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a b s t r a c t

This paper proposes and investigates a delayed model for the dynamics and control of a

mosquito population which is subject to an integrated strategy that includes pesticide release,

the use of mechanical controls and the use of the sterile insect technique (SIT). The existence

of positive equilibria is characterized in terms of two threshold quantities, being observed that

the “richer” equilibrium (with more mosquitoes in the aquatic phase) has better chances to

be stable, while a longer duration of the aquatic phase has the potential to destabilize both

equilibria. It is also found that the stability of the trivial equilibrium appears to be mostly

determined by the value of the maturation rate from the aquatic phase to the adult phase.

A nonstandard finite difference (NSFD) scheme is devised to preserve the positivity of the ap-

proximating solutions and to keep consistency with the continuous model. The resulting dis-

crete model is transformed into a delay-free model by using the method of augmented states,

a necessary condition for the existence of optimal controls then determined. The particular-

ities of different control regimes under varying environmental temperature are investigated

by means of numerical simulations. It is observed that a combination of all three controls has

the highest impact upon the size of the aquatic population. At higher environmental tempera-

tures, the oviposition rate is seen to possess the most prominent influence upon the outcome

of the control measures.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Certain deadly infectious diseases, such as dengue fever [29,60], yellow fever [30] and malaria [49] are transmitted by

mosquito species within the genus Aedes, principally by Aedes aegypti (the yellow fever mosquito) and Aedes albopictus (the Asian

tiger mosquito). Among these species, Aedes aegypti is a small-to-medium sized (4 to 7 mm in its adult stage) dark mosquito,

recognizable by the white markings on its legs and by the marking in the form of a lyre on its thorax, which is globally the main

vector for the transmission of yellow fever and dengue fever. In Asia, it is the main vector of the chikungunya disease as well.

The viruses carried by this species are passed on to humans through the bites of infective females, which acquire the viruses by

feeding on the blood of infected persons. Recent estimates [8] indicate that, annually, there are 300–500 million cases of malaria
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leading to more than 1 million deaths and 50–100 million cases of dengue fever [31]. In the absence of any intervention, the

incidence of mosquito-borne diseases is expected to double in the next 10 years [8].

Humans provide mosquitoes not only with blood meals necessary to produce eggs, but also with water-filled artificial habitats

(used tires, flower pots, animal drinking pans, trash cans, toilets and septic tanks). It has been determined that most female

mosquitoes spend their entire lifetime in or around the dwellings they emerge as adults, flying an average of 400 m, which

means that people, rather than mosquitoes, are mostly responsible for the movement of viruses between communities [36].

It is difficult to contain the expansion of Aedes aegypti mosquitoes since they have developed highly successful mechanisms

to cope with a variable environment. Notably, the eggs have the ability to withstand desiccation for several months on the inner

walls of containers and hatch once submerged in water. At first, massive insecticide use has been proved successful, generally

limiting the spread of mosquito-borne diseases and even eradicating malaria in certain areas. However, these diseases are now

resurgent largely since mosquitoes have developed insecticide resistance [44] while the areal of the vector and virus have also

been expanding [46].

The unavailability of effective vaccines has also hampered the efforts to contain these diseases, although much effort has

been put into developing suitable vaccine candidates. Only one vaccine candidate for dengue fever, a live-attenuated tetrava-

lent vaccine based on chimeric yellow fever-dengue virus (CYD-TDV) developed by Sanofi-Pasteur has progressed to phase III

clinical trials. The first of two pivotal efficacy studies has been conducted and completed as a multicenter, randomized, observer-

masked, placebo-controlled trial in 2014 in five Asian countries [11,51]. Also, only one candidate vaccine for malaria, RTS, S/AS01

(Mosquirix, developed by Glaxo-SmithKline Inc.) reached phase III clinical trials, a randomized, controlled, double-blind trial

being conducted at 11 sites in seven African countries [58,63]. Although the live chikungunya virus vaccine candidate TSI-GSD-

218, developed by US Army Medical Research Institute, has undergone a phase 2 clinical study, appearing to be safe in human

subjects, its development has been halted in 2003. To date, there is no vaccine that reached phase 2 of clinical trials [45,53,61].

Consequently, vector control remains a vital part of the ongoing global strategy for the control of mosquito-associated diseases.

The most common vector control mechanism is pesticide spraying (specifically, adulticides or larvicides, depending on the

concrete situation), which can have a powerful impact on the abundance of mosquitoes. Four classes of insecticides are recom-

mended by World Health Organization (WHO) to be used for public health purposes (pyrethroids, organochlorines, organophos-

phates and carbamates). However, the long term usage of pesticides has been shown to induce resistance in mosquitoes, thereby

reducing pesticide efficiency, and to have a negative impact upon the other species that share the same habitat.

Another effective control mechanism is source reduction, by means of eliminating mosquito breeding areas. Since mosquitoes

breed in stagnant water, this amounts to removing old tires and emptying buckets, clearing clogged gutters and repairing leaks

around faucets, regularly changing water in animal drinking pans and draining puddles and swampy areas. Also, open water

marsh management, which amounts to building a network of ditches to create water flows between marshes and letting fish in,

which will then feed on mosquito larvae, is an effective way of reducing mosquito populations without resorting to insecticides.

Biological control methods rely upon using parasites or predators of mosquitoes to reduce the size of mosquito populations.

Effective control agents include predatory fish and dragonflies that feed on larvae or adult mosquito populations. Bacteria such

as Bacillus thuringiensis, which interfere with the digestive processes of larvae, and fungi such as Metarhizium anisopliae and

Beauveria bassiana, which infect feeding and respiratory apparatus of larvae, reducing their chances of survival are also use.

Another approach is the breeding of sterile male mosquitoes, which are then subsequently released into the environment,

interfering with the reproductive processes of wild mosquitoes, procedure called the sterile insect technique (SIT). The concept

of SIT was first proposed by Knipling [37] in 1955, and successfully tested in 1958 in Florida to control Screwworm fly [38,39].

Over the past few years, there has been a growing realization that the SIT could play an important role in mosquito control under

specific conditions [1,7,9,52,57], as a cheaper and effective control technique which is not subject to vector resistance.

One way of achieving the sterilization of mosquitoes is by exposing them to gamma radiations. It has been reported that many

insects are difficult to sterilize without drastically affecting their fitness [64]. However, small scale experiments to assert survival

fitness and mating competitiveness have been performed upon sterilized Anopheles arabiensis mosquitoes near Khartoum, Sudan,

under near-natural conditions and are described in [33]. It appeared that the irradiation did not impact on first nights survival,

which are crucial for reproduction, mating occurred in high frequencies and sterile mosquitoes were able to inseminate wild

females at rates comparable to those of the wild males. Again in a small-scale experiment, it has been observed that the spermless

Anopheles gambiae males developed by manipulation of germ cells differentiation gene elicit the same mating response from

wild females [57]. Specifically, mating with sterile males does not affect female egg-laying and stimulus to mate for a second

time (usually, a female mosquito mates only once in its lifetime).

Recently, mathematical models for the interaction between sterile and wild mosquitoes have been developed by several

authors. Dumont and Tchuenche [20] considered the case of pulsed release of sterile mosquitoes, proving by means of an equi-

librium analysis augmented by numerical simulations that frequent small releases of sterile insects are more effective than

larger less frequent releases. Dumont and Dufourd [19] developed a mathematical model with pulsed release of sterile males

to simulate mosquito dispersal and studied its controllability taking into account the variability of environmental parameters.

Esteva and Yang [22] employed optimal control methods to find the appropriate rate for the introduction of sterile mosquitoes. Li

[41,42] developed difference and respectively, differential models to characterize the interactions between wild and transgenic

mosquitoes. Diaz et al. [17] analyzed a model that described the dynamics of gene selection under sexual reproduction in a closed

vector population. Anguelov et al. [5] studied the dynamics of the equilibria for a SIT model dealing with the interaction between

treated males and wild female anopheles by using the theory of monotone operators. Rafikov et al. [54,55] used an optimal con-

trol approach to determine the suitable release frequency of transgenic mosquitoes. Also, Fister et al. [24] considered an optimal
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control framework for an ODE model to subsequently investigate the release of sterile mosquitoes with the purpose of reducing

the incidence of mosquito-borne diseases.

However, to the best of our knowledge, none of these models incorporate delay and combine more than one control to deter-

mine the optimal strategies amongst them. When modeling the transmission of vector-borne diseases such as malaria, dengue

fever or chikungunya fever, time delays may be incorporated in order to accurately represent the fact that the vectors become

able to transmit the disease only after they reach certain developmental stages, see for example [15,23,50], or after a period

of incubation. That is, time delays caused by the development of the disease-carrying vectors are actually integral parts of the

process of disease transmission. Other types of delays, such as those caused by the viral replication processes, may also need

to be accounted for. However, the introduction of time delays usually increases drastically the complexity of the mathematical

apparatus involved and of the resulting behavior of the system, potentially leading to solutions that exhibit sustained or transient

oscillations, or even chaotic behavior.

Two types of delays are usually employed in the modeling literature, namely discrete (constant) delays and continuously dis-

tributed delays, the latter especially when dealing with age structures for the host population such as age of infection or physical

age. The use of continuously distributed delays usually leads to models involving partial differential equations or integrodiffer-

ential equations, whose treatment is significantly more challenging than the treatment of a model involving ordinary differential

equations.

A competitive exclusion principle in a vector-host epidemic model with distributed delay has been established in Cai et al.

[10]. It has been shown that in a multi-strain vector-borne model, the strain that maximizes both the vector and the human

reproduction numbers dominates in the population, outcompeting all other strains. A model for the spread of an epidemic with

both vector-mediated and direct transmission has been studied in Wei et al. [62]. Thus, it has been shown that the introduction

of a time delay in the host-to-vector transmission term may destabilize the system and lead to the onset of periodic solutions

through Hopf bifurcations. Global stability results for general host-vector models with continuously distributed delays expressing

different types of age dependencies have been obtained by Lyapunov’s direct method in Vargas-De-León et al. [59].

In this work, we are concerned with the optimal strategies for controlling the size of an Aedes aegypti mosquito population

by means of three control mechanisms, namely the release of pesticides, the use of mechanical controls and the use of SIT. In

order to shed further light on the effectiveness of the control techniques, we propose a model that incorporates two life phases

of the mosquito population, namely the aquatic phase, which includes the egg, larva and pupa stages, and the adult phase. Since

the first three aquatic stages typically last 5–14 days or even several weeks, we then assume that mosquito population resides in

the aquatic compartment τ units of time. We also consider two factors that are particularly relevant to the application of control

mechanisms, as indicated below.

(a) Ambient temperature has an important effect on the oviposition rate of the mosquitoes, the carrying capacity of the

breeding sites, and the time spent in the aquatic phase [19,43,65].

(b) Pesticides have a residual effect, which weakens due to the degradation of the pesticide and natural clearance [56].

