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ARTICLE INFO ABSTRACT

Keywords: We analyze the dynamics of a general model of two-species mutualistic interaction given
MutualistiC_iflteraction in an abstract, unspecified form, which fits several commonly used concrete models. Suf-
Global stability ficient conditions for the global stability of the positive equilibrium are obtained by means
Lyapunov functional of employing Lyapunov’s second method, for functionals which are defined ad hoc and are

Monotonicity properties strictly more general than both quadratic and Volterra functionals. It is observed that the

complexity of such conditions increases drastically when key monotonicity properties are
weakened.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A mutualistic association between two or more species represents a relationship in which all of them experience a posi-
tive effect from their interaction, consisting in an increase of their ability to survive, grow or reproduce. Mutualistic symbi-
oses such as those between the cells of ancient eukaryotic organisms and formerly independent microorganisms such as
mitochondria or plasmids made possible the very existence of current living organisms (Margulis [17]), and certain such
mutualistic symbioses remain among the most important ecological interactions on this planet even today. Most terrestrial
plants rely on mycorrizhae for the uptake of phosphate or of other mineral nutrients, and on various pollination and seed
dispersal mutualisms for their reproduction.

Also, the following findings have been reported in Bdackhed et al. [2]):“New studies are revealing how the gut microbiota
has coevolved with us and how it manipulates and complements our biology in ways that are mutually beneficial. Bacteroi-
des thetaiotaomicron is a prominent mutualist in the distal intestinal habitat of adult humans. [...] The guts of ruminants
and termites are well-studied examples of bioreactors “programmed” with anaerobic bacteria charged with the task of
breaking down ingested polysaccharides, the most abundant biological polymer on our planet, and fermenting the resulting
monosaccharide soup to short-chain fatty acids. In these mutualistic relationships, the hosts gain carbon and energy, and
their microbes are provided with a rich buffet of glycans and a protected anoxic environment.”

It can be argued that mutualism drives evolution and, in a functional organism, trophic chain, or even social system,
mutualisms occur at multiple spatial or temporal scales.

By degree of dependency, mutualisms can be classified into facultative and obligate. Facultative mutualists can survive
independently, while obligate mutualists can survive only in association to each other, being biologically incapable of sur-
viving without their partner (Pastor [20]). It has been predicted by Bronstein in [3] that the outcomes of facultative mutu-
alisms should be more variable than the outcome of more obligate mutualisms. Certain facultative mutualisms derived from
Lotka-Volterra model involve a positive feedback which is potentially destabilizing (May [18]), although this does not match
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real-world evidence (Lewis [12], Heithaus et al. [9]). It has been consequently observed by Addicott [1] that the structural
instability of the models of mutualism is actually a function of a biologically inappropriate assumption.

Moreover, it has been argued in Ringel et al. [21] that mutualisms have actually a stabilizing effect when they are embed-
ded in realistic multispecies real-world communities, such as the four-species model of a pollination mutualism proposed in
[21] and it has been observed by Addicott [1] that the consideration of most kinds of mutualism and most kinds of stability
criteria shows that a mutualism is more stable than the corresponding system without mutualism. Also, Goh [5] has proved
that in a two species Lotka-Volterra model of mutualism local stability implies global stability.

Mutualisms have much in common with predator-prey or parasitic relationships, from which many of them are thought
to have evolved. In such mutualisms, the negatively affected organism has adapted to the initially disadvantageous relation-
ship, a truly mutually beneficial association evolving as a consequence. However, mutualisms have historically received far
less attention than other interactions such as predation and parasitism, although recent studies call for an integration of sev-
eral interaction types in complex food webs, being found that high mutualistic to antagonistic ratios generate significantly
more diversity than found in the randomized networks (Melidn et al. [19]).

