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Abstract. Given a semilinear problem of the form

(SP) u′(t) = (A + B)u(t), t > 0; u(0) = x ∈ D ⊂ X,

where X is a real Banach space and B is its nonlinear perturbation,
whose continuity is localized using a lower semicontinuous functional
ϕ, a sequence of approximating semilinear problems is formulated and
the convergence of the associated approximating nonlinear semigroups
is treated under appropriate consistency and stability conditions. Un-
der these assumptions, it is shown that the convergence is achieved
if and only if the family of approximating semigroups satisfies a cer-
tain equicontinuity property. A feature of our argument is that no
convexity properties are assumed on the set D or on the functional ϕ.

1 Introduction and main result

Let X be a real Banach space with norm |·|. We define the semi-inner
products [·, ·]− and [·, ·]+ on X by [x, y]− = limh↑0 (|x + hy| − |x|) /h, respec-
tively by [x, y]+ = limh↓0 (|x + hy| − |x|) /h. Let D be a subset of X and let
ϕ : D(ϕ) ⊂ X → [0,∞) be a lower semicontinuous functional on X such that
D ⊂ D(ϕ) = {x ∈ X; ϕ(x) < ∞}. We denote by Dα = {x ∈ D; ϕ(x) ≤ α} a
generic level set of D with respect to ϕ.
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A one-parameter family S = {S(t); t ≥ 0} of (possibly nonlinear) opera-
tors from D into itself is called a (nonlinear) semigroup on D if it satisfies
the following conditions.

(S1) S(t)S(s)x = S(t + s)x, S(0)x = x for all t, s ≥ 0 and x ∈ D.

(S2) S(·)x ∈ C ([0,∞); X) for all x ∈ D.

If, in addition to (S1) and (S2), the semigroup S satisfies the following
hypothesis

(S3) For all α ≥ 0 and τ > 0 there is ω = ω(α, τ) ∈ R such that

|S(t)x− S(t)y| ≤ eωt|x− y|

for t ∈ [0, τ ] and x, y ∈ Dα,

then S is said to be locally Lipschitzian on D.
We consider the semilinear problem

(SP) u′(t) = (A + B)u(t), t > 0; u(0) = x ∈ D ⊂ X.

It is assumed that the operators A and B satisfy the following hypotheses.

(A) A : D(A) ⊂ X → X is linear, closed and its resolvent (I − λA)−1

exists for all λ ≥ 0, satisfying ‖(I − λA)−1‖ ≤ 1.

(B) D ⊂ D(A), Dα is closed in X, B : D → X is nonlinear and continuous
from Dα into X for all α ≥ 0.

Let us denote Y = D(A). Condition (A) implies that the part AY of A in
Y generates a contraction semigroup TY = {TY (t); t ≥ 0} on Y . Condition
(B) requires the closedness of the level sets of D rather than the closedness
of D and also localizes the continuity of the operator B. Note also that we
do not impose any convexity assumptions on the set D or on the functional
ϕ.

Since the semilinear problem (SP) may not necessarily admit strong so-
lutions, we need to define a generalized notion of solution.

A continuous function u : [0,∞) → D is then said to be a mild solution
to (SP) if Bu(·) ∈ C([0,∞); X) and u(·) satisfies the equation

u(t) = TY (t)x + lim
λ↓0

∫ t

0

TY (t− s)(I − λA)−1Bu(s)ds

for all t ≥ 0 and x ∈ D.
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It is then assumed that the semilinear problem (SP) is well-posed in
the sense of semigroups, that is, there exists a nonlinear semigroup S =
{S(t); t ≥ 0} on D satisfying

S(t)x = TY (t)x + lim
λ↓0

∫ t

0

TY (t− s)(I − λA)−1BS(s)xds(MS)

and

ϕ(S(t)x) ≤ eat(ϕ(x) + bt)(GC)

for all t ≥ 0 and x ∈ D, where a, b ≥ 0. In other words, the nonlinear
semigroup S provides mild solutions to (SP) in the sense mentioned above
and satisfies an exponential growth condition.