It is well known that it is difficult, if not downright impossible, to determine the exact solutions of most relevant nonlinear

biological ODE and delay differential equation models, hence the need for robust numerical methods to determine their meaning-

ful approximations. As stated in [19,20,26], certain classical numerical methods, such as Euler and Runge–Kutta, fail to properly

approximate the solutions of these models, producing spurious, negative, or chaotic solutions. To avoid these uncertainties, we

propose a nonstandard finite difference (NSFD) scheme for the continuous model, a technique introduced by Mickens [47,48] and

further elaborated by Anguelov and Lubuma [3,4]. For the discretization of the delay part, we employ the method of Langrange

interpolation proposed in [25]. Furthermore, the NSFD scheme can be used to handle the optimal control appropriately, due to

its dynamical robustness. Note that the findings in Anguelov et al. [2] and Dimitrov et al. [18] support the idea that NSFD schemes

are generally appropriate to solve ecological models and that in Dufourd and Dumont [19], Dumont and Tchuenche [20], NSFD

schemes have been specifically developed to assess the success of mosquito control techniques.

Our discrete model is shown to be dynamically consistent in terms of existence and local stability of equilibria with the con-

tinuous delay model. Also, the positivity of solutions is preserved at all times, which fulfills a basic requirement when modeling

any biological processes in general and the optimal strategies for controlling the spread of mosquitoes in particular. The trajec-

tories of the approximate solutions are shown to approach the respective steady states regardless of the step size taken, which is

never guaranteed when dealing with other numerical schemes.

The remaining part of the paper is organized as follows. Section 2 presents the biological assumptions which lead to the

formulation of the mathematical model under consideration. Section 3 is concerned with the dynamics of the simplified model,

completely characterizing the existence of the positive equilibrium or equilibria in terms of threshold parameters. Sufficient

conditions for the stability of the trivial equilibrium and of the positive equilibrium or equilibria are also established, as well as

the possible existence of stability switches and the occurrence of Hopf bifurcations. The corresponding NSFD scheme and the

dynamics of the associated discrete model are investigated in Section 4, together with the consistency of the discrete model with

the continuous model and its transformation into a delay-free model by the method of augmented states. The optimal control

approach is addressed in Section 5, while numerical experiments, using variable environmental temperatures and meaning-

ful ranges for the biological parameters involved, are considered in Section 6 to find the highest impact upon the size of the

mosquito population. Finally, certain biologically meaningful conclusions are drawn in Section 7 on the basis of the theoretical

and numerical frameworks developed in the previous sections.
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Fig. 1. The biological cycle of Aedes aegypti and the control mechanisms.
2. Modeling considerations

2.1. The life cycle and control mechanisms of Aedes aegypti

First and foremost, in order to formulate our compartmental model, it is necessary to have a basic understanding of the life

cycle of a mosquito, which is divided into four stages: egg, larva, pupa, and adult or imago.

Since, for most species, adult females lay their eggs in stagnant water, we consider two main phases in our model, namely the

aquatic phase (encompassing the egg, larva and pupa stages) and the adult phase. Let us denote by A = A(t) the population size

of the aquatic phase of the Aedes aegypti mosquito at time t. For the adult phase, we consider the following compartments: Y, the

wild young females before mating, M, the wild males and F, the mating fertilized females. The mating fertilized females are able

to lay their eggs in stagnant water on their own. The eggs are resistant to drying and hatch usually within 2–3 days, although

hatching may take up to 2–3 weeks in colder climates.

The use of pesticides, including adulticide or/and larvicide treatments, is an effective way to control the spread of mosquitoes

in both their larval and adult stages. Pesticide use, however, should be complemented by the use of mechanical controls in

affected areas, by public health officials and residents alike, one of the essential measures being to remove stagnant water from

domestic recipients, eliminating possible breeding sites.

Since the mating of sterile males with wild young females causes the mating unfertilized females U to lay unhatched eggs, we

release sterile males S into the wild, with the aim of reducing the size of mosquito population by means of interfering with egg

hatching. The biological cycle of Aedes aegypti, as modified by the control mechanisms described above, is illustrated in Fig. 1.

2.2. Model parameters and control variables

It is obvious that neither do all eggs hatch to larvae, nor do they all produce female mosquitoes [65]. For this reason, we denote

the fraction of eggs hatching to larvae with k, 0 < k < 1, and the fraction of female mosquitoes hatched from all eggs with f, 0

< f < 1. Since we assume that no sex differentiation occurs in the aquatic phase, mosquitoes, after emergence from the aquatic

phase to the adult phase, with survival rate ηA depending upon the ambiental temperature, as reported by [43] (see Fig. 2), are

distributed between the immature female and male compartments, with ratio
1−γ
γ of male to female mosquitoes.

The flows from the compartment Y to the compartments F and U are determined by the encounters of females with wild and

sterile males, respectively, and by the corresponding mating rates. Here, the terms M
M+S and S

M+S represent the probabilities of a

random encounter of a female with a wild male and with a sterile male, respectively, and β is the mating rate of mosquitoes.

Subsequently, we assume that (1 − α
ω )K is the (controlled) capacity of aquatic forms in the breeding sites, in which α de-

scribes the action of the mechanical control and ω is a rescaling constant, α < ω. Since a rainy period can lead to the creation

of new breeding sites and to an increase in the capacity of the existing ones, while, conversely, a dry period can reduce both the

number of breeding sites and their capacity, we assume that the capacity of breeding sites also varies with the temperature.

In this regard, we assume that the capacity of breeding sites is maximal, K = Kmax, at 26.6 ◦C, which is the mean temperature

with the maximal average amount of precipitations in northern Queensland at coastal Townsville in 1989 (see Fig. 3). We also
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Fig. 2. The fittings of the survival rate of the immature stages as function of temperature. Fittings for the fifth degree polynomials and the observed values

reported by [43] are also shown.

Fig. 3. Monthly mean temperature and amount of precipitation in Townsville Amo in 1989. Data reported by the weather station 942940 (YBTL), Latitude:

−19.25, Longitude: 146.75, Altitude: 6.
assume that 15 ◦C corresponds to the austral winter, when precipitations are low and the capacity is at its lowest, K = Kmin,

and that the quantitative relationship between the minimal and maximal capacities is given by Kmin = 0.1 × Kmax. We may also

suppose that K increases for temperatures between 15 ◦C and 26.6 ◦C. When the temperature is above 26.6 ◦C, we assume that K

decreases due to evaporation and to a lower amount of precipitations, a concrete estimation being K = 0.3 × Kmax at 35 ◦C. Using

a quadratic interpolation, we obtain a continuous relation between the carrying capacity K and the temperature (see Fig. 4).

Fig. 5 shows that the oviposition rate ϕ has an (approximately) linear increase with the temperature, showing indirectly that

the physiological activities increase in order to maturate fertilized eggs. Since the first three aquatic stages typically last several

days or even several weeks, depending on the temperature of the ambient, we assume that mosquitoes reside in compartment A τ
units of time (see Fig. 5). Then the surviving individuals entering the respective compartments Y and M at time t are consequently

among those that entered the aquatic phase τ units of time before. The coefficients μA, μY, μM, μF, μU and μS represent the per

capita natural mortality rates of the aquatic phase, unmating females, wild males, mating fertilized females, mating unfertilized
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Fig. 4. The quadratic interpolation of the carrying capacity K as a function of temperature. .

Fig. 5. Mean instar duration τ (days) and oviposition rate ϕ of immature stages of Aedes aegypti reared at different temperatures in the laboratory. The fitting

of the aquatic phase oviposition rate as a function of temperature (the yellow line represents a linear interpolation). The fitting of the mean instar duration as a

function of temperature (the green curve represents a fourth degree polynomial interpolation). Data reported by [43,65]. (For interpretation of the reference to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The fittings of the mortality rates of the female mosquito population and, respectively, the whole aquatic phase as functions of temperature. Fittings for

the fourth degree polynomials and the observed values reported by [65] are also shown.
females and sterile male mosquitoes, respectively. We fit the mortality rates of the whole aquatic phase and female mosquitoes,

respectively, according to the data reported in [65] (see Fig. 6). In addition, the impacts of larvicide and adulticide upon the

mosquito population can be quantified as cA = 1 − kA and cM = 1 − kM, respectively, in which

kA(t) = exp (−γAi(t) + δA)

and

kM(t) = exp (−γMi(t) + δM).

Here, γ A and γ M are the mortality parameters of the aquatic and adult stages, respectively. The pesticide dosage function

i(t)( > 0) is a control variable. In addition, δA and δM are the positive decay parameters for the aquatic and adult stages, re-

spectively. From a biological viewpoint, we assume that the larvicide and adulticide degradation and natural clearance in the

environment are not as rapid as to make the death rates cA and cM negative.

Finally, sterile insects are released at a rate ψ(t). Since sterile male mosquitoes are released by humans, the positive, con-

tinuous and bounded function ψ(t), understood as a control variable, describes the human intervention mechanisms, while the

parameter κ can be thought as the effective mating competitiveness of the sterile males which are released and then join the

wild male population to wait for mating opportunities.

2.3. The model

We now introduce our delayed model with temperature-dependent parameters in the following form

dA

dt
= k fϕ(T)

(
1 − A

(1 − α
ω )K(T)

)
F − (μA + cA)A − ηAA(t − τ(T)), (1)

dY

dt
= γ ηAA(t − τ(T)) − βY − (μY + cM)Y, (2)

dM

dt
= (1 − γ )ηAA(t − τ(T)) − (μM + cM)M, (3)

dF

dt
= βMY

M + S
− (μF + cM)F, (4)
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dU

dt
= βSY

M + S
− (μU + cM)U, (5)

dS

dt
= κψ(t) − (μS + cM)S, (6)

in which ϕ(T), K(T) and τ (T) are all temperature-dependent parameters. All other variables and parameters are listed in Table 2,

together with their default values.

From a conceptual viewpoint, our model is related to (the SIT part of) those proposed by Dufourd and Dumont [19] and Du-

mont and Tchuenche [20], and is inspired by them, while keeping track of the influence of the delay and of the mating unfertilized

female class U. Also, the larvicide, adulticide and mechanical controls have been first studied in Dumont and Chiroleu [21] and

more recently in Liu and Stechlinski [45].

Here, for σ ≥ 0 and A ≥ 0, a function X = (A,Y, M, F,U, S) is called a solution of (1)–(6) on [σ − τ(T), σ + A) if X ∈
C([σ − τ(T), σ + A], R

6+), (t, Xt) ∈ 
 ⊂ R × C([−τ(T), 0], R
6+) and Xt(θ) = X(t + θ) (where θ ∈ [−τ(T), 0]) satisfies (1)–(6) for

t ∈ (σ, σ + A). The existence and uniqueness of the solutions follow from standard results in the theory of delay differential

equations [34,35,40].

Let us denote

ψmax = sup
t∈[0,∞)

ψ(t),

μmin = min {μA + cA,μY + cM,μM + cM,μF + cM,μU + cM,μS + cM},

B =
ηA

(
1 − α

ω

)
K(T) + κψmax

μmin

.