In Vargas-De-Ledn [23], paper which motivated our work, global stability conditions for two species models of mutualism
are obtained by means of using suitably constructed Lyapunov functionals and LaSalle’s invariance principle. The models dis-
cussed therein are

dXI =TI1X1 |:(1 7‘i> X1:| +r]b]2X]X2

E r 71(7] K1

dx e X b M
2 6\ X 2021

E‘“XZKI r2> 1<J T, X

introduced by Vandermeer and Boucher in [22] to account for the situation in which the effects of mutualism are density
independent (see also the corresponding discussion in Wolin and Lawlor [25]), and

dx; rxi

a (r —e1)x; K 1 box 2
dx, raX;

dar (r2 —ex)xy — Ky + byrx;’

introduced by Wolin and Lawlor in [25] to account for the situation in which mutualism has the most impact when the re-
cipient population is at high density (see also Kot [16], p. 233). In the above models, r; is the intrinsic birth rate of species x;,
while K; and e; represent the carrying capacity of the environment and the harvesting effort, respectively, with regard to the
same species x;,i = 1,2. Also, by, and by are strictly positive constants measuring the effects of interspecies cooperation on
species x; and x,, respectively, that is, the mutualistic support the species give each other. Both models above were initially
introduced without accounting for the effect of harvesting. It is to be noted that both (1) and (2) are models of facultative
mutualisms and if one species is missing then the equation which describes the dynamics of the other species is the same
for both models and characterizes their logistic growth.
Let us denote A; =1 —e;/r1,A2 = 1 — e3/r,. Using the Lyapunov functionals

%1 0—x; r1A1biaxy [ 0—x;
L](lexz):Cl/ L_—do+c Ll f/ z
x* (Kz + bz] 0)0 r2A2b21X] X5 (K] + b120)0

1

and

X1 X r1b12 K5 x5 X2 X
Lxi,x))=c({In=+2 1)+ —22 (In=2 42 -1,
2 (%.12) 1< e TR (inf2

where ¢; € R, is arbitrary, Vargas-De-Leén established in [23] the following global stability results.

Theorem 1.1. If

biabyi <1, 0<e;<r; and 0<e <y (3)
or

biabyi <1, 0<e;<r; and 0<e; <y, (4)
then the system (1) admits a unique coexisting equilibrium (x;,x;) in int(R?), with coordinates given by

AKq + b]zAsz X = AK5 + b21A1K1
1- b12b21 ’ 2 1- b12b21

which is globally asymptotically stable in int(R?).

*
1=
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Theorem 1.2. If
A]Azbubz] < 1, 0 <er<n and 0 < ey <1y, (5)
then the system (2) admits a unique coexisting equilibrium (x;,x;) in int(R%), with coordinates given by
. A (Kq + b12A2K2) Xt — Ay (Ko + b21A1K1)
T 1 _A1A2b12b21 ' 2o 1 _A1A2b12b21
which is globally asymptotically stable in int(Ri).
Furthermore, it has been observed that another set of Lyapunov functionals, namely

—~ 1 0—x: T]A] b]z X 0— x5
Li(X1,X%) =C L_do+c / 2__do 6
1(%1,%2) =1 /x; (K2 + b210)0 ' r2Asba; X, (K1 + b120)0 ®)
and
™ T1 bi:K, (Xz )
Ly(x1,%)=cX;——-1—-1In X5 1-In 7
( 1 2) ™1 (X] ) r2b211<] 2 ( )
can be used as well to establish the conclusions of Theorems 1.1 and 1.2, the latter under the additional set of constraints
A] b12 < 17 Azbz] <1. (8)

In what follows, we shall review the results of Vargas-De-Le6n [23] in a more general context and, to this purpose, employ
Lyapunov functionals which are applicable to a large class of two species cooperative models. See also Vargas-De-Le6n and
Gomez-Alcaraz [24] for a related investigation of a two species model of commensalism.

2. The model

Let us consider the model

P — @) g )

B — wa0) + ) 0),

where ay, a3, f1,f2, 81,8, are real continuous functions defined at least on [0, c0) which satisfy the following conditions.

