; tÞ; SÞ > g.

The following remarkable result of Fonda [7, Corollary 1] provides a characterization of uniform repellers for semidynam-
ical systems on abstract metric spaces in terms of a seemingly weaker condition which is also easily verifiable in concrete
situations. See also Smith and Thieme [22] for a comprehensive overview of persistence theory for dynamical systems with
applications in mathematical biology.

Lemma 4.1. Let p be a semidynamical system defined on a locally compact metric space X and let R be a compact subset of X such
that X n R is positively invariant. A necessary and sufficient condition for R to be a uniform repeller is that there exists a
neighborhood U of R and a continuous function P : X ! Rþ0 satisfying

(1) PðxÞ ¼ 0 if and only if x 2 R.
(2) For all x 2 U n R there is a Tx > 0 such that Pðpðx; TxÞÞ > PðxÞ.

We are now ready to discuss the permanence of infection.

Theorem 4.2. Suppose that condition (SM) is satisfied and R0 > 1. Then the infection is permanent.
Proof. We shall prove that the set R ¼ fðS; I;RÞ 2 F; I ¼ 0g is an uniform repeller, which is equivalent to the infection being
permanent. We denote pðx; tÞ ¼ ðSðtÞ; IðtÞ;RðtÞÞ, where ðS; I;RÞ is the unique solution of (1) with initial data
ðSð0Þ; Ið0Þ;Rð0ÞÞ ¼ x.

First, it has been seen that F is compact and F n R is positively invariant. Let us define the function P : F ! ½0;1Þ by
PðS; I;RÞ ¼ I and the neighborhood U � F of R by
U ¼ fðS; I;RÞ 2 F; PðS; I;RÞ < qg;
where q is small enough, so that
c
n
c

� ��1
ðf ðqÞÞ

� �
inf0<s6q

f ðsÞ
uðsÞ

k2

c1k2 � k1c2
> 1:
Note that
lim
q!0

c
n
c

� ��1
ðf ðqÞÞ

� �
inf0<s6q

f ðsÞ
uðsÞ

k2

c1k2 � k1c2
¼ cðS0Þ

f 0ð0Þ
u0ð0Þ

k2

c1k2 � c2k1
¼ R0;
so the above choice of q is feasible. Suppose by contradiction that there is z 2 U n R such that for all t > 0 one has
Pðpðz; tÞÞ 6 PðzÞ < q and let us consider the auxiliary function n : ½0;1Þ ! ½0;1Þ defined by
nðtÞ ¼ IðtÞ þ k1

k2
ð1� q�ÞRðtÞ;
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where q� is small enough, so that
d ¼ c
n
c

� ��1
ðf ðqÞÞ

� �
inf0<s6q

f ðsÞ
uðsÞ

k2

c1k2 � k1c2ð1� q�Þ > 1:
One then has
n0ðtÞ ¼ uðIÞ c1k2 � k1c2ð1� q�Þ
k2

cðSÞ f ðIÞ
uðIÞ

k2

c1k2 � k1c2ð1� q�Þ � 1

 �

þ k1q�cðRÞ:
It is also seen form the first equation of (1) that, since dS
dt 6 nðSÞ,
lim inf t!1SðtÞP n
c

� ��1
ðf ðqÞÞ;
and consequently
n0ðtÞP cu
c1k2 � k1c2ð1� q�Þ

k2
ðd� 1ÞI þ k1ccR:
As a result, n0ðtÞP CnðtÞ for some sufficiently small C and consequently nðtÞ ! 1 as t !1, which contradicts the bounded-
ness of S; I;R. Consequently, for all z 2 U n R there is Tz > 0 such that Pðpðz; TzÞÞ > PðzÞ. From Lemma 4.1, R is an uniform
repeller, which ends the proof of our permanence result. h
5. The stability of the endemic equilibrium