We shall now establish the existence of a feasible region for (1)–(6).

Theorem 2.1. The set

� =
{
(A,Y, M, F,U, S) ∈ R

6
+ : A ≤

(
1 − α

ω

)
K(T); Y + M + F + U + S ≤ B

}
contains a feasible region for (1)–(6).

Proof. Assuming that a solution ((A, Y, M, F, U, S) starting inside of � preserves its positivity, let us observe that, from (1), dA
dt

≤ 0

whenever A ≥
(
1 − α

ω

)
K(T), which ensures the boundedness of A.

Let us also denote

NA = Y + M + F + U + S.

Adding Eqs. (2)–(6), we see that

dNA

dt
≤ ηA

(
1 − α

ω

)
K(T) + κψmax − μminNA

for any solution of (1)–(6) starting in �. By the comparison lemma, this leads to

NA ≤ B − (B − N(0))e−μmint ,

which finishes the proof. �

We have not been to able prove that all solutions starting in � are positivity-preserving, since the system (1)–(6) is not of

Kolmogorov type. However, the numerical evidence suggests that the positivity of solutions is indeed preserved for a large span

of initial data.

3. The dynamics of the simplified model

3.1. The simplified model

In order to fully characterize the dynamical behavior of the solutions, we need further knowledge about the control mecha-

nisms and temperature-dependent coefficients. In what follows, we consider fixed values for the control variables, that is, α(t)

≡ α, ψ(t) = ψ and i(t) ≡ i, and fixed temperature of the ambient, such that ϕ, K and τ are also constants. Since the size of the

sterile class S is controlled by human intervention and

lim
t→+∞

S(t) = κψ

μS + cM

,
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for sufficiently large values of t, (1)–(6) can be simplified to the autonomous form below

dA

dt
= k fϕ

(
1 − A

(1 − α
ω )K

)
F − (μA + cA)A − ηAA(t − τ), (7)

dY

dt
= γ ηAA(t − τ) − βY − (μY + cM)Y, (8)

dM

dt
= (1 − γ )ηAA(t − τ) − (μM + cM)M, (9)

dF

dt
= βMY

M + κψ
μS+cM

− (μF + cM)F, (10)

dU

dt
=

β κψ
μS+cM

Y

M + κψ
μS+cM

− (μU + cM)U. (11)

3.2. The existence of the equilibria

Excluding the effect of the sterile male mosquitoes from the model (1)–(6), which implies that the unfertilized class U disap-

pears here as well, this model becomes

dA

dt
= k fϕ

(
1 − A

(1 − α
ω )K

)
F − (μA + cA)A − ηAA(t − τ),

dY

dt
= γ ηAA(t − τ) − βY − (μY + cM)Y,

dM

dt
= (1 − γ )ηAA(t − τ) − (μM + cM)M,

dF

dt
= βY − (μF + cM)F.

It is seen by direct computations that this reduced model has a unique nontrivial equilibrium if and only if the basic offspring

number

R .= k fϕηAγβ

(μF + cM)(μA + cA + ηA)(β + μY + cM)
> 1. (12)

In this case, its equilibrium XE = (AE ,YE , ME , FE) has coordinates

AE = K

(
1 − α

ω

)(
1 − 1

R

)
YE = γ ηA

β + μY + cM

K

(
1 − α

ω

)(
1 − 1

R

)
ME = (1 − γ )ηA

μM + cM

K

(
1 − α

ω

)(
1 − 1

R

)
FE = β

μF + cM

γ ηA

β + μY + cM

K

(
1 − α

ω

)(
1 − 1

R

)
.

We now determine the equilibria of the system (7)–(11), which depend on the threshold quantity R. First of all, it can be seen

that the system (7)–(11) has the trivial equilibrium 0 = (0, 0, 0, 0, 0), which represents the ideal outcome, a constant population

of sterile insects.

Furthermore, we obtain a non-trivial steady state of (7)–(11) given by

X =
(
A, Y , M, F , U

)
which satisfies the following relations:
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Table 1

The distribution of the roots of (14) with respect to the values

of R.

R � Sum Roots

(0,R∗
1) + – Two distinct negative roots

R∗
1 0 – A double negative root

(R∗
1,R∗

2) – +/0/– Two distinct complex roots

R∗
2 0 + A double positive root

(R∗
2,+∞) + + Two distinct positive roots
Y = γ ηA

β + μY + cM

A,

M = (1 − γ )ηA

μM + cM

A,

F = β

μF + cM

M

M + κψ
μS+cM

Y , (13)

U =
β κψ

μS+cM

(μU + cM)(M + κψ
μS+cM

)
Y ,

where A is the solution of the following algebraic equation

RA2 − P(R − 1)A + PQ = 0, (14)

with P = (1 − α
ω )K and Q = κψ(μM+cM)

(μS+cM)ηA(1−γ )
.

Let us now state several properties of the second degree equation (14). The product of its roots is PQ
R > 0, while their sum is

S = P(R−1)
R . Also, its discriminant is

� = P2R2 − 2P(P + 2Q)R + P2,

of second degree as a function of R. The roots of the equation � = 0 are

R∗
1 =

(√
1 + Q

P
−
√

Q

P

)2

, R∗
2 =

(√
1 + Q

P
+
√

Q

P

)2

.

It is easy to verify that 0 < R∗
1 < 1 and R∗

2 > 1. The distribution of the roots of (14) with respect to the values of R is then

summarized in Table 1. Subsequently, the following result characterizes the distribution of possible equilibria of (7)–(11) with

respect to the values of R, given the fact that the trivial equilibrium 0 always exists.

Theorem 3.1. The system (7)–(11) has

(a) only the trivial equilibrium 0, if R ∈ (0,R∗
2
).

(b) two equilibria, namely the trivial equilibrium 0 and a positive equilibrium X∗
, if R = R∗

2.

(c) three equilibria, namely the trivial equilibrium 0 and two positive equilibria X∗
1 and X∗

2, if R ∈ (R∗
2
, +∞).

Remark 3.2. Since the oviposition rate and the carrying capacity of the aquatic stage depend on the ambient temperature, Fig. 7

shows the impact of the environmental temperature on the existence of the equilibrium.

3.3. Stability results

The local stability of each equilibrium point is governed by the roots of the corresponding characteristic equation for the

system (7)–(11). Linearizing the system (7)–(11) at an equilibrium point X̃, trivial or nontrivial,

X̃ =
(
Ã, Ỹ , M̃, F̃ , Ũ

)
,

we find that the corresponding characteristic polynomial is given by

P(s) = (s + μU + cM)D, (15)

where

D = det

⎛⎜⎜⎜⎝
s + k fϕ

P
F̃ + μA + cA + ηAe−sτ 0 0 −k fϕ(1 − Ã

P
)

−γ ηAe−sτ s + β + μY + cM 0 0
−(1 − γ )ηAe−sτ 0 s + μM + cM 0

0 − βM̃

M̃+ κψ
μ +c

− β κψ
μS+cM

Ỹ

(M̃+ κψ
μ +c )2

s + μF + cM

⎞⎟⎟⎟⎠

S M S M
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Fig. 7. Impact of the environmental temperature on the existence of the equilibria. Here, k = f = 0.9, ψ ≡ 40, κ = 0.6, i ≡ 0.4, α ≡ 0.4, the other parameters

being given in Table 2.
Let us start with the stability of the trivial equilibrium 0 = (0, 0, 0, 0, 0). It is seen that the eigenvalues of the corresponding

Jacobian matrix are −(β + μY + cM), −(μM + cM), −(μF + cM), −(μU + cM) and the solutions of the following transcendental

equation

s + μA + cA + ηAe−sτ = 0. (16)

In view of Theorem 3.1, together with Theorem 2.1 in Chapter 3 of [40], we obtain the following result, which characterizes the

stability switches of the trivial equilibrium.

Theorem 3.3. The following statements hold.

(i) If ηA ≤ μA + cA, then the trivial equilibrium 0 is locally asymptotically stable for any positive delay τ .

(ii) If ηA > μA + cA, then the trivial equilibrium 0 is locally asymptotically stable when τ < τ ∗ and unstable when τ > τ ∗, where

τ ∗ .=
arccot(− μA+cA√

η2
A
−(μA+cA)2

)√
η2

A
− (μA + cA)2

.

We now consider the stability of the positive equilibria.

When R ∈ (R∗
2
,+∞), it is seen that P(R − 1) > 2

√
PQR and the system (7)–(11) has two positive equilibria

X∗
1 = (A∗

1,Y ∗
1 , M∗

1, F ∗
1 ,U1) and X∗

2 = (A∗
2,Y ∗

2 , M∗
2, F ∗

2 ,U∗
2),

in which

A∗
1 = P(R − 1) −

√
(P(R − 1))2 − 4RPQ

2R , A∗
2 = P(R − 1) +

√
(P(R − 1))2 − 4RPQ

2R ,

and Y ∗
l
, M∗

l
, F∗

l
and U∗

l
(l = 1, 2) satisfy the relations (13). It follows that

A∗
1 = 2PQ

P(R − 1) +
√

(P(R − 1))2 − 4RPQ
<

√
PQ

R , A∗
2 >

√
PQ

R . (17)

In view of (15), we obtain that the corresponding characteristic polynomial at X∗
l , (l = 1, 2) is given by

P(s)|X∗
l

= (s + μU + cM)

⎛⎜⎝(s + k fϕ

P
F ∗

l + μA + cA + ηAe−sτ

)

× det

⎛⎜⎝ s + β + μY + cM 0 0
0 s + μM + cM 0

− βM∗
l

M∗
l
+ κψ

μ +c

− β κψ
μS+cM

Y ∗
l

(M∗
l
+ κψ

μ +c )2
s + μF + cM

⎞⎟⎠+ k fϕ

(
1 − A∗

l

P

)

S M S M
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× det

⎛⎜⎝ −γ ηAe−sτ s + β + μY + cM 0
−(1 − γ )ηAe−sτ 0 s + μM + cM

0 − βM∗
l

M∗
l
+ κψ

μS+cM

− β κψ
μS+cM

Y ∗
l

(M∗
l
+ κψ

μS+cM
)2

⎞⎟⎠
⎞⎟⎠.

= (s + μU + cM)

(
�1l(s) +

(
�2l(s) − �3l(s)

)
e−sτ

)
,

in which

�1l(s) =
(

s + R(μA + cA + ηA)(A∗
l
)2

P(A∗
l
+ Q)

+ μA + cA

)
(s + β + μY + cM)(s + μM + cM)(s + μF + cM),

�2l(s) = ηA(s + β + μY + cM)(s + μM + cM)(s + μF + cM)

�3l(s) = k fϕγ ηAβ

(
1 − A∗

l

P

)[
A∗

l

A∗
l
+ Q

(s + μM + cM) + Q(μM + cM)A∗
l

(β + μY + cM)(A∗
l
+ Q)2

(s + β + μY + cM)

]
.