(H1) The functions fi, f, are strictly positive on (0, c). The functions g,,g, are nonzero on (0, co).
(H2) The functions g, and g, are strictly increasing on (0, ).

Hypotheses (H1) and (H2) imply together the fact that the abstract model (9) describes indeed a mutualism, in the sense that
increasing the density of one population has a benefic effect on the growth of the other one. Of course, to represent concrete
models, f1,f>, 8,8, are not uniquely determined, but determined only up to a multiplicative constant and consequently fi, f>
can easily be chosen with positive sign. Note that the interaction terms fi (x1)g; (x2) and f,(x2)g,(x1) need not be positive (this
is the case with the model (2), for instance), such negative interaction terms being used to represent the fact that the mutu-
alistic association decreases the death rates of the respective species. In our settings, the interaction terms do not change
sign, a sign change representing a transition between a mutualistic interaction and an association which is detrimental to
one of the species. See Hernandez [10] for further details on this matter.

Also, since our focus is on discussing the stability of the positive equilibrium rather than establishing its existence, we
shall assume the following existence condition.

(E) There is a unique coexisting equilibrium E* = (x;, x3) of (9).
As a result, it is seen that the coordinates of E* satisfy the following equilibrium conditions
ai(xy) +f1(x1)81(x3) =0,  a2(x;) + f(x;)8,(x7) = 0. (10)
3. Global stability with monotonicity

We now attempt to establish the global stability of E* under certain monotonicity assumptions. To this purpose, we now
introduce the first set of auxiliary conditions, in the following form.

(H3) The functlons L+ 8, and “2 2+ g, are decreasing, at least one of them being strictly decreasing.
(11) f‘ g’“Td()f +oo, for ¢ € {0,00} and (i,j) € {(1,2),(2,1)}.
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We are now ready to state our first global stability result.
Theorem 3.1. [f (H1), (H2), (H3), (I1) and (E) are satisfied, then E" is globally asymptotically stable in int(Ri).

Proof. We shall employ the following Lyapunov functional

V] (XI,XZ) _ X:‘l gZ(Q?f]_(eg)-Z(X’{)dO“F X:2 &1 (9}2_(9%1 (XE)dO (11)

1

First, it is seen that from (H1) and (H2) that V, increases whenever any of |x; — x;| and |x, — x3| increases and V;(x1,x;) > 0
for all x;,x; > 0, while V;(x1,x;) = 0 if and only if x; = x; and x, = x;. Also, by (I1), V;(x;,x;) tends to +oo if either x; or x,
tends to O or to +oco. One then has

iy = B9 B @y, £ )+ £ ) 4 o)l

— (&)~ 200) (£ 8100 ) + (@10~ 2100) (P + 200
From the equilibrium conditions (10), it is seen that
- —gg). —Zo - g0

Consequently,

Vi= (gz(xl) - gz(X’{)) <}1-11((;<:)) - ;]1((;2))) + (gl (*2) — & (XE)) (;22((:22)) - ;jgg;) + 2(g2(x1) - gz("?)) (gl (%2) — &4 (XE))

Having in view that 2ab < a? + b? for all a,b € R, one obtains that

a1 (X1) a1 (X;) > (az( 2) (%) . )
Vi< x—x*( +25(%1) — —g,(X:) ) + X2) — 21(X; + —g.(x5) ).
1< (82(%1) — 8(x1)) fixn) 8,(%1) ) 8,(x7) (81(%2) — 81(%3)) h(x) 81(X2) — hx) &1(%3)
Noting that V; < 0, by (H2) and (H3), with equality if and only if either x; = X or x, =x; and, in any case, E" is the only
invariant setin M = {(x1 ,X2); Vi(x1,%2) = 0}, it follows by LaSalle’s invariance principle that E* is globally asymptotically sta-
ble in int(R2).
To relate our result with those of [23], let us rearrange the model (1) in the form