In this section, we a priori assume the existence of an endemic equilibrium E� satisfying (5) rather than assume the sup-
plementary hypotheses (SM) and (LI) mentioned in the previous section, as these hypotheses seem to be sufficient for the
existence of the endemic equilibrium, but not necessary, and discuss its stability. We assume instead that the following sign
conditions similar to those employed in Section 2 are satisfied
ðPEÞðcðSÞ � cðS�ÞÞðS� S�Þ > 0 for S – S�; S P 0;

ðf ðIÞ � f ðI�ÞÞðI � I�Þ > 0 for I – I�; I P 0;

ðcðRÞ � cðR�ÞÞðR� R�Þ > 0 for R – R�; R P 0;
and
ðNEÞðnðSÞ � nðS�ÞÞðS� S�Þ < 0 for S – S�; S P 0:
Obviously, (PE) and (NE) are satisfied if c; f ; c are strictly increasing and n is strictly decreasing.
We consider the Lyapunov functional
U2ðS; I;RÞ ¼
Z S

S�

cðsÞ � cðS�Þ
cðsÞ dsþ

Z I

I�

f ðsÞ � f ðI�Þ
f ðsÞ dsþ k1

k2

Z R

R�

cðsÞ � cðR�Þ
cðsÞ ds:
Due to (PE) and (NE), it is seen that U2 increases whenever any of jS� S�j; jN � N�j; jR� R�j increases and U2ðS; I;RÞP 0, with
U2ðS; I;RÞ ¼ 0 if and only if ðS; I;RÞ ¼ ðS�; I�;R�Þ. Consequently, E� is a minimum point for U2. Also, due to the growth condi-
tions (G), it is seen that U2ðS; I;RÞ ! 1 whenever any of S; I;R tend to 0 and consequently the level sets of U2 do not have
limit points on the boundary of ð0;1Þ3.

We now compute the time derivative of U2 along the solutions of (1).

Lemma 5.1. The time derivative of U2 along the solutions of (1) is
_U2 ¼
cðSÞ � cðS�Þ

cðSÞ

� �
ðnðSÞ � nðS�ÞÞ þ nðS�Þ 2� cðS�Þ

cðSÞ �
cðSÞ
cðS�Þ

� �
ð7Þ

þ k1cðR�Þ 3� f ðI�Þ
f ðIÞ

cðRÞ
cðR�Þ �

uðIÞ
uðI�Þ

cðR�Þ
cðRÞ �

uðI�Þ
uðIÞ

f ðIÞ
f ðI�Þ


 �

þ c1
uðI�Þ
f ðI�Þ �

uðIÞ
f ðIÞ

� �
ðf ðIÞ � f ðI�ÞÞ

þ k1cðR�Þ
f ðI�Þ

f ðI�Þ
uðI�Þ �

f ðIÞ
uðIÞ

� �
ðuðIÞ �uðI�ÞÞ:
If the inequality
c1
uðI�Þ
f ðI�Þ �

uðIÞ
f ðIÞ

� �
ðf ðIÞ � f ðI�ÞÞ ð8Þ

þ k1cðR�Þ
f ðI�Þ

f ðI�Þ
uðI�Þ �

f ðIÞ
uðIÞ

� �
ðuðIÞ �uðI�ÞÞ 6 0;
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holds true for I 2 ðIL; IRÞ, then _U2ðS; I;RÞ 6 0 for I 2 ðIL; IRÞ, a necessary condition for the equality to hold being
f ðIÞ
f ðI�Þ ¼

uðIÞ
uðI�Þ ¼

cðRÞ
cðR�Þ :
Proof. By direct computations, it is seen that
_U2 ¼ 1� cðS�Þ
cðSÞ

� �
ðnðSÞ � cðSÞf ðIÞÞ þ 1� f ðI�Þ

f ðIÞ

� �
ðcðSÞf ðIÞ � c1uðIÞ þ k1cðRÞÞ

þ k1

k2
ðc2uðIÞ � k2cðRÞÞ 1� cðR�Þ

cðRÞ

� �
¼ 1� cðS�Þ

cðSÞ

� �
nðSÞ þ cðS�Þf ðIÞ � cðSÞf ðI�Þ � c1uðIÞ 1� f ðI�Þ

f ðIÞ

� �

� f ðI�Þ
f ðIÞ k1cðRÞ þ

k1

k2
c2uðIÞ �

k1

k2
c2uðIÞ

cðR�Þ
cðRÞ þ k1cðR�Þ:
Using the equilibrium relations (5), it follows that
_U2 ¼ 1� cðS�Þ
cðSÞ