Regarding the existence of the semigroup S which satisfies conditions
(MS) and (GC), the following result has been established by Matsumoto and
Shitaoka ([5, Theorem 3.1]) as an extension of a previous result obtained by
Georgescu and Oharu ([2, Theorem 1]) to the case in which the linear and
closed operator A is not necessarily densely defined.

Theorem 1.1. Let a, b ≥ 0. Assume that A and B satisfy hypotheses (A)
and (B). Then the following statements are equivalent.

(I) There exists a nonlinear semigroup S = {S(t); t ≥ 0} on D satisfying

(I.a) For t ≥ 0 and x ∈ D,

S(t)x = TY (t)x + lim
λ↓0

∫ t

0

TY (t− s)(I − λA)−1BS(s)xds.

(I.b) For t ≥ 0 and x ∈ D,

ϕ(S(t)x) ≤ eat(ϕ(x) + bt).

(I.c) For each α ≥ 0 and τ > 0 there exists w = w(α, τ) ∈ R such that

|S(t)x− S(t)y| ≤ ewt |x− y|

for all x, y ∈ Dα and t ∈ [0, τ ].

(II) For all x ∈ D there are a null sequence of positive numbers {hn}n≥1 and
a sequence {xn}n≥1 in D such that

(II.a) lim
n→∞

[(1/hn) |TY (hn)x + W (hn)Bx− xn|] = 0.
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(II.b) lim
n→∞

[(1/hn) |ϕ(xn)− ϕ(x)|] ≤ aϕ(x) + b.

(II.c) For all α ≥ 0 there is wα ∈ R such that

lim
h↓0

[(1/h) (|TY (h)(x− y) + W (h)(Bx−By)| − |x− y|)] ≤ wα |x− y|

for all x, y ∈ Dα.

Hence there is a locally Lipschitzian semigroup S providing mild solutions
to (SP) and satisfying an exponential growth condition if and only if a se-
quential version of Pavel’s subtangential condition is satisfied, together with
a semilinear stability condition of the type introduced by Iwamiya, Oharu
and Takahashi in [6], but localized with respect to the lower semicontinuous
functional ϕ. Here W = {W (t); t ≥ 0} is the integrated semigroup generated
by A on X; see the next section for details.

We now consider a sequence of approximate problems (SP;n) defined by

(SP;n) u′n(t) = (An + Bn)un(t), t > 0; un(0) = x ∈ Dn ⊂ X,

where ϕn : D(ϕn) ⊂ X → [0,∞) are proper lower semicontinuous functionals
such that Dn ⊂ D(ϕn). We also assume that the operators An and Bn, n ≥ 1,
satisfy the following conditions.

(A;n) An : D(An) ⊂ X → X is linear, closed and its resolvent (I−λAn)−1

exists for all λ ≥ 0, satisfying ‖(I − λAn)−1‖ ≤ 1.

(B;n) D(An) = Y , Dn ⊂ Y , Dn,α is closed in X and Bn : Dn → X is
nonlinear and continuous from Dn,α into X for all α ≥ 0.

Conditions (A;n) imply that the parts An,Y of An in Y generate C0-
semigroups on Y , denoted by Tn,Y . We also assume that the semilinear
problems (SP;n) are well-posed in the sense of semigroups, that is, for all n ≥
1 there exists a nonlinear semigroup Sn = {Sn(t); n ≥ 1} on Dn satisfying

Sn(t)x = Tn,Y (t)x + lim
λ↓0

∫ t

0

Tn,Y (t− s)(I − λAn)−1BnSn(s)xds(MS;n)

and

ϕn(Sn(t)x) ≤ eat(ϕn(x) + bt),(GC;n)

for all t ≥ 0 and x ∈ Dn.
In what follows, given a sequence {xn}n≥1 such that xn ∈ Dn for all n ≥ 1,

we say that {xn}n≥1 is {ϕn}-bounded if supn≥1 ϕn(xn) < ∞. We also assume
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the following consistency conditions on the operators An, Bn and on the sets
Dn, n ≥ 1.

(C1) (I − λAn,Y )−1y → (I − λAY )−1y as n →∞ for y ∈ Y .