dx; b1,

W =Xy <A1 K]) + 1 K] —X1X2

dx by,

d_tz =TX; (Az K > +1— 5 Lx1%2, (12)
choose

X

b
ay(X1) =T1X1 (Al_%>, az(Xz)7T2X2<A2 > fi(x1)= K]]ZX]’ g1(%2) =x2, fr(x2)= Kz , 82(X1) =Dbaixq,

and assume that either (3) or (4) are satisfied. In this case,

Fo =y (m ) Fow =k - )

aq K]A] X1 (az >
-+ = ——(1 = b12by), =4+ = KA;.
(f] gz)(?ﬁ) bry blZ( 12b21) 5 g1 ) (x2) 242

Consequently, (H1), (H2) and (H3) are satisfied, together with (I1) (see below for the exact expression of V). Since the exis-
tence of E” is assured, as seen in [23], (1) fits our framework. Note that only one of;—l1 +8, and ;—22 + g, is strictly monotone in
our settings.

Also, in this case,

V(i ) = 10 / =% 4p, X2 / 0= XZ do — Kiban {x ( ~1-In ) | nbiaks, ("2 1-In )]
r1biz X 0 T2 Jx ribiy Xi X] r2byi Ky 2 X5
that is, V; differs from L, by a multiplicative constant.
The Lyapunov functional V; given in (11) has been introduced by Harrison in [8] (up to a sign of one of the integrals, due
to the different nature of the biological interactions involved) to discuss the stability of a predator-prey interaction. See also

Korobeinikov [13,14], Georgescu and Hsieh [4] and Guo et al. [7] for a graph theoretic approach towards constructing Lyapu-
nov functionals.

and
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We now introduce the second set of auxiliary conditions, in the following form.

(H4) The functions a,g; and a;g, are strictly negative on (0, ).
(H5) The functions £—11 +gl—2 and {;—22 +é are monotone, both increasing if g,, g, keep the same sign, or both decreasing if g, g,
keep different signs. At least one of {;—‘1 + é and {%2 + gl] is strictly monotone.

(12) J; (1 - gfjx’?)) ald0 = oo, for ¢ € {0,00} and (i.j) € {(1,2),(2,1)}.

We are now ready to state our second global stability result.
Theorem 3.2. [f (H1), (H2), (H4), (H5), (12) and (E) are satisfied, then E* is globally asymptotically stable in int(Ri).

Proof. We shall employ the following Lyapunov functional

Val,%2) = / (g)am®t [ () am® (1)

2

First, it is seen that from (H2) and (H4) that V, increases whenever any of |x; — x;| and |x, — x3| increases and V,(x1,x;) > 0
for all x1,x, > 0, while V,(x1,x,) = 0 if and only if x; = x; and x, = x3. Also, by (I12), V»(x1,x;) tends to +cc if either x; or x,
tends to O or to +co. One then has

b (1 &) 1 &)
V2= (l gz<x;)) GG (X0 i xg (xa) + (1 g (xz)) a2 0%)
8,(X1)

— (1= _ 1 fi(x) &%)\, 1 hx)
_(] gz(X’{)>( gl(xz”( 81(x2) al(X1)>+(] gl(X§)>( g;(’ﬁ))( 8,(x1) az("z))

Using the equilibrium conditions (10), it is seen that

7y = 1 1 1 1 fitk) | filx)
V2 _gZ(Xl)gl(x2)<_g2(X1)+g2(x§)> {— 4 _ )+ )}

(a2(%2) + f2(%2)85(%1))

1
&g (%) (‘gl % & (x;)) {‘gxxl) W) 6K G
B 1 1N AR A L1 1N A A
*gz("‘)gl("”[( L) L) ( al(xl)+a1(xl’{)>+< g1<><z)+g1<xz>>< az(m*az(xzz))