Let us observe that, for l = 1, 2, ϱ1l and �2l − �3l are polynomials with real coefficients, of degree 4 and 3, respectively, which

do not have common imaginary roots since all roots of ϱ1l are real. It is seen that

�1l(0) = (
R(μA + cA + ηA)(A∗

l
)2

P(A∗
l
+ Q)

+ μA + cA)(β + μY + cM)(μM + cM)(μF + cM)

>0

�2l(0) − �3l(0) = (β + μY + cM)(μM + cM)(μF + cM)

[
ηA − (μA + cA + ηA)

(
1 + Q

A∗
l
+ Q

)]
< 0

�1l(0) + �2l(0) − �3l(0) = (β + μY + cM)(μM + cM)(μF + cM)(μA + cA + ηA)
1

P(A∗
l
+ Q)

[
R(A∗

l )
2 − PQ

]
.

By (17), it follows that

�11(0) + �21(0) − �31(0)<0

�12(0) + �22(0) − �32(0)>0.

Let us also denote

Fl(s) = |�1l(is)|2 − |�2l(is) − �3l(is)|2, l = 1, 2, i is the imaginary unit

and observe that F1, F2 are polynomials of order 8 with positive leading coefficients such that

F1(0) < 0, F2(0) > 0.

Consequently, the equation F1(s) = 0 has at least a positive solution, while the equation F2(s) = 0 may or may not have any. By

Theorem 1 in [14], one then obtains the following stability result.

Theorem 3.4. The following statements hold.

(i) If the positive roots of equation F1(s) = 0 are all simple, then as τ increases, a finite number of stability switches occur and there

exists a positive number τ ∗
1

such that X∗
1 is unstable for any delay τ > τ ∗

1
.

(ii) If the equation F2(s) = 0 has no positive roots, then X∗
2 is stable for any positive delay τ . If the equation F2(s) = 0 has at least a

positive root and all positive roots are simple, then as τ increases, a finite number of stability switches occur and there exists a

positive number τ ∗
2

such that X∗
2 is unstable for any delay τ > τ ∗

2
.

Since F2 is a polynomial of degree 8, the conditions to ensure that the equation F2(s) = 0 has no positive roots have mostly a

theoretical relevance, though. However, another contribution of Theorem 3.4 is that X∗
2, the equilibrium with more mosquitoes

in the aquatic phase, has more chances to be stable, confirming the idea that “rich” equilibria are prone to stability. See [27] for a

related result describing the dynamics of a predator-prey model with stage structure. Note that if R = R∗
2, one has

�11(0) + �21(0) − �31(0) = 0

�12(0) + �22(0) − �32(0) = 0,

and Theorem 1 in [14] is not applicable anymore. Let us consequently treat the case in which R = R∗
2 separately.

When R = R∗
2
, the system (7)–(11) has the positive equilibrium

X∗ = (A∗, Y ∗, M∗, F ∗, U∗),

in which A∗ = P(R−1)
2R =

√
PQ
R and Y∗, M∗, F∗, U∗ satisfy (13). Again, in view of (15), we obtain that the corresponding characteristic

polynomial at X∗ is given by

P(s)|X∗ = (s + μU + cM)(�1(s) +
(
�2(s) − �3(s)

)
e−sτ ), (19)
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in which

�1(s) =
(

s + R(μA + cA + ηA)(A∗)2

P(A∗ + Q)
+ μA + cA

)
(s + β + μY + cM)(s + μM + cM)(s + μF + cM),

�2(s) = ηA(s + β + μY + cM)(s + μM + cM)(s + μF + cM)

and

�3(s) = k fϕγ ηAβ

(
1 − A∗

P

)(
A∗

A∗ + Q
(s + μM + cM) + Q(μM + cM)A∗

(β + μY + cM)(A∗ + Q)2
(s + β + μY + cM)

)
.

Obviously, one of the eigenvalues of the corresponding Jacobian matrix is −(μU + cM). In the following, let us now turn to the

problem of localizing the zeroes of the function

h(s, es) = �1(s)esτ + �2(s) − �3(s). (20)

Let Z = sτ and define

H(Z) = h

(
Z

τ
, e

Z
τ

)
= �1

(
Z

τ

)
eZ + �2

(
Z

τ

)
− �3

(
Z

τ

)
.

Hence

H(iy) =
(

y4

τ 4
− a2y2

τ 2
+ a0

)
cos y −

(
a1y

τ
− a3y3

τ 3

)
sin y − b2y2

τ 2
+ b0

+ i

[(
y4

τ 4
− a2y2

τ 2
+ a0

)
sin y +

(
a1y

τ
− a3y3

τ 3

)
cos y +

(
b1y

τ
− b3y3

τ 3

)]
.= F1(y; a2, a0) cos y − F2(y; a1, a3) sin y + F3(y; b0, b2)

+ i
(
F1(y; a2, a0) sin y + F2(y; a1, a3) cos y + F4(y; b1, b3)

)
,

in which

a3 =
(
R(μA + cA + ηA)(A∗)2

P(A∗ + Q)
+ μA + cA

)
+ (β + μY + cM) + (μM + cM) + (μF + cM);

a2 =
(
R(μA + cA + ηA)(A∗)2

P(A∗ + Q)
+ μA + cA

)(
(β + μY + cM) + (μM + cM) + (μF + cM)

)
+ (β + μY + cM)

(
(μM + cM) + (μF + cM)

)
+ (μM + cM)(μF + cM);

a1 =
(
R(μA + cA + ηA)(A∗)2

P(A∗ + Q)
+ μA + cA

)
(β + μY + cM)

(
(μM + cM) + (μF + cM)

)
+
[(

R(μA + cA + ηA)(A∗)2

P(A∗ + Q)
+ μA + cA

)
+ (β + μY + cM)

]
(μM + cM)(μF + cM);

a0 =
(
R(μA + cA + ηA)(A∗)2

P(A∗ + Q)
+ μA + cA

)
(β + μY + cM)(μM + cM)(μF + cM);

b3 = ηA;
b2 = ηA

(
(β + μY + cM) + (μM + cM) + (μF + cM)

)
;

b1 = ηA

(
(β + μY + cM)

(
(μM + cM) + (μF + cM)

)
+ (μM + cM)(μF + cM)

)
− k fϕγ ηAβ

(
1 − A∗

P

)[
A∗

A∗ + Q
+ Q(μM + cM)A∗

(β + μY + cM)(A∗ + Q)2

]
;

b0 = ηA(β + μY + cM)(μM + cM)(μF + cM) − k fϕγ ηAβ

(
1 − A∗

P

)
×
[

A∗

A∗ + Q
(μM + cM) + Q(μM + cM)A∗

(β + μY + cM)(A∗ + Q)2
(β + μY + cM)

]
.

(21)

To introduce our next stability result, let us mention that the zeroes of two real single-variable functions a and b are said to

alternate if the functions have no common root or multiple zeroes and between two zeroes of a function there is a zero of the

other. Using Theorem 13.7 in [6], we are then able to state the following result, which complements Theorem 3.4 by dealing with

the limit case R = R∗ .

2
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Theorem 3.5. Suppose that R = R∗
2. Then the unique positive equilibrium X∗ of (7)–(11) is locally asymptotically stable if one of the

following conditions is satisfied.

(a) All roots of the equations

F1(y; a2, a0) cos y − F2(y; a1, a3) sin y + F3(y; b0, b2) = 0 (22)

and

F1(y; a2, a0) sin y + F2(y; a1, a3) cos y + F4(y; b1, b3) = 0 (23)

are real and alternate and the inequality

F2
1 + F2

2 + F1F ′
2 − F ′

1F2 + F3F ′
4 − F ′

3F4

> sin y(F1F ′
3 − F ′

1F3 + F2F ′
4 − F ′

2F4 + F2F3 − F1F4)

+ cos y(F ′
1F4 − F1F ′

4 + F2F ′
3 − F ′

2F3 − F1F3 − F2F4)

holds for at least a value of y.

(b) All roots of (22) are real and, for each root y = y∗,(
F ′

1(y∗) cos y∗ − F1(y∗) sin y∗ − F ′
2(y∗) sin y∗ − F2(y∗) cos y∗ + F ′

3(y∗)
)

×
(
F1(y∗) sin y∗ + F2(y∗) cos y∗ + F4(y∗)

)
< 0.

(c) All the roots of (23) are real and, for each root y = y∗,(
F ′

1(y∗) sin y∗ + F1(y∗) cos y∗ + F ′
2(y∗) cos y∗ − F2(y∗) sin y∗ + F ′

4(y∗)
)

×
(
F1(y∗) cos y∗ − F2(y∗) sin y∗ + F3(y∗)

)
< 0.

3.4. The existence of Hopf bifurcations

In this subsection, we shall study the occurrence of Hopf bifurcations on condition that R ≥ R∗
2, which implies that there are

two positive equilibria X∗
l , l = 1, 2, which coincide when R = R∗

2
.

The characteristic equation at X∗
l , l = 1, 2, has a simple negative root −(μU + cM), the remaining roots verifying the transcen-

dental equation

�1l(s) +
(
�2l(s) − �3l(s)

)
e−sτ = 0,

in which ϱ1l, ϱ2l, ϱ3l are given by (18).

For correspondence with the notations used in the previous subsection, let a3l, a2l, a1l, a0l, l = 1, 2, be the quantities obtained

replacing A∗ with A∗
l

in the formulas for a3, a2, a1, a0 given by (21), respectively. Let also b3l, b2l, b1l, b0l, l = 1, 2, be the quantities

obtained replacing A∗ with A∗
l

in the formulas for b3, b2, b1, b0 given by (21), respectively (actually, b3l and b2l do not depend

upon l, but we shall keep this notation for the sake of consistency).

This leads to

s4 + a3l s
3 + a2l s

2 + a1l s + a0l + (b3l s
3 + b2l s

2 + b1l s + b0l)e−sτ = 0, (24)

We now find conditions for the existence of purely imaginary roots of (24).

Lemma 3.1. If conditions

a2
3l − 2a2l − b2

3l > 0, a2
2l + 2a0l − 2a3la1l − b2

2l + 2b3lb1l > 0, a2
0l − b2

0l < 0, (25)

hold for an l ∈ {1, 2}, then Eq. (24) corresponding to that l has a unique pair of purely imaginary roots.

Proof. If s = iw, w > 0, is a root of (24), we observe that

w4 − a3l iw
3 − a2lw

2 + a1l iw + a0l + (−b3l iw
3 − b2lw

2 + b1l iw + b0l)( cos wτ − i sin wτ) = 0.

After separating real and imaginary parts, we see that

w4 − a2lw
2 + a0l = (b2lw

2 − b0l) cos wτ + (b3lw
3 − b1w) sin wτ

−a3lw
3 + a1lw = (b3lw

3 − b1lw) cos wτ − (b2lw
2 − b0l) sin wτ.