� �
ðnðSÞ � nðS�ÞÞ þ nðS�Þ 2� cðS�Þ

cðSÞ �
cðSÞ
cðS�Þ

� �

þ cðS�Þf ðIÞ � c1uðIÞ 1� f ðI�Þ
f ðIÞ

� �
� f ðI�Þ

f ðIÞ k1cðRÞ þ
k1

k2
c2uðIÞ

� k1

k2
c2uðIÞ

cðR�Þ
cðRÞ þ k1cðR�Þ � nðS�Þ

¼ 1� cðS�Þ
cðSÞ

� �
ðnðSÞ � nðS�ÞÞ þ nðS�Þ 2� cðS�Þ

cðSÞ �
cðSÞ
cðS�Þ

� �

þ c1
uðI�Þ
f ðI�Þ �

uðIÞ
f ðIÞ

� �
ðf ðIÞ � f ðI�ÞÞ � k1cðR�Þ

f ðIÞ
f ðI�Þ �

f ðI�Þ
f ðIÞ k1cðRÞ

þ k1

k2
c2uðIÞ �

k1

k2
c2uðIÞ

cðR�Þ
cðRÞ þ 2cðR�Þ:
This implies that
_U2 ¼ 1� cðS�Þ
cðSÞ

� �
ðnðSÞ � nðS�ÞÞ þ nðS�Þ 2� cðS�Þ

cðSÞ �
cðSÞ
cðS�Þ

� �

þ c1
uðI�Þ
f ðI�Þ �

uðIÞ
f ðIÞ

� �
ðf ðIÞ � f ðI�ÞÞ

þ k1cðR�Þ 3� f ðI�Þ
f ðIÞ

cðRÞ
cðR�Þ �

uðIÞ
uðI�Þ

cðR�Þ
cðRÞ �

uðI�Þ
uðIÞ

f ðIÞ
f ðI�Þ


 �

þ k1cðR�Þ
uðIÞ
uðI�Þ � k1cðR�Þ

f ðIÞ
f ðI�Þ � k1cðR�Þ þ k1cðR�Þ

uðI�Þ
uðIÞ

f ðIÞ
f ðI�Þ ;
which in turn implies (7). Now, from the sign conditions (PE) and (NE), it is seen that
1� cðS�Þ
cðSÞ

� �
ðnðSÞ � nðS�ÞÞ 6 0 for S > 0;
with equality if and only if S ¼ S�. Also, from the AM–GM inequality, which says that the arithmetic mean is not smaller than
the geometric mean, it is seen that
2� cðS�Þ
cðSÞ �

cðSÞ
cðS�Þ 6 0 for S > 0;
with inequality if and only if cðS�Þ
cðSÞ ¼

cðSÞ
cðS�Þ, that is cðSÞ ¼ cðS�Þ, or S ¼ S�.

Using again the AM–GM inequality, it is seen that
3� f ðI�Þ
f ðIÞ

cðRÞ
cðR�Þ �

uðIÞ
uðI�Þ

cðR�Þ
cðRÞ �

uðI�Þ
uðIÞ

f ðIÞ
f ðI�Þ 6 0;
with equality if and only if
f ðIÞ
f ðI�Þ ¼

uðIÞ
uðI�Þ ¼

cðRÞ
cðR�Þ : ð9Þ
It then follows that if the inequality (8) holds true for I 2 ðIL; IRÞ, then _U2ðS; I;RÞ 6 0 for I 2 ðIL; IRÞ. Note that _U2ðS; I;RÞ ¼ 0 if
and only if S ¼ S�, (9) holds and the equality holds in (8). h



P. Georgescu, H. Zhang / Applied Mathematics and Computation 219 (2013) 8496–8507 8505
Using the setup for LaSalle’s invariance principle provided by the above lemma, one may now obtain an estimation for the
domain of attraction associated with the endemic equilibrium.