(C2) For all α ≥ 0 there is β = β(α) ≥ 0 such that for each x ∈ Dα there
is {xn}n≥1 with xn ∈ Dn,β for all n ≥ 1 and xn → x as n →∞.

(C3) If x ∈ D, xn ∈ Dn, limn→∞ϕn (xn) < ∞, and xn → x as n → ∞,
then Bnxn → Bx in X as n →∞.

In the following we shall sometimes associate the subscript 0 to the semi-
linear problem (SP) and to the corresponding operators, functionals and sets,
for the sake of clarity in the formulation of hypotheses. We introduce the
following equicontinuity and stability conditions.

(EC) If x ∈ D and {xn}n≥1 is a {ϕn}-bounded sequence such that xn ∈ Dn

for n ≥ 1 and xn → x as n →∞, then

sup
n≥1

|Sn(t)xn − xn| → 0 as t ↓ 0.

(S) There is a separately nondecreasing function ω : [0,∞) × [0,∞) →
[0,∞) such that

|Sn (t) xn − Sn (t) yn| ≤ eω(α,t)t |xn − yn|

for t ≥ 0, α ≥ 0, xn, yn ∈ Dα and n ≥ 0.

Under these conditions it is seen that the following result, which is our
main theorem, holds.

Theorem 1.2. Let {Sn}n≥1 be a sequence of nonlinear semigroups satisfying
(MS;n) and (GC;n) for n ≥ 1. Suppose that the consistency conditions (C1),
(C2), (C3) and the stability condition (S) are satisfied. Then the following
statements are equivalent.

(I) Condition (EC) holds.

(II) If x ∈ D and {xn}n≥1 is a {ϕn}-bounded sequence such that xn ∈ Dn

for n ≥ 1 and xn → x as n → ∞, then Sn(t)xn → S(t)x as n → ∞,
uniformly on bounded subintervals of [0,∞).

If A is densely defined, then Y = X and we obtain [3, Theorem 1]. In this
sense, our main theorem may be regarded as a generalization of that result.
The argument employed for the proof of the main theorem is based on the
approach devised in [3], to which this paper is related.

We now indicate a condition which insures that (EC) is satisfied.
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Lemma 1.1. Suppose that for every β > 0 there are δ, λ0, C1,β and C2,β > 0
such that

(1.1)
[
x− y, Tn,Y (s)(I − λA)−1(Bnz −Bny)

]
− ≤ C1,β|z − y|+ C2,β|x− y|

for all x, y, z ∈ Dβ, s ∈ [0, δ], λ ∈ [0, λ0] and n ≥ 1. Then (EC) is satisfied.

Proof. Let α > 0, x ∈ D and let {xn}n≥1 be a {ϕn}-bounded sequence such
that xn ∈ Dn,α for n ≥ 1 and xn → x as n →∞. Let β > α. Then there are
δ, λ0, C1,β and C2,β > 0 such that (1.1) holds, and we may suppose that δ
is small enough, so that eaδ(α + bδ) ≤ β. By (GC;n), Sn(s)xn ∈ Dn,β for all
s ∈ [0, δ] and n ≥ 1, which implies that[

Sn(h)xn − xn, Tn,Y (h− s)(I − λA)−1(BnSn(s)xn −Bnxn)
]
−

≤ C1,β |Sn(s)xn − xn|+ C2,β |Sn(h)xn − xn|

for 0 ≤ s ≤ h ≤ δ, λ ∈ [0, λ0] and n ≥ 1. One then sees that

|Sn(h)xn − xn|
≤ [Sn(h)xn − xn, Tn,Y (h)xn − xn]+

+

[
Sn(h)xn − xn, lim

λ↓0

∫ h

0

Tn,Y (h− s)(I − λA)−1(BnSn(s)xn −Bnxn)ds

]
−

+

[
Sn(h)xn − xn, lim

λ↓0

∫ h

0

Tn,Y (h− s)(I − λA)−1Bnxnds

]
+

,

from which we deduce that

|Sn(h)xn − xn| ≤ |Tn,Y (h)xn − xn|+ C1,β

∫ h

0

|Sn(s)xn − xn| ds

+ hC2,β |Sn(h)xn − xn|+ h sup
n≥1

|Bnxn| .