(26)

By squaring and adding both equations in (26), we obtain that

(w4 − a2lw
2 + a0l)

2 + (−a3lw
3 + a1lw)2 = (b2lw

2 − b0l)
2 + (b3lw

3 − b1lw)2, (27)

which leads to

w8 + T3w6 + T2w4 + T1w2 + T0 = 0, (28)
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with

T3 = a2
3l − 2a2l − b2

3l

T2 = a2
2l + 2a0l − 2a3la1l − b2

2l + 2b3lb1l

T1 = −2a2la0l + a2
1l + 2b2lb0l − b2

1l

T0 = a2
0l − b2

0l .

From our hypotheses, T3 > 0, T2 > 0 and T0 < 0. By Descartes’ rule of signs, it follows that the equation

u4 + T3u3 + T2u2 + T1u + T0 = 0

has exactly one positive root. In turn, this implies that there is a unique positive root w0 of (28) and that (24) has a unique pair of

purely imaginary roots ±iw0.

From (26), one may determine the corresponding values of τ . To this purpose, we denote

D = (w4 − a2lw
2 + a0l)

2 + (−a3lw
3 + a1lw)2 = (b2lw

2 − b0l)
2 + (b3lw

3 − b1lw)2.

Since

cos wτ = 1

D

[
(b2l − b3la3l)w6 + (−a2lb2l − b0l + b3la1l + b1la3l)w4

+(2a0lb2l − b1la1l)w2 − a0lb0l

]
,

it follows that

τ 1
n = 1

w0

{
arccos

(
1

D

[
(b2l − b3la3l)w6 + (−a2lb2l − b0l + b3la1l + b1la3l)w4

+(2a0lb2l − b1la1l)w2 − a0lb0l

])
+ 2nπ

}
, n ≥ 0,

or

τ 2
n = 1

w0

{
− arccos

(
1

D

[
(b2l − b3la3l)w6 + (−a2lb2l − b0l + b3la1l + b1la3l)w4

+(2a0lb2l − b1la1l)w2 − a0lb0l

])
+ 2nπ

}
, n ≥ 1.

�

Having found the unique pair of purely imaginary roots ±iw0, w0 > 0 for (24), we now determine sufficient hypotheses for

the transversality condition to hold at iw0.

Lemma 3.2. Let ±iw0, w0 > 0, be the unique pair of purely imaginary roots found by means of Lemma 3.1. If conditions

a2
1l − 2a0la2l + b1lb3l + 2b0lb2l > 0, 3(2a2l + b2

3l)
2 − 16(a0l − a1la3l + b1lb3l − b2

2l) < 0, (29)

hold for the same l, then the transversality condition

Re

(
ds

dτ

)−1
∣∣∣∣∣

s=iw0

> 0,

is satisfied for that l.

Proof. By differentiating (24) with respect to τ , one obtains that[
4s3 + 3a3l s

2 + 2a2l s + a1l + (3b3l s
2 + 2b2l s + b1l)e−sτ − τ(b3l s

3 + b2l s
2 + b1l s + b0l)e−sτ

]ds

dt

= s(b3l s
3 + b2l s

2 + b1l s + b0l)e−sτ ,

which yields(
ds

dτ

)−1

= − 4s3 + 3a3l s
2 + 2a2l s + a1l

s(s4 + a3l s
3 + a2l s

2 + a1l s + a0l)
+ 3b3l s

2 + 2b2l s + b1l

s(b3l s
3 + b2l s

2 + b1l s + b0l)
− τ

s
.

It consequently follows that
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Re

(
ds

dτ

)−1∣∣∣∣
s=iw0

= Re

(
− (a1l − 3a3lw

2
0) + i(2w0a2l − 4w3

0)

iw0

[
(a0l − a2lw

2
0

+ w4
0
) + i(−a3lw

3
0

+ a1lw0)
])

+ Re

(
(b1l − 3b3lw

2
0) + 2b2lw0i

iw0

[
(b0l − b2lw

2
0
) + i(b1lw0 − b3lw

3
0
)
])

= (a1l − 3a3lw
2
0)(−a3lw

3
0 + a1lw0) − (2w0a2l − 4w3

0)(a0l − a2lw
2
0 + w4

0)

w0

[
(a0l − a2lw

2
0

+ w4
0
)2 + (−a3lw

3
0

+ a1lw0)2
]

+ 2b2lw0(b0l − 2b2lw
2
0) − (b1l − 3b3lw

2
0)(b1lw0 − b3lw

3
0)

w0

[
(b0l − b2lw

2
0
)2 + (b1lw0 − b3lw

3
0
)2
] .

This leads to

Re

(
ds

dτ

)−1
∣∣∣∣∣

s=iw0

= 4w6
0 − 6a2lw

4
0 + 4(a0l − a1la3l)w2

0 + (a2
1l

− 2a0la2l)

(w4 − a2lw
2 + a0l)2 + (−a3lw

3 + a1lw)2

+ −3b2
3l

w4
0 + 4(b1lb3l − b2

2l
)w2

0 + (b1lb3l + 2b0lb2l)

(b2lw
2 − b0l)2 + (b3lw

3 − b1lw)2
.

Having in view (27), it follows that

Re

(
ds

dτ

)−1
∣∣∣∣∣

s=iw0

=
[
4w6

0 − (6a2l + 3b2
3l)w4

0 + 4(a0l − a1la3l + b1lb3l − b2
2l)w2

0

+(a2
1l − 2a0la2l + b1lb3l + 2b0lb2l)

]
· 1

D
,

with

D = (w4 − a2lw
2 + a0l)

2 + (−a3lw
3 + a1lw)2 = (b2lw

2 − b0l)
2 + (b3lw

3 − b1lw)2.

Let

f (w) = 4w6 − (6a2l + 3b2
3l)w4 + 4(a0l − a1la3l + b1lb3l − b2

2l)w2

+ (a2
1l − 2a0la2l + b1lb3l + 2b0lb2l)

F(v) = 4v3 − (6a2l + 3b2
3l)v

2 + 4(a0l − a1la3l + b1lb3l − b2
2l)v

+ (a2
1l − 2a0la2l + b1lb3l + 2b0lb2l).

Then

F ′(v) = 12v2 − 6(2a2l + b2
3l)v + 4(a0l − a1la3l + b1lb3l − b2

2l).

Assume that

3(2a2l + b2
3l)

2 − 16(a0l − a1la3l + b1lb3l − b2
2l) < 0.

Then the quadratic equation F ′(v) = 0 has no real roots (note that if it has, then at least one of the roots is positive, since their

sum is 1
2 (2a2l + b2

3l
)). It then follows that F is monotonically increasing on R, and consequently f is monotonically increasing on

[0, ∞). Since

f (0) = a2
1l − 2a0la2l + b1lb3l + 2b0lb2l > 0,

it follows that f is strictly positive on [0, ∞) and consequently,

Re

(
ds

dτ

)−1
∣∣∣∣∣

s=iw0

> 0,

that is, the transversality condition holds at s = iw0. �

By combining Lemmas 3.1 and 3.2 and using Hopf’s bifurcation theorem (see Guckenheimer and Holmes [32], Theorem 3.4.2),

one may obtain the following result.

Theorem 3.6. If conditions (25) and (29) hold for an l ∈ {1, 2}, then the system (7)–(11) undergoes a Hopf bifurcation at X∗
l , when

τ = τ 1, n ≥ 0, or τ = τ 2, n ≥ 1.
n n
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Fig. 8. The impact of the lower environmental temperature (16.1759 ◦C) and “mild” control regime (ψ ≡ 30, i ≡ 0.2 and α ≡ 0.2) on the stability of the equilibrium

X∗ = (280.2290, 236.6077, 387.4125, 257.7628). Here, k = f = 0.9, β = 0.2643, κ = 0.6, the other parameters being given in Table 2. Also, h = 1, the solutions

being computed by using the NFSD scheme (30). It is observed that X∗ repels the solution with the initial conditions A(t) = 280, t ∈ [−τ, 0], Y(0) = 236, M(0) =
387 and F(0) = 257. .
4. The nonstandard finite difference (NSFD) scheme for the temporal model

In this section, we construct the discrete version of the model (7)–(11) based on the nonstandard finite difference scheme

devised by Mickens [48], which was further elaborated by Anguelov and Lubuma [3]. This approach is shown to be more ap-

propriate than the classical Euler or Runge–Kutta approximation schemes because, as far as the existence and positivity of the

equilibria are concerned, it is dynamically consistent with the original continuous-time model in (7)–(11), regardless of the step

size taken in the numerical simulations (see for example Figs. 13 and 14), as opposed to other numerical schemes. Most im-

portantly, the dynamical consistency guarantees the positivity of solutions (see again Figs. 8–10), contrary to other numerical

schemes that may produce negative or spurious solutions. This approximation method is called the NSFD scheme, as explained

in [4,26,47], for the following reasons.

• The standard denominator value �t = h of the discrete derivatives is replaced by the more general function φ(h), which

satisfies the requirement φ(h) = h + O(h2).
• Nonlinear as well as linear terms are approximated in a nonlocal way by using more than one mesh point.

Because of these advantages, we shall use the NFSD scheme to devise our optimal control strategies.

4.1. The discretized model

Hence, the discretized version of the model (7)–(11) can be given in the following form

An+1 − An

φ1(h,μA, cM)
= k fϕ

(
1 − An+1

(1 − α
ω )K

)
Fn − (μA + cA)An+1 − ηAÃn

An+1

An
,

Yn+1 − Yn

φ2(h,μY , cM, β)
= γ ηAÃn − βYn+1 − (μY + cM)Yn+1,

Mn+1 − Mn

φ3(h,μM, cM)
= (1 − γ )ηAÃn − (μM + cM)Mn+1,

Fn+1 − Fn

φ4(h,μF , cM)
= βMn+1Yn

Mn+1 + κψ
μS+cM

− (μF + cM)Fn+1,

Un+1 − Un

φ5(h,μU , cM)
=

β κψ
μS+cM

Yn

Mn+1 + κψ
μ +c

− (μU + cM)Un+1.

(30)
S M
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Fig. 9. The impact of the lower environmental temperature (16.5 ◦C) and “mild” control regime (ψ ≡ 30, i ≡ 0.2 and α ≡ 0.2) on the stability of the equilibrium

X∗ = (280.2290, 236.6077, 387.4125, 257.7628). Here, k = f = 0.9, β = 0.2643, κ = 0.6, the other parameters being given in Table 2. Also, h = 2, the solutions

being computed by using the NFSD scheme (30). It is observed that X∗
1 repels the solution with the initial conditions A(t) = 93, t ∈ [−τ, 0], Y(0) = 87, M(0) = 142

and F(0) = 74. .
In the above,

φ1(h,μA, cM) = e(μA+cM)h − 1

(μA + cM)
,

φ2(h,μY , cM, β) = e(μY +cM+β)h − 1

(μY + cM + β)
,

φ3(h,μM, cM) = e(μM+cM)h − 1

(μM + cM)
,

φ4(h,μF , cM) = e(μF +cM)h − 1

(μF + cM)
,

φ5(h,μU , cM) = e(μU +cM)h − 1

(μU + cM)
,

Ãn ≈ A(tn − τ) = (1 − u)An−l−1 + uAn−l .