Theorem 5.1. Suppose that there are IL < I� < IR such that (8) holds for I 2 ðIL; IRÞ and let us define
m ¼minðU2ðS�; IL;R

�Þ;U2ðS�; IR;R
�Þ. Then E� is locally asymptotically stable and its domain of attraction includes the set
D2
m ¼ fðS; I;RÞ 2 ð0;1Þ

3; U2ðS; I;RÞ < mg:
Proof. First, it is seen that for I outside ðIL; IRÞ,
U2ðS; I;RÞP minðU2ðS; IL;RÞ;U2ðS; IR;RÞÞP minðU2ðS�; IL;R
�Þ;U2ðS�; IR;R

�ÞÞ ¼ m:
Consequently, if ðS; I;RÞ 2 D2
m, then I 2 ðIL; IRÞ, which implies that _U2ðS; I;RÞ 6 0 on D2

m. We now find the invariant subsets
within
~P2 ¼ fðS; I;RÞ 2 D2
m; _U2ðS; I;RÞ ¼ 0g:
Since necessarily S ¼ S�, it follows that dS
dt ¼ cðS�Þðf ðI�Þ � f ðIÞÞ, and then dS

dt ¼ 0 if and only if I ¼ I�. Since (9) holds, it also fol-
lows that R ¼ R�. The conclusion then follows using LaSalle’s invariance principle. h

Note that if u ¼ kf ; k 2 R, then the left-hand side of (8) is null and consequently (8) is satisfied for all I. Then, as it has
already been the case with Theorem 3.1, one easily obtains the global stability of the endemic equilibrium under suitable
hypotheses of the functional coefficients of the model, as seen from the following result.

Corollary 5.1. Suppose that u ¼ kf , the system (1) admits an endemic equilibrium E� and the sign conditions (PE) and (NE) hold
true. Then E� is globally asymptotically stable.

One also obtains from the same inequality (8) that the endemic equilibrium of the system without relapse (k1 ¼ 0) is
globally asymptotically stable under a suitable monotonicity condition.

Corollary 5.2. Suppose that k1 ¼ 0, the system (1) admits an endemic equilibrium E�, the sign conditions (PE) and (NE) hold true
and condition (M1) holds. Then the endemic equilibrium E� is globally asymptotically stable.

Note that a monotonicity condition of type (M1) would not suffice anymore for the global stability of the system with
relapse.

In the above, to discuss the stability of the equilibria, use has been made of the following functionals
U1ðS; I;RÞ ¼
Z S

S0

cðsÞ � cðS0Þ
cðsÞ dsþ I þ k1

k2
R;

U2ðS; I;RÞ ¼
Z S

S�

cðsÞ � cðS�Þ
cðsÞ dsþ

Z I

I�

f ðsÞ � f ðI�Þ
f ðsÞ dsþ k1

k2

Z R

R�

cðsÞ � cðR�Þ
cðsÞ ds:
If c; f and u are linear functions, then U1 and U2 reduce to
U1ðS; I;RÞ ¼ S� S0 � S0 ln
S
S0
þ I þ k1

k2
R;

U2ðS; I;RÞ ¼ S� S� � S� ln
S
S�
þ I � I� � I� ln

I
I�
� k1

k2
R� R� � R� ln

R
R�

� �
;

that is, to logarithmic functionals of Volterra type.
Another set of Lyapunov functionals which may be used to establish the stability of the equilibria are slightly modified

versions of the above functionals obtained by changing their respective S-parts, of the form
V1ðS; I;RÞ ¼
Z S