By Gronwall’s lemma, it is seen that

|Sn(h)xn − xn| ≤
[

sup
h∈[0,h0]

(
sup
n≥1

|Tn,Y (h)xn − xn|
)

+ h0sup
n≥1

|Bnxn|
]
e2C1,βh,

for 0 < h ≤ h0 < 1/2C2,β.

Since sup
h∈[0,h0]

[(
sup
n≥1

|Tn,Y (h)xn − xn|
)]

→ 0 as h0 ↓ 0 by Trotter-Kato

theorem and supn≥1 |Bnxn| < ∞ by (C3), this implies the required conclu-
sion.
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Remark 1.1. If the family of nonlinear operators {Bn}n≥1 is uniformly Lip-
schitz on level sets, in the sense that for all α > 0 there is γα ∈ R+ such
that

|Bnxn −Bnyn| ≤ γα |xn − yn|
for all xn, yn ∈ Dn,α and n ≥ 1, then (1.1) holds, since∣∣∣[x− y, Tn,Y (s)(I − λA)−1(Bnz −Bny)

]
−

∣∣∣ ≤ |Bnz −Bny| ≤ γα |z − y|

for all x, y ∈ Dα, s ≥ 0, λ ≥ 0 and n ≥ 1.
We also note that if (1.1) is satisfied, then {Bn}n≥1 is uniformly qua-

sidissipative on level sets, in the sense that for all β ≥ 0 one has

[xn − yn, Bnxn −Bnyn]− ≤ (C1,β + C2,β) |xn − yn|

for all xn, yn ∈ Dn,β and n ≥ 1. Then there is no need to assume (S) a
priori, since (1.1) implies

|Sn(t)xn − Sn(t)yn| ≤ e(C1,γ+C2,γ)t |xn − yn|

for all τ > 0, β ≥ 0, xn, yn ∈ Dn,β, t ∈ [0, τ ], γ ≥ eaτ (β + bτ) and n ≥ 1,
and hence (S) is satisfied. Also, if suitable subtangential condtions of type
(II.a) and (II.b) are assumed, then there is no need to assume the existence
of {Sn}n≥1 a priori; see Theorem 1.1.

2 Integrated semigroups

In this section we state some basic facts about integrated semigroups and
their generators.

A one-parameter family of bounded linear operators on X is said to be
a once integrated semigroup on X, or, in short, an integrated semigroup on
X, if it satisfies the following two properties.

(I1) W (0) = OX and W (·)x ∈ C([0,∞); X) for x ∈ X.

(I2) W (s)W (t)x =

∫ s

0

[W (r + t)x−W (r)x] dr for s, t ≥ 0 and x ∈ X.

By similarity with the classical theory of C0-semigroups, it can be shown
that, given a once integrated semigroup W = {W (t); t ≥ 0}, there exists a
closed linear operator A such that for each x ∈ D(A) the function t → W (t)x
is continuously differentiable and

d

dt
W (t)x = x + W (t)Ax for t > 0.
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The above-defined operator A is called the generator of W and it can
be shown that an integrated semigroup W is uniquely determined by its
generator.

If W is an integrated semigroup and A is its generator, the following
properties are satisfied.

(a) W (t)x ∈ D(A) and AW (t)x = W (t)Ax for x ∈ D(A) and t ≥ 0.

(b)

∫ t

0

W (t)xdt ∈ D(A) and W (t)x = A

∫ t

0

W (s)xds + tx, for x ∈ X and

t ≥ 0.

In the following we shall mainly be concerned with the particular class of
semigroups W whose generators A are Hille-Yosida operators, that is, satisfy
condition (A). With regard to this assumption, it is seen that the following
characterization theorem, which emphasizes the importance of this particular
class of integrated semigroups, holds.

Theorem 2.1. A closed linear operator A in X is the generator of a once
integrated semigroup W on X such that

‖W (t + h)−W (t)‖ ≤ h for all t, h ≥ 0

if and only if satisfies (A).

It has already been seen that the part AY of A in the Banach space
Y = D(A) generates a C0-semigroup TY = {TY (t); t ≥ 0} on Y . With this
notation, one may obtain the following structure theorem.