Here and after, An = A(tn) and Yn = Y(tn), Mn = M(tn), Fn = F(tn), Un = U(tn) are the number of mosquitos in the aquatic

phase and adult stage, respectively, at time tn = n�t as in the continuous model. Using the approach for discretization of delay

term in [25], we approximate the delay term A(tn − τ) by Ãn. For a given step size h and delay τ , we define l = [ τ
h

], the integer

part of τ
h

and u = (l+1)h−τ
h

. All other parameters have the same meaning and values as in Table 2.

4.2. Positivity of solutions

In this section, we show that the NSFD scheme replicates the positivity of solutions, as claimed in Section 2.3. We state the

following result:

Theorem 4.1. Given the positive initial conditions Y0, M0, F0, U0 and A−l−1, A−l , . . . , A0, the solutions An, Yn, Mn, Fn, Un of the

discretized model (30) are positive at all times tn, for n = 1, 2, ....
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Fig. 10. The impact of the lower environmental temperature (16.5 ◦C) and “mild” control regime (ψ ≡ 30, i ≡ 0.2 and α ≡ 0.2) on the stability of the equilibrium

X∗ = (280.2290, 236.6077, 387.4125, 257.7628). Here, k = f = 0.9, β = 0.2643, κ = 0.6, the other parameters being given in Table 2. Also, h = 1, the solutions

being computed by using the NFSD scheme (30). It is observed that X∗
1 repels the solution with the initial conditions A(t) = 791, t ∈ [−τ, 0], Y(0) = 740, M(0) =

1212 and F(0) = 905.

Table 2

State variables and parameters of the model (values of the parameters and initial state variables used in the numerical simulations).

Symbol Quantity Default value Dimensions Sources

A Aquatic phase Variable Aquatic forms

Y Unmating female mosquitoes Variable Females

M Wild male mosquitoes Variable Males

F Mating fertilized female mosquitoes Variable Females

U Mating unfertilized female mosquitoes Variable Females

S Sterile male mosquitoes Variable Males

k Fraction of eggs hatching to larvae (0,1) [65]

f Fraction of female mosquitoes hatched from all eggs (0,1) [65]

ϕ Oviposition rate Fig. 5 Aquatic forms female−1 day−1 [65]

α Proportion of mechanical control (control variable) [0, 1]

K Carrying capacity Fig. 4 Aquatic forms

μA Mortality rate of aquatic forms Fig. 6 day−1 [65]

μY Mortality rate of unmating females Fig. 6 day−1 [65]

β Total mating rate 1
3.33

− μY day−1 [13]

μM Mortality rate of wild males 1
7

day−1 [13]

μF Mortality rate of mating fertilized females 0.1 day−1 [13]

μU Mortality rate of mating unfertilized females – day−1

μS Mortality rate of sterile males 1
7

day−1 [13]

ηA Survival rate from larvae to adult Fig. 2 day−1

1−γ
γ Ratio of male to female mosquitoes 1

τ Mean instar duration Fig. 5 Days [43]

κ Actual effective mating competitiveness of the sterile males (0,1)

ψ(t) Release rate of sterile males (control variable) > 0 Males day−1

cA Larvicide-related death rate (0, 1) Day−1

cM Adulticide-related death rate (0, 1) Day−1

T Ambient temperature [15, 35] ◦C [43]

ω Rescaling constant 2

• “–” represents that, in the following sections, the value of this parameter will not be surveyed in detail;
• cA and cM both depend on the pesticide dosage function i(t), which is a control variable;
• At 10 ◦C and 40 ◦C, all immature mosquitoes would die in the first instar [43].
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Proof. Assuming we have positive initial data for the model (30), by solving the model equations at step n + 1, we obtain that

An+1 = An + (k fϕFn)φ1

1 + (k fϕFn)φ1

(1− α
ω )K

+ (μA + cA)φ1 + φ1ηA((1−u)An−l−1+uAn−l)
An

.= g(An, Fn, An−l−1, An−l),

Yn+1 = Yn + φ2γ ηA((1 − u)An−l−1 + uAn−l)

1 + φ2(β + μY + cM)
.= j(Yn, An−l−1, An−l),

Mn+1 = Mn + φ3(1 − γ )ηA((1 − u)An−l−1 + uAn−l)

1 + φ3(μM + cM)
.= p(Mn, An−l−1, An−l),

Fn+1 =
Fn + φ4βMn+1Yn

Mn+1+ κψ
μS+cM

1 + φ4(μF + cM)
.= q(Fn,Yn, Mn+1)

Un+1 =
Un +

φ5βκψYn
μS+cM

Mn+1+ κψ
μS+cM

1 + φ5(μU + cM)
.= w(Un,Yn, Mn+1).

(31)

The desired positivity property follows now from an easy induction argument. Therefore, the solution of the model (30) is always

positive whenever we start with positive initial data. �

4.3. The fixed points of the NFSD model

The fixed points for the NSFD model (which are the corresponding equilibria of the continuous model) can be obtained by

solving the following system of algebraic equations:

A∗ = g(A∗, F ∗, A∗, A∗)

Y ∗ = j(Y ∗, A∗, A∗)

M∗ = p(M∗, A∗, A∗)

F ∗ = q(F ∗,Y ∗, M∗)

U∗ = w(U∗,Y ∗, M∗).

(32)

It is easy to see that the system (31) has the trivial solution 0 = (0, 0, 0, 0, 0). As for the positive (component-wise) solution, the

values are determined as shown below:

From the third equation in (31), we have

M∗ = (1 − γ )ηAA∗

(μM + cM)
. (33)

Also, solving the second equation in (31) for Y∗, it implies

Y ∗ = γ ηAA∗

(β + μY + cM)
. (34)

And from the fourth equation of (31), we have

F ∗ = βM∗Y ∗

(μF + cM)(M∗ + κψ
μS+cM

)
. (35)

From the last equation of (31), solving for U∗:

U∗ =
βκψ

μS+cM
Y ∗

(μU + cM)(M∗ + κψ
μS+cM

)
. (36)

Now, if we substitute Eqs. (33) and (34) into (35), after simplification, F∗ is given again by

F ∗ = βγ ηAA∗2

(β + μY + cM)[(μF + cM)A∗ + Q]
, (37)

and substituting this value of F∗ in the first equation of (31) and simplifying, it can be seen that A∗ is the positive solution of the

quadratic equation

A∗2R − A∗(R − 1)P + PQ = 0, (38)

where P, Q and R have the same values as in Eqs. (14) and (12) respectively.

Therefore, the corresponding fixed point for the NSFD scheme (31) is given by X∗ = (A∗,Y ∗, M∗, F∗,U∗), where



H. Zhang et al. / Applied Mathematics and Computation 273 (2016) 1059–1089 1079
Y ∗ = γ ηA

β + μY + cM

A∗,

M∗ = (1 − γ )ηA

μM + cM

A∗,

F ∗ = βM∗

(μF + cM)M∗ + κψ
μS+cM

Y ∗, (39)

U∗ =
β κψ

μS+cM

(μU + cM)(M∗ + κψ
μS+cM

)
Y ∗,

with A∗ being a root of (38) whenever R > 1. Hence we claim that the fixed points of NSFD scheme (31) coincide with the

equilibria of (13).

4.4. Transforming the NSFD model into a delay-free model

As pointed out in Dadebo and Luus [16], certain difficulties arise when applying iterative dynamical programming (IDP) to

solve time-delayed optimal control problems. We therefore use the idea proposed by Chen et al. [12], in which a time-delayed

system is transformed into an augmented, delay-free system by using linearly truncated Taylor series expansions. The time-

delayed terms are then replaced by the augmented auxiliary states.

We assume that the time delay τ is divided into L sections and hence L auxiliary states are used to represent the state values

at different intervals as shown below

Al(t) = A

(
t − l

L
τ

)
, l = 0, 1, 2, · · · , L. (40)

For the sake of simplicity, setting L = 2, we have

Am2(t) = A(t − τ),

Am1(t) = A

(
t − τ

2

)
,

Am0(t) = A(t).

(41)

Equivalently,

Am1(t + τ

4
) = A

(
t − τ

4

)
Am2(t + τ

2
) = A

(
t − τ

2

)
Am2(t) = Am1

(
t − τ

2

)
.

(42)

From the above, using first order Taylor expansions, we obtain

Am1(t) + τ

4
Ȧm1(t) = A(t) − τ

4
Ȧ(t),

Am2(t) + τ

4
Ȧm2(t) = Am1(t) − τ

4
Ȧm1(t),

(43)

where Ȧm1, Ȧm2 represent derivatives with respect to time of Am1, Am2 respectively.

Solving for Ȧm1(t) and Ȧm2(t), it is seen that

Ȧm2(t) = 4

τ
[2Am1(t) − Am2(t) − A(t)] + Ȧ(t),

Ȧm1(t) = 4

τ
[A(t) − Am1(t)] − Ȧ(t).

(44)

Using the properties of the auxiliary states given in (44) and (41), we now add the auxiliary states and replace the delay terms in

(30).
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The discretized NSFD version of the delay–free model can then be given in the following form

Am1,n+1 − Am1,n

φ1(h, τ )
= 4

τ
[An − Am1,n+1] −

(
An+1Am1,n+1

Am1,nφ2(h,μA, cA)
− An

φ2(h,μA, cA)

)
,

Am2,n+1 − Am2,n

φ1(h, τ )
= 4

τ

[
2Am1,n − Am2,n − An

Am2,n+1

Am2,n

]
+ An+1 − An

φ2(h,μA, cA)
,

An+1 − An

φ2(h,μA, cA)
= k fϕ

(
1 − An+1

(1 − α
ω )K

)
Fn − (μA + cA)An+1 − ηAAm2,n

An+1

An
,

Yn+1 − Yn

φ3(h,μY , cM, β)
= γ ηAAm2,n − βYn+1 − (μY + cM)Yn+1,

Mn+1 − Mn

φ4(h,μM, cM)
= (1 − γ )ηAAm2,n − (μM + cM)Mn+1,

Fn+1 − Fn

φ5(h,μF , cM)
= βMn+1Yn

Mn+1 + κψ
μS+cM

− (μF + cM)Fn+1,

Un+1 − Un

φ6(h,μU , cM)
=

β κψ
μS+cM

Yn

Mn+1 + κψ
μS+cM

− (μU + cM)Un+1.

(45)

In the above,

φ1(h, τ ) = e
4h
τ − 1

4
τ

,

φ2(h,μA, cM) = e(μA+cM)h − 1

(μA + cM)
,

φ3(h,μY , cM, β) = e(μY +cM+β)h − 1

(μY + cM + β)
,

φ4(h,μM, cM) = e(μM+cM)h − 1

(μM + cM)
,

φ5(h,μF , cM) = e(μF +cM)h − 1

(μF + cM)
,

φ6(h,μU , cM) = e(μU +cM)h − 1

(μU + cM)
.