2 g ) o wm)|

Having in view that 2ab < a® + b* for all a,b € R, one obtains that

8:1(x2) . fi(x1) 1 fi(x}) 1

V2 S g ) ) ‘gz("l”<‘a1(x1> Tn) @) +gz(xn)
LX), b 1 g . 1
g,0x) &1 g‘“‘”’( 0, (x2) g1(><z)+az(xz)+g1(><§)>'

Noting that, by (H2) and (H5) V, < 0, with equality if and only if either x; = x; or x, = x; and, in any case, E is the only
invariant set in M = { (x;,%2); Vo (x1,%,) = O}, it follows by LaSalle’s invariance theorem that E* is globally asymptotically sta-
ble in int(R?).

Rearranging now the model (2) in the form

dx; rix2
=X A - —
dt 1 K]-‘rb]zXz (.14)
Do ooy — TS
dt — 272 K2+b21X1’
one may choose
r1x2 b12A2 1
a1(X1) =T11X1A1, G2(X2) = aX2As, X1) = —1—, X)) =——— " Xo) = I'2X2, X)) =——"7—.
1(x1) =T1X1A1,  G(x2) = XAy, fi(X1) DA, g1(x2) K+ box, fa(x2) =12x3,  &5(%1) K, 7 byix,

Assume also that (5) is satisfied. In this case,

fi X1 L

X2
— (x =) = (x ——
a (1) AiAxby @y 2 Az
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f] > Xl(l 7A1A2b12b21) <f2 1 > K]
=———— "= [Z=+— =— .
(al & (1) = A1Azbyp > \ao g (x2) b1,A;

Consequently, (H1), (H2), (H4) and (H5) are satisfied, together with (I2) (see below for the exact expression of V). Since the
existence of E* is assured, as seen in [23], (2) fits our framework. Again, note that only one ofﬁ—'1 -4-g1—2 and % +gl1 is strictly
monotone and that our choice of parameters removes the need for the auxiliary condition (8).
Also, in this case,
*1 by 0—-x;) 1 d0+/x2 b12(0—x§) 1
X, K5 +by10 110A, «  Ki+b20 r30A;

ba /’X‘ 0—x; biriAr [ 0-x;
_ b do+ / 2 gy,
A { X (K3 +by10)60 by112A; . % (K1 +Db120)0

that is, V, differs from L; by a multiplicative constant.

and

Vo (x1,%2) =

4. Global stability with less monotonicity and more positivity

We now discuss the global stability of E* under weaker monotonicity properties than the key hypotheses (H3) and (H5)
used above. Let us suppose that, apart from (H1) and (H2), the following additional conditions are satisfied.

(P1) The functions g, and g, are strictly positive on (0, co).
(P2) £-(0) > 0,4:(0) > 0,2 (0) > 0,%(0) > 0 and { (x1) < §(0) for all x; > 0,% (x,) < % (0) for all x, > 0.

v ay

3) J; ( -8 ) 7150 = +o0,for & € {0,00}and (i.j) € {(1,2),(2,1)}.

Note that if (H3) holds, then necessarlly and “2 are strictly decreasing, and consequently the second part of (P2) holds. Also,
condition (P2) implies the positivity of a1 and az in a vicinity of the origin. Combined with (P1) and (H1), this precludes our
model from representing an obligate mutualism. Define the functions #,,7, : [0,00) — R by

f f
a0 M) =1-F @) 0) (15)

M (Xl)—lfﬁ(xl) a

and remark that, due to (P2), 7, and #, are strictly positive on (0, co). Let us now employ the Lyapunov functional V5 defined

by
v = [ (120 rmees | [ (50 >)>f£>d9]g‘iéi- (16)

We now compute the time derivative of V5 along the solutions of (9).