S0

cðsÞ � cðS0Þ
cðS0Þ

dsþ I þ k1

k2
R;

V2ðS; I;RÞ ¼
Z S

S�

cðsÞ � cðS�Þ
cðS�Þ dsþ

Z I

I�

f ðsÞ � f ðI�Þ
f ðsÞ dsþ k1

k2

Z R

R�

cðsÞ � cðR�Þ
cðsÞ ds;
in which case
_V1 ¼
cðSÞ � cðS0Þ

cðS0Þ

� �
ðnðSÞ � nðS0ÞÞ �

ðcðSÞ � cðS0ÞÞ2

cðS0Þ
f ðIÞ þ c1k2 � c2k1

k2
R0f ðIÞu

0ð0Þ
f 0ð0Þ �uðIÞ

� �
;

_V2 ¼ �
ðcðSÞ � cðS�ÞÞ2

cðS�Þ f ðIÞ þ ðnðSÞ � nðS�ÞÞðcðSÞ � cðS�ÞÞ
cðS�Þ þ k1cðR�Þ 3� f ðI�Þ

f ðIÞ
cðRÞ
cðR�Þ �

uðIÞ
uðI�Þ

cðR�Þ
cðRÞ �

uðI�Þ
uðIÞ

f ðIÞ
f ðI�Þ


 �

þ c1
uðI�Þ
f ðI�Þ �

uðIÞ
f ðIÞ

� �
ðf ðIÞ � f ðI�ÞÞ þ k1cðR�Þ

f ðI�Þ
f ðI�Þ
uðI�Þ �

f ðIÞ
uðIÞ

� �
ðuðIÞ �uðI�ÞÞ;
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the stability results being obtained via similar arguments. Note that if c; f and u are linear functions, then V1 and V2 reduce
to
V1ðS; I;RÞ ¼
ðS� S0Þ2

2S0
þ I þ k1

k2
R

V2ðS; I;RÞ ¼
ðS� S�Þ2

2S�
þ I � I� � I� ln

I
I�
� k1

k2
R� R� � R� ln

R
R�

� �
;

featuring both logarithmic and quadratic terms. That is, purely logarithmic or logarithmic-quadratic functionals are actually
originating from similar integral templates.

For nðSÞ ¼ K� lS; c an increasing C1 function, f ðIÞ ¼ bI;uðIÞ ¼ I; cðRÞ ¼ R; c1 ¼ aþ jþ l; c2 ¼ j; k1 ¼ c; k2 ¼ cþ l, one
obtains the model
dS
dt
¼ K� lS� bcðSÞI ð10Þ

dI
dt
¼ bcðSÞI � ðaþ jþ lÞI þ cR

dR
dt
¼ jI � ðlþ cÞR;
its basic reproduction number being
R̂0 ¼
ðlþ cÞbc K

l

� �
ðlþ kÞðlþ aÞ þ jl

:

We can therefore use the discussion previously laid out and obtain the following result which enlarges both Theorems 2.1
and 2.2 in [24] and Theorem 1 in [20].

Corollary 5.3
(1) If R̂0 < 1, then the disease-free equilibrium E0 of the system (10) is globally asymptotically stable in ð0;1Þ3 and there is no
endemic equilibrium E� of (10).
(2) If R̂0 > 1, then the disease-free equilibrium E0 of (10) is unstable, the infection remains endemic and there is a unique ende-
mic equilibrium E� of (10) which is globally asymptotically stable in ð0;1Þ3.
Acknowledgments

The work of P. Georgescu was supported by a grant of the Romanian National Authority for Scientific Research, CNCS –
UEFISCDI, project number PN-II-ID-PCE-2011-3-0563, contract No. 343/5.10.2011. The work of H. Zhang was supported by
the National Natural Science Foundation of China (grant IDs 11126142 and 11201187).