By solving the equations in the transformed delay-free model (45) for (A, Am1, Am2, Y, M, F, U) at the node n + 1, it can be seen that

the discretizations in (45), preserve the positivity of the solutions, as it happened with the NSFD model (30) and the continuous

model. Similarly, considering the system (45) without the two auxiliary states Am1 and Am2, the discretizations of other variables

are the same as in the NSFD model (30). Therefore, the proposed model (45) again has the same dynamical consistency in terms

of positivity and existence of equilibria as the continuous model system (1)–(6) irrespective of the step size used. These two

assertions are verified numerically in Figs. 8–10 and 13 and 14.

5. Optimal Aedes aegypti mosquito control regime

So far, we have investigated the dynamics of continuous and discrete models of Aedes aegypti mosquito control subject to three

control mechanisms: pesticide release, mechanical control and the sterile insect technique (SIT). The optimal control problem

can be posed as the following question: What is the best combined control regime of pesticide release, mechanical control and

SIT for the discrete model described above so that the population size of the aquatic phase is reduced to the minimal level?

Since it has already been shown in Section 4 that the time-delayed system can be transformed into an augmented, delay-free

discrete system by using a linearly truncated Taylor series expansion, we now focus on the delay-free optimal control problem

with augmented states, which can be solved by means of the discrete minimum principle introduced by Goodwin et al. in [28].

Even though optimal control for systems of difference equations seems to be an adequate tool in the biosciences, there are

relatively few studies in this area. In our case, the control variable α represents the mechanical control and i represents the

pesticide dosage function. Meanwhile, ψ gives information about the human intervention mechanisms, in form of the release

rate of sterile mosquitoes. We wish to minimize the cost of insecticides, of using mechanical controls and of releasing mosquitoes,

as well as the population size of the aquatic phase. To this end, we define

{Xn} .=
{

[X1
n , X2

n , X3
n , X4

n , X5
n , X6

n , X7
n ]T
} .=

{
[Am1,n, Am2,n, An,Yn, Mn, Fn,Un]T

}
, (46)

in which BT denotes the transpose of a matrix B, n = 0, 1, . . . , N, and

{Vn} .=
{

[V 1
n ,V 2

n ,V 3
n ]T
} .=

{
[αn, in,ψn]T

}
, (47)
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in which n = 0, 1, . . . , N − 1. Here, N is the optimization horizon. Our problem may then be stated as

Minimize VN(Xn,Vn) = AN + �N−1
n=0 (An + cαα2

n + cii
2
n + cψψ2

n ) (48)

subject to

X1
n+1 = Am1,n+1 =

Am1,n + [ 4
τ + 1

φ2
]φ1An

(1 + 4φ1

τ + fA(Am2,n,An,Fn,αn,in)φ1

Am1,nφ2
)

.= G1(Xn,Vn),

X2
n+1 = Am2,n+1 =

Am2,n(1 − 4φ1

τ ) + 8φ1Am1,n

τ + ( fA(Am2,n,An,Fn,αn,in)−An)φ1

φn
2

1 + 4
τ

Anφ1

Am2,n

.= G2(Xn,Vn),

X3
n+1 = An+1 = An + (k fϕFn)φn

2

1 + (k fϕFn)φn
2

(1− αn
ω )K

+ (μA + cn
A
)φn

2
+ φn

2
ηAAm2,n

An

.= G3(Xn,Vn),

X4
n+1 = Yn+1 = Yn + φn

3γ ηAAm2,n

1 + φn
3
(β + μY + cn

M
)

.= G4(Xn,Vn),

X5
n+1 = Mn+1 = Mn + φn

4(1 − γ )ηAAm2,n

1 + φn
4
(μM + cn

M
)

.= G5(Xn,Vn),

X6
n+1 = Fn+1 =

Fn + φn
5βG5(Xn,Vn)Yn

G5(Xn,Vn)+ κψn
μS+cn

M

1 + φn
5
(μF + cn

M
)

.= G6(Xn,Vn),

X7
n+1 = Un+1 =

Un +
φn

6
βκψn
μS+cn

M
Yn

G5(Xn,Vn)+ κψn
μS+cn

M

1 + φn
6
(μU + cn

M
)

.= G7(Xn,Vn),

(49)

X0 = X, (49)

in which fA(Am2,n, An, Fn, αn, in) = G3(Xn,Vn), cα , ci and cψ are the costs of using mechanical controls, of spraying insecticides

and of releasing sterile mosquitoes, respectively. Also, X is the initial state and

cn
A = 1 − exp (−γAin + δA),

cn
M = 1 − exp (−γMin + δM),

φn
2 = e(μA+cn

M)h − 1

(μA + cn
M
)

,

φn
3 = e(μY +cn

M+β)h − 1

(μY + cn
M

+ β)
,

φn
4 = e(μM+cn

M)h − 1

(μM + cn
M
)

,

φn
5 = e(μF +cn

M)h − 1

(μF + cn
M
)

,

φn
6 = e(μU +cn

M)h − 1

(μU + cn
M
)

.

In order to apply the Karush–Kuhn–Tucker (KKT) optimality conditions, we need to verify the constraint qualification that the

gradients of the equality constraints be linearly independent when evaluated at the minimizers. Subsequently, we define a new

variable

X
.=
[
XT

0 , XT
1 , . . . , XT

N,V T
0 ,V T

1 , . . . ,V T
N−1

]T ∈ R10N+7, (50)

which comprises all the variables with respect to which the optimization is performed. Now let

G(Xn,Vn) =
[
G1(Xn,Vn),G2(Xn,Vn), . . . ,G7(Xn,Vn)

]T
.

We can then write the state equations (49) as 7(N + 1) equality constraints on X as follows
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h(X) =

⎡⎢⎢⎣
h0

h1

...
hN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
X − X0

G(X0,V0) − X1

...
G(XN−1,VN−1) − XN

⎤⎥⎥⎦ = 0. (51)

Also, we define

∂G
∂Xn

=

⎡⎢⎣
∂G1

∂X1
n

· · · ∂G1

∂X7
n

...
...

...
∂G7

∂X1
n

· · · ∂G7

∂X7
n

⎤⎥⎦ and
∂G
∂Vn

=

⎡⎢⎣
∂G1

∂V 1
n

∂G1

∂V 2
n

∂G1

∂V 3
n

...
...

...
∂G7

∂V 1
n

∂G7

∂V 2
n

∂G7

∂V 3
n

⎤⎥⎦ (52)

for n = 0, 1, . . . , N − 1. We then compute the (7N + 7) × (10N + 7) Jacobian matrix of the vector-valued function h(X) as being

∂h

∂X
=

⎡⎢⎢⎢⎢⎢⎣
−I7 0 0 · · · 0 0 0 0 · · · 0
∂G
∂X0

−I7 0 · · · 0 0 ∂G
∂V0

0 · · · 0

0 ∂G
∂X1

−I7 · · · 0 0 0 ∂G
∂V1

· · · 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · ∂G
∂XN−1

−I7 0 0 · · · ∂G
∂VN−1

⎤⎥⎥⎥⎥⎥⎦, (53)

in which 0 denotes zero matrices of appropriate dimensions, and I7 denotes the 7 × 7 identity matrix. Since the matrix ∂h
∂X

in

(54) has full row rank for all X ∈ R10N+7, the gradients of the equality constraints (52) are linearly independent, which implies

that the constraint qualification required by the KKT optimality conditions of Theorem 2.5.5 in [28] holds for all X ∈ R10N+7.

Next, we introduce the Lagrange multipliers λ−1 ∈ R7 for the initial state equation,

{λn} = {λ0, λ1, . . . , λN−1}, {λn} ∈ RN

(usually referred to as adjoint variables) for the state equations, λ = [λT
−1

, λT
0
, . . . , λT

N−1
]T, and the Hamiltonian H : R7N+7 × R3N ×

R7 → R defined as

H(Xn,Vn, λn) = X3
N + �N−1

n=0

(
X3

n + cα(V 1
n )2 + ci(V

2
n )2 + cψ(V 3

n )2
)

+ λT
−1h0 + �N−1

k=0
λkhk+1. (54)

According to the KKT conditions, we obtain the following necessary condition for the existence of optimal mosquito population

control.

Theorem 5.1. A necessary condition for

X∗ .=
[
(X∗

0 )
T, (X∗

1 )
T, . . . , (X∗

N)T, (V ∗
0 )T, (V ∗

1 )T, . . . , (V ∗
N−1)

T
]T

(55)

to be the minimizing vector corresponding to the state variable sequences {X∗
0 , X∗

1 , . . . , X∗
N} and the control variable sequence

{V ∗
0
,V ∗

1
, . . . ,V ∗

N−1
} that minimize the control problem (48)–(49) is that there exists a sequence of Lagrange multipliers{

λ∗
−1, λ∗

0, · · · , λ∗
N−1

}
such that

(i) X∗ satisfies the state equations (49);

(ii) (λ∗
n−1

)T = ∂H
∂Xn

(X∗, λ∗
n) for n = 0, 1, . . . , N − 1;

(iii) (λ∗
N−1)

T = ∂X3∗
N

∂XN
;

(iv) ∂H
∂Vn

(X∗, λ∗
n) = 0 for n = 0, 1, . . . , N − 1.

6. Numerical simulations

In this section, we study from a numerical viewpoint the stability of the equilibria, as well as the outcome of the optimal

combined controls under different environmental temperatures. It is important to select appropriate parameter values, since

they make a difference in various aspects regarding the dynamics of the delay differential system (the number of fixed points

and stability of each, among other things).

First of all, we wish to study numerically the behavioral patterns that can arise within this model when using a range of

“reasonable” parameter values together with the values given in Table 2. To illustrate the stability of the equilibrium point of the

system (7)–(10), the numerical particulars of different control regimes under different environmental temperatures are given as

follows.