Lemma 4.1. The time derivative of V3 along the solutions of (9) is
: gz(X1)> @ < 8y (%: ) & Xz)) a ( & (Xz)> &%)
Vi=1(1- 0)(1- + 0)(1-
= (12 Fo (-2 x)) 5O\ " 800) gxi)

) L) g
+g“"”(”g](xpgo&) 2,

g:1(x3) g1(X2
+<1 g, ))gl("z)”z("”<gl<xz) Xl

x
Ny
Nl

Proof. One sees that

Vs = (1 _gzm) <f1 (%) + & (xﬁ) T (1 -5 EZ;) (;—zz(xz) +g2(x1)> ﬁ;ﬁiii
-(1-2E 20| (Fealoram o)+ (-2 20| (Fe 2o sk o)) 25

=E +E.

It follows that

E] _ (1 7g2(xfl‘)
&2

a & (x1) 8 (X)) 8(%1) fi fi _
)EO(1-200) + (1-200) 710|120+ 2 02 0+ £100) 3-0)] = Eu + B
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where
b= (1) 7 0 (156 )
and
fo = (1529 (i 70 7 Oy i)
= (1B o (G )5 O ) @)

Similarly,

g(%3) g1(%2)\ 81(%3) 81(%)\ @ g1(x%) @ f b 81(x3)
B (15 00 e () FOL e+ F g 0 s 0] 20
= Ey + En,

where

g1(x35)\ a2 g1(%2)\ 81(x3)
Ez“(“ ())fz(0)<1 gl(xz)> 3 (20)

and

Ey = (1 7g1(X§))g] (x5) Kgl(xf) _ '72(?‘2)> %(0) 1 +g25x1)]

&%) &%) &%) T 8)
- (1- 800 e (258 ) £ O e @
Using the equilibrium conditions (10), it is seen that
o —nmlo. -EEE0 -0
and consequently
=) -0 0, 1=m06) - &0 2 0) (22)

One then sees from (19) and (22) that
( & (% >g1 {1,]1 X ( 1) X)) ]> *gZ(X:) +g1(xf)] (23)

8, (x1)

and similarly

£ = (1 20905, [ (202 1olf)_ ) _a08), o8] o

Xz)

It follows from (18), (20), (23) and (24) that

(
L NG (B ([ S\ @ () &)
V3‘(] 2 ))f(o)(l g;(x;))*(l g1<x2>> 2(°)<1 gl(X§)>gz(XT)
o)), 500 M) )\ &) )
*(1 &) gl("z){”l(""<gz<xq>m(xl) 1) gz(XT)Jrg](Xz)}
&%) 81(%2) 1(x5) 1\ &i(x2) | &(X1)
*(1 g1<x2>>gl<"2){”2("2)(&(@)m(xz) 1) gl(x;)+gz(xa‘)}’

which easily yields the conclusion.

Due to the positivity conditions (P1) and (P2), the first two terms in the right-hand side of (17) are negative (with equality
if and only if x; = X; and x, = x3, respectively), while the third is negative due to (P1) and to AM-GM inequality. Let us also
observe that, by (I3), V3(x1,%>) tends to +oo if either x; or x, tends to O or to +co. Denote

_ 8(x1) _ 81(X2)
Pl =y P =) )
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One then sees that the sum of the fourth and fifth terms in the right-hand side of (17) can be written as
. gz("?)) <‘D1 (x1) ) . < & (X§)> (q)z(xz) )
Ta+Ts=g;(x3)(1— X -1)+gx)(1- X -1).
4 5 gl( 2)( gz(xl) 7’]1( 1) (Dl(x;) gl( 2) gl(XZ) '/’2( 2) (I)Z(xz)

By using an argument similar to the one displayed in the proof of Theorems 3.1 and 3.2, one then obtains the following sta-
bility result.