References

[1] S. Blower, T.C. Porco, G. Darby, Predicting and preventing the emergence of antiviral drug resistance in HSV-2, Nat. Med. 4 (1998) 673.
[2] H. Cox, Y. Kebeda, S. Allamuratova, G. Ismailov, Z. Davletmuratova, G. Byrnes, C. Stone, S. Niemann, S. Rüsch-Gerdes, L. Blok, D. Doshetov, Tuberculosis

recurrence and mortality after successful treatment: impact of drug resistance, PLoS Med. 3 (2006) 1836–1843.
[3] P. van den Driessche, L. Wang, X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng. 4 (2007) 205–219.
[4] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,

Math. Biosci. 180 (2002) 29–48.
[5] P. van den Driessche, X. Zou, Modeling relapse in infectious diseases, Math. Biosci. 207 (2007) 89–103.
[6] A.A. Fall, A. Iggidr, G. Sallet, J.J. Tewa, Epidemiological models and Lyapunov functions, Math. Model. Nat. Phenom. 2 (2006) 55–71.
[7] A. Fonda, Uniformly persistent dynamical systems, Proc. Am. Math. Soc. 104 (1998) 111–116.
[8] P. Georgescu, Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math. 67 (2006)

337–353.
[9] H. Guo, M.Y. Li, Z. Shuai, A graph-theoretic approach to the method of Lyapunov functions, Proc. Am. Math. Soc. 136 (2008) 2793–2802.

[10] G.W. Harrison, Global stability of predator–prey interactions, J. Math. Biol. 8 (1979) 159–171.
[11] H. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, New Jersey, NY, 2002.
[12] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol. 66 (2004) 879–883.
[13] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol. 21 (2004) 75–83.
[14] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol. 30

(2006) 615–626.
[15] A. Korobeinikov, P.K. Maini, Non-linear incidence and stability of infectious disease models, Math. Med. Biol. 22 (2005) 113–128.
[16] C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. Real World Appl. 11 (2010) 3106–3109.
[17] C. McCluskey, Complete global stability for an SIR epidemic model with delay – distributed or discrete, Nonlinear Anal. Real World Appl. 11 (2010) 55–

59.
[18] C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng. 6 (2009) 603–610.



P. Georgescu, H. Zhang / Applied Mathematics and Computation 219 (2013) 8496–8507 8507
[19] A.V. Melnik, A. Korobeinikov, Global asymptotic properties of staged models with multiple progression pathways for infectious diseases, Math. Biosci.
Eng. 8 (2011) 1019–1034.

[20] H.N. Moreira, Y. Wang, Global stability in a S! I! R! I model, SIAM Rev. 39 (1997) 497–502.
[21] N.H. Pavel, Differential equations flow invariance and applications, Pitman Research Notes in Mathematics, vol. 113, Pitman, London, 1984.
[22] H.L. Smith, H.R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, vol. 118, American Mathematical Society,

Providence, RI, 2011.
[23] D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev. 32 (1990) 136–139.
[24] C. Vargas de León, On the global stability of infectious disease models with relapse, in press.
[25] V. Volterra, Leçons sur la Theorie Mathematique de la Lutte pour la Vie, Gauthier-Villars, Paris, 1931.
[26] P. Wildy, H.J. Field, A.A. Nash, Classical herpes latency revisited, in: B.W.J. Mahy, A.C. Minson, G.K. Darby (Eds.), Virus Persistence Symposium, vol. 33,

Cambridge University Press, Cambridge, 1982, pp. 133–168.
[27] P. Wu, E.H.Y. Lau, B.J. Cowling, C.C. Leung, C.M. Tam, The transmission dynamics of tuberculosis in a recently developed Chinese city, PLoS One 5 (2010)

e10468.
[28] Z. Yuan, L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Anal. Real World Appl. 11

(2010) 995–1004.


	A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse
	1 Introduction
	2 The well-posedness of the model
	3 The stability of the disease-free equilibrium
	4 The existence of the endemic equilibrium and the persistence of infection
	5 The stability of the endemic equilibrium
	Acknowledgments
	References