Scheme 1 Considering the “mild” control regime (i = 0.2, α = 0.2 and ψ = 30) under varying temperature (T varies from 15 ◦C

to 35 ◦C, which indicates that the delay τ changes from 39.7121 to 7.1093 as shown in Fig. 5), we obtain that the
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Fig. 11. The impact of the varying environmental temperature and “medium” control regime (ψ ≡ 50, i ≡ 0.6 and α ≡ 0.8) on the stability of the equilibria. Here,

k = f = 0.9, κ = 0.6, the other parameters being given in Table 2. The equilibrium X∗
2 is locally stable, while 0 and X∗

1 are unstable. Here, when T = 32 ◦C and

ηA = 0.7778, μA = 0.0698, cA = 0.3560, τ = 7.5902, τ ∗ = 3.3026, β = 0.2615 one obtains the positive equilibria X∗
1 = (73.1561, 43.7858, 57.7876, 12.3989) and

X∗
2 = (1637.2, 979.8940, 1293.2, 544.4055). It is observed that X∗

2 is locally stable, attracting the solutions with the initial conditions A(t) = 1000, t ∈ [−τ, 0],

Y(0) = 800, M(0) = 1000 and F(0) = 300 (solid curves) and, respectively, the initial conditions A(0) = 90, t ∈ [−τ, 0], Y(0) = 50, M(0) = 100 and F(0) = 16

(dashed curves). When T = 33 ◦C and ηA = 0.7104, μA = 0.0732, cA = 0.3560, τ = 7.2452, τ ∗ = 3.9205, β = 0.2530, one obtains the positive equilibria X∗
1 =

(84.0891, 45.9661, 60.6651, 12.9054) and X∗
2 = (1326.8, 725.2508, 957.1717, 383.7121). It is observed that X∗

2 is locally stable, attracting the solutions with the

initial conditions A(t) = 1000, t ∈ [−τ, 0], Y(0) = 800, M(0) = 1000 and F(0) = 300 (solid curves) and, respectively, the initial conditions A(0) = 90, t ∈ [−τ, 0],

Y(0) = 50, M(0) = 100 and F(0) = 16 (dashed curves). When T = 33 ◦C and ηA = 0.6794, μA = 0.0798, cA = 0.3560, τ = 7.1093, τ ∗ = 4.3503, β = 0.2404, one

obtains the positive equilibria X∗
1 = (95.0257, 49.6748, 65.5598, 13.7669) and X∗

2 = (977.0405, 510.7485, 674.0758, 250.4672). It is observed that X∗
2 is locally

stable, attracting the solutions with the initial conditions A(t) = 1000, t ∈ [−τ, 0], Y(0) = 800, M(0) = 1000 and F(0) = 300 (solid curves) and, respectively, the

initial conditions A(0) = 90, t ∈ [−τ, 0], Y(0) = 50, M(0) = 100 and F(0) = 16 (dashed curves). .
value of R linearly increases from 0.2854 to 3.95 and then decreases up to 3.786. If T = 16.1759 ◦C, such that R =
R∗

2
= 1.3727, ηA = 0.6830 > μA(0.0257) + cA(0.0769) and τ = 29.9901 > τ ∗ = 2.5496, then the equilibria 0 and X∗

are unstable (see Fig. 8). If T = 16.5 ◦C, then τ = 27.7870. Figs. 9 and 10 show that the equilibria X∗
1 and X∗

2 are also

unstable.

Scheme 2 Consider the “medium” control regimes (i = 0.6, α = 0.8 and ψ = 50) under varying temperature. If T = 32 ◦C,

then τ = 7.5902 > τ ∗ = 3.3026, ηA = 0.7778 > μA(0.0698) + cA(0.3560) and R = 2.1015; If T = 33 ◦C, then τ =
7.2452 > τ ∗ = 3.9205, ηA = 0.7104 > μA(0.0732) + cA(0.3560) and R = 2.0681; If T = 34 ◦C, then τ = 7.1093 >

τ ∗ = 4.3503, ηA = 0.6794 > μA(0.0798) + cA(0.3560) and R = 2.0198. Fig. 11 shows that only X∗
2 is locally asymp-

totically stable, while 0 and X∗
1 are unstable.

Since our NSFD discrete model is shown to be dynamically consistent with the continuous delay model as far as the positivity

of solutions, existence and local stability properties of equilibria are concerned, we hereby illustrate the consistency of the dy-

namical behavior under varying environmental temperatures in Fig. 12. Secondly, using combinations of the three controls αn,

in and ψn under different temperatures, we investigate and compare numerical results from simulations with the following two

scenarios.

(a) Considering different environmental temperatures T = 24 ◦C, 28 ◦C and 32 ◦C, respectively, and using the mechanical con-

trol αn, the pesticide control in and the human intervention control mechanisms ψn;

(b) Considering different environmental temperatures T = 24 ◦C, 28 ◦C and 32 ◦C, respectively, and using minimal levels of

combined controls (αn ≡ 0.1, in ≡ 0 and ψn ≡ 10).
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Fig. 12. The dynamical consistency between the delay differential system (solid curves)and the corresponding discrete model (dashed curves) under varying

environmental temperatures (32 ◦C, 33°C and 34 ◦C). Here, k = f = 0.9, κ = 0.6, the other parameters being given in Table 2. When T = 32 ◦C, one finds that

X∗
2 = (1637.2, 979.8940, 1293.2, 544.4055) is locally stable. When T = 33 ◦C, one finds that X∗

2 = (1326.8, 725.2508, 957.1717, 383.7121) is locally stable. When

T = 34 ◦C, one finds that X∗
2 = (977.0405, 510.7485, 674.0758, 250.4672) is locally stable. The initial conditions A(0) = 90, t ∈ [−τ, 0], Y(0) = 50, M(0) = 100

and F(0) = 16.
In addition, for the numerical simulations presented here, to illustrate the effect of the combined strategies on the growth of

mosquito population of the aquatic phase, we shall consider that there exists a non-trivial steady state of the system (7)–(10),

which is locally stable. We shall also use the following values for the variable parameters: T = 24 ◦C, 28 ◦C and 32 ◦C, time step

size=5, cα = 800, ci = 104, cψ = 0.0138, N = 20, α ∈ [0.1, 1], i ∈ [0, 0.5] and ψ ∈ [10, 100], and the following values for the initial

state variables: A(t) = 2000, t ∈ [−τ(T), 0], Y(0) = 800, M(0) = 1000 and F(0) = 300.

6.1. Environmental temperature maximizing the capacity of breeding sites

Here, we first consider that the environmental temperature is 24 ◦C, at which the breeding sites are close to their maximal

capacity, as indicated in Fig. 4. As shown in Figs. 2 and 5, the mean instar duration is short and the oviposition rate of immature
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a b

Fig. 13. The dynamical consistency between the transformed NSFD delay-free scheme (45) (dashed lines) and the continuous delay model (1)–(6) (solid lines).

The initial conditions are A(t) = 1000, Am1(t) = 440,Am2(t) = 5400,t ∈ [−τ, 0], Y(0) = 180, M(0) = 230, F(0) = 800, k = f = 0.9, β = 0.2643 and κ = 0.6, the

other parameters being as given in Table 2. Also, h = 5 and T = 34 ◦C for (a), while h = 3 and T = 32 ◦C for (b). It is observed that the solutions converge to their

respective equilibrium values in each case.

a b

Fig. 14. The dynamical consistency between the transformed NSFD delay-free scheme (45) (dashed lines) and the continuous delay model (1)–(6) (solid lines).

The initial conditions are A(t) = 1000, Am1(t) = 440,Am2(t) = 5400,t ∈ [−τ, 0], Y(0) = 180, M(0) = 230, F(0) = 800, k = f = 0.9, β = 0.2643 and κ = 0.6, the

other parameters being as given in Table 2. Also, h = 4 for (a) and h = 10 for (b). It is observed that the equilibrium X∗
2 converge to their respective equilibrium

values in each case.
stages of Aedes aegypti is low as well. We also observe that the survival rate of the immature stages is high for this environmental

temperature. Second, when considering T = 28 ◦C, the breeding sites are also close to their maximal capacity, as shown in Fig. 4.

A comparison with the corresponding parameters obtained for T = 24 ◦C reveals that the survival rate of the immature stages

increases slightly and the mean instar duration decreases slightly, but the oviposition rate increases 1.5 times. Initially, at the

lower temperature T = 24 ◦C, all three controls are employed to optimize the objective function VN, as shown in Fig. 15. The

optimal population size of the aquatic stage always oscillates since all controls are triggered to minimize VN . At the intermediate

temperature T = 28 ◦C, initially, all three controls are employed to optimize the objective function VN . After an increase in the

size of the aquatic population, overall pesticide use on the aquatic and adult stages has an oscillation of small amplitude and the

amount of sterile mosquitoes released decreases and then keeps a lower level. Finally, the population size of the aquatic stage

reaches a certain level with higher α, low i and lower ψ .

6.2. Higher environmental temperature

Considering the higher environmental temperature of 32 ◦C here, as shown in Figs. 4 and 5, we observe the smaller capacity

of breeding sites, the shorter instar duration as well as the much higher oviposition rate of immature stages. Initially, all three

controls are triggered to minimize VN . Finally, once the population size of the aquatic stage reaches a certain level, only two

control variables (higher α and lower i) are used to minimize the objective function shown in Fig. 15. In addition, the numerical

result shown in Fig. 16 shows that the oviposition rate of immature stages mainly determines the outcomes of mosquito control.
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Fig. 15. Simulation showing the impact of varying the environmental temperature (T = 24 ◦C, 28 ◦C and 32 ◦C) upon the optimal control regimes. Here, N = 20,

k = f = 0.9, κ = 0.6, the other parameters being given in Table 2. The initial conditions are A(t) = 2000, t ∈ [−τ, 0], Y(0) = 800, M(0) = 1000 and F(0) = 300.
7. Concluding remarks

The present paper attempts to formulate and study a delayed model for the dynamics of a mosquito population which is

subject to three control mechanisms, namely to the release of pesticides, to the use of mechanical controls and, most importantly,

to the sterile insect technique (SIT). The latter technique consists in the release of sterile male individuals with the purpose of

interfering with the reproductive processes of the wild mosquitoes.

The existence of the positive equilibria is completely characterized in terms of two threshold parameters, being observed

that the “richer” equilibrium (with more mosquitoes in the aquatic phase) has more chances to be stable, while a longer delay
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Fig. 16. Simulation showing the impact of varying the environmental temperature (T = 24 ◦C, 28 ◦C and 32 ◦C) and the population size of the aquatic phase upon

the optimal combined control regime. Here, N = 20, k = f = 0.9, κ = 0.6, the other parameters being given in Table 2, and the initial conditions are A(t) = 2000,

t ∈ [−τ, 0], Y(0) = 800, M(0) = 1000 and F(0) = 300.
(longer duration of the aquatic phase) has the potential to destabilize both positive equilibria, which become unstable for delays

larger than certain values, after a finite number of stability switches. The stability of the trivial equilibrium appears to be more

influenced by the value of the maturation rate from the aquatic phase to the adult phase, being observed that a small maturation

rate attracts the stability of the trivial equilibrium. Also, if the maturation rate surpasses a certain threshold value, then the trivial

equilibrium is stable if the delay is smaller than a certain value and unstable if the opposite inequality holds.

To preserve the positivity of the approximating solutions and to keep consistency with the continuous model, a nonstandard

finite difference scheme is devised, the resulting discrete model being then transformed into a delay-free model by using the

method of augmented states. The existence of optimal controls is investigated, a necessary condition in this sense being then

determined.

Since the oviposition rate and the carrying capacity of the aquatic stage, as well as the mean instar duration, heavily depends

on the environmental temperature, the particulars of different control regimes under varying environmental temperature are

investigated by means of numerical simulations. It is observed that a combination of all three controls has the highest impact

upon the size of the aquatic population, while at higher environmental temperatures the oviposition rate has the most prominent

influence upon the outcome of the control measures.
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