Theorem 4.1. If (H1), (H2), (P1), (P2), (I3) and (E) are satisfied, and

(1 3 (B 1) (o2 () 1) <o a0 o

then E* is globally asymptotically stable in int(Ri).
Note that (26) is satisfied, for instance, if ®; and ®, are decreasing.
For

b% b% r1biax 2by1x
01(X1)=T1X1<A1*ﬁ>~, az(X2)=r2X2<A2*é>, f1x1) =x1, g(x2) = 1K11227 f2(%2) =%2,  go(x1) = ZKZ; ]-,

assuming that either (3) or (4) are satisfied, it follows that (E) holds, together with (H1), (H2), (I3) (see below for the exact
expression of V3) and (P1). Also,
X1 a;

a X X X
f*]](xl)=r1</\1*ﬁ>~, ffz(Xz):Tz(AZ*é) ’71(X1)=Ir11<17 7]2("2):/?12(2, @y (x1) = 1r2b21Ay, Dy =r1b12As,

and consequently (P2) and (26) hold. It follows that the model (1) fits our framework.
Also, in this case,

M x\ 1 r1b12Kaxs %2 x3\ 1 _ X X r1b12K>x35 X2 X,
V3(X1,X2) 7/,(; <1 _§>§d9+r2b211(1x§ /XE _F gdg o lnX_’{—‘rZ—l +T2b21K1X’1‘ lng—’—g_ ’
that is, V3 differs from L, by a multiplicative constant.
Let us now suppose that the following conditions are satisfied.

(P3) The functions g; and g, keep the same sign on (0, ), g;(0) # 0 and g,(0) # 0.
(P4) The functions %‘ and ;—22 are decreasing on [0, co), at least one of them being strictly decreasing.

Note that if (P3) and (H5) hold, then (P4) holds.

Let us denote

LN A N I
g0 &) T g0) gk)

and observe that &;, &, are increasing and ¢&; (xz) > 0 for all x, > 0, & (x1) > 0 for all x; > 0. Let us also denote

&(x2) =

¥, (x2) :%(xz), ¥, (1) :é}%(x])-

One shall employ again the Lyapunov functional V;. Using the equilibrium condition (10), one sees that

vy = B2 £ (0,0 4 g )+ £102) B0 ) 4 o))

ai(X1) 1 o (X?)>
&1(%2) fi(x%

— (& 00) — (%)) (& (Xz))<—

(@) - g (X’i))(fgz(xﬂ)(

a, (X])

filx

1 (01(X1) a1(x3) —&1(x3)

— ®00) - ) 810 |- g (T~ ) +a)

+(81(%2) — &1(%))(=82(x1)) - {7&1(0) ;22(942) - ;zz
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Consequently,
+ (g 00) ~ £060)) (-1 (x2) [51 ?3(")—9("%)?352?3}
az ) o 02(%3)
+(81(%2) — 81(%3))(—82(x1) {Cz YV Hx) é2(X1)f2(><§)}

=T1+T,+T3+ T4

It is now seen using (P4) that T, and T, are negative. Let us note that, using again the equilibrium conditions (10), that

T+ T = )81 ) 8 (Gal) = ali) (210 E — 6106) F 0 )+ o) F 5 G )
- ) (a0 2o - a0 e
L A

[(655- ) Ca ) (- (2 )

= 82(%1)81(%2) ¥ (x7) 1 (%)

[&i(x2) (Wa(x1) &(x1) (alx2) CGi(%) LX) Ya(x1)  &H(x1) &i(xg) Walxe)
o () ( 1)2- 20 DGk Al

By (P3) and (P4), it is seen that
82(X1)81 (x2)W2(x7)W1(x5) >0 for xq1,x; € (0,00).

By using again an argument similar to the one displayed in the proof of Theorems 3.1 and 3.2, one then obtains the following
stability result.

Theorem 4.2. [f (H1), (H2), (P3), (P4), (I1) and (E) are satisfied, and

&1(x2) (‘Pz(M) _ l) n & (x1) <l111 (x2) 1) L2 $1(X2) Sa(xq) Walx1)  &a(x1) &i(x3) Wi(xa)

<0, forall x, 0.
&%) \Ws(x;) &) \ Wi (xy) G00) Hm) o) HE) Gx) Pig) S ora XX =0,

(27)
then E’ is globally asymptotically stable in int(R?).
Let us observe that for x; = x; and all x, > 0

T3+ Ty = g5 (X1)g71 (%2) ¥P2(x7) P1(x5) E; EZ; e

1(%2) &%) Ya (Xz)}
Gi(x3)  &i(x2) Wi(x3)
— g2 ) o)1 ) (g - S0 ) (1= S0
a(X2)  2(X3)

Hx)  f(x35)

— g (g <x2)\v2<x;>( )(51("2) (%)) <0,

Similarly, for x, =3 and all x; > 0,

T3+ T4 =gy(X1)81(%2)P1(x3) <31c11((x ) ;]]((;g)))(fz(xl) - &(x7)) <0,

that is, (27) is easily satisfied. For

1 1

— rxA — xA — 2 - — 1x2 -
a1 (x1) =T1X1A1,  @G(x) =NXAy, fi(x) =rixf, g(x) K £ b%y faX2) = 12x3,  &o(x1) Ky + bk’

and assuming also that (5) is satisfied, one obtains
&1(%2) = biaxa, &(X) = barxy, Wi(x2) = bz, Wa(x1) = buAy

and

AlAy Xo X% x1x*>
T3+ T4 = bi,b _2et T2 ) <,
3H e (K1 + b12X2) (K3 + ba1xy) 12721 < X5X1  XjX2 ’
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due to the AM — GM inequality, so the model (2) fits also this framework. Also, in this case,

o -1 1 v -1 1
T Kytbyix) K2+b210d9+/ 2 Ki+bipx, — Ky+bip0
X

Vilx1,%3) =

1
:Az*bzl /X’ 0—x; 2d0+1’1A1b12X% /X2 0—x; 2d9 7
X5 X; (Kz + b21 9)9 r2A2b21X] x5 (K] + b129)9
that is, V; differs from L; by a multiplicative constant.

Although (26) and (27) are tailored to the (general form of) systems (1) and (2) through the specific construction of
11,15, & and &, respectively, they are satisfied for other related models as well. Specifically, (26) is also satisfied for the

model
dx x1\? b dx x2\? b
T; =T1X1 (Al - (KJ]> ) +1 Flllexm (th =Xy (Az - (é) ) + 12 Kizl?ﬁxz,

(that is, for a version of (1) featuring a Richards growth function instead of the logistic one), provided that p > 1. Also, (27) is
satisfied for the model

do

2

dx X0t
_1 — rlxlA] _ 1711)

dt Ky + b12X2
dx rox X071
242 — rzszz _ sz’
dt Ky + b21X1

(that is, for a version of (2) featuring a more general interaction term), provided that p > 0. Further, the model with restricted
growth rates

dx 1

——=T1X <1 —x—l) +C1x1(1 —e7%%), b _ r2x2<1 el

K>

P
dt K dt ) +C2X2(1 e * 1)’

proposed by Graves et al. in [6] can be treated within the framework of both Theorem 3.1 and Theorem 4.1.

When (26) and (27) are satisfied only for (x;,x;) in a vicinity of E* rather than globally, our Theorems 4.1 and 4.2 can be
restated in terms of finding domains of attraction for E*. Another possible way for extending the scope of our results is con-
sidering models of mutualism with more complicated, possibly sign changing, interaction terms between species, such as the
system

dA dF [ rpaA’

E = (TaF - daA)A, E = (m dfF - TCA> F,

proposed by Kang et al. in [15] to model the interactions between leaf-cutter ants (A) and their fungus garden (F), although,
under a strict definition, this interaction does not always represent a mutualism, being detrimental for the fungus for certain
species densities. This model showcases a general class of models, called, in the unifying framework of Holland and DeAn-
gelis [11], unidirectional consumer-resource mutualisms, in which one species is dependent on the other one for survival,
while being also its primary source of nutrient.
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