Theorem 2.2. Let A be a closed linear operator in X satisfying (A) and let
TY = {TY (t); t ≥ 0} be the C0-semigroup on Y generated by the part AY of A
in Y . Then the integrated semigroup generated by A on X can be represented
by

W (t)x = lim
λ↓0

∫ t

0

TY (s)(I − λA)−1xds for t ≥ 0 and x, y ∈ X.

Using the above theorem, it may be proved that

(2.1) |W (t)x−W (t)y| ≤ t |x− y| for t ≥ 0 and x ∈ D.

For other results regarding integrated semigroups, see [1], [4] or [7].
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3 The local uniformity of the subtangential

condition

This section is devoted to establishing that a version of Pavel’s subtangential
condition holds uniformly in a certain sense.

First, let us denote by Wn the integrated semigroups generated by An

on X, n ≥ 1. By an elementary argument, one may establish the following
result ([3, Lemma 4.2]), which yields that the family of nonlinear operators
{Bn}n≥1 is equicontinuous in a local sense.

Lemma 3.1. Suppose that conditions (C3) and (B;n), n ≥ 1, are satisfied.
Let ε > 0, α > 0, x ∈ D and let {xn}n≥1 ⊂ Dn,α be such that xn → x in X
as n →∞. Then there is a number r = r(ε, α, {xn}n≥1 , x) > 0 such that

(3.1) sup
n≥1

|Bnxn −Bnyn| ≤ ε

for any {ϕn}-bounded sequence {yn}n≥1 such that yn ∈ Dn,α for n ≥ 1 and
supn≥1 |yn − xn| ≤ r.

Using this result, one may establish the follwing theorem, which yields
that a version of Pavel’s subtangential condition holds uniformly with respect
to n ≥ 1.

Theorem 3.1. Let {Sn}n≥1 be a sequence of locally Lipschitzian semigroups
satisfying (MS;n) and (EC;n) for n ≥ 1. Suppose that conditions (C1), (C3),
(EC) and (A;n), (B;n), n ≥ 1 are satisfied. Let x ∈ D and let {xn}n≥1 be a
{ϕn}-bounded sequence such that xn ∈ Dn for n ≥ 1 and xn → x as n →∞.
Then

lim
h↓0

[
sup
n≥1

[(1/h) |Sn(h)xn − Tn,Y (h)xn −Wn(h)Bnxn|]
]

= 0.

Proof. Let ε > 0, δ0 > 0 and β > eaδ0
(
supn≥1 ϕn(xn) + bδ0

)
. Then

ϕn(Sn(t)xn) ≤ eat(ϕn(x) + bt) < β for t ∈ [0, δ0].

Using Lemma 3.1, one may find r = r(ε, β, {xn}n≥1 , x) > 0 such that
supn≥1 |Bnyn −Bnxn| < ε for all {yn}n≥1 such that yn ∈ Dn,β for n ≥ 1 and
supn≥1 |yn − xn| ≤ r. Choose h0 ∈ (0, δ0) such that supn≥1 |Sn(t)xn − xn| < r
for t ∈ [0, h0] (this is possible since (EC) is satisfied). By Theorem 2.2, one
has

(1/h) |Sn(h)xn − Tn,Y (h)xn −Wn(h)Bnxn|

= (1/h)lim
λ↓0

∣∣∣∣∫ h

0

Tn,Y (h− s)(I − λA)−1(BnSn(s)xn −Bnxn)ds

∣∣∣∣
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and so

lim
h↓0

[
sup
n≥1

[(1/h) |Sn(h)xn − Tn,Y (h)xn −Wn(h)Bnxn|]
]

≤ lim
h↓0

[
(1/h)

∫ h

0

|BnSn(s)xn −Bnxn| ds

]
≤ ε.

Since ε is arbitrary, one then obtains the required conclusion.

Remark 3.1. Under the above assumptions, the following conditions are
equivalent to (EC).

(LU) If x ∈ D and if {xn}n≥1 is a {ϕn}-bounded sequence such that
xn ∈ Dn for n ≥ 1 and xn → x as n →∞, then

lim
h↓0

[
sup
n≥1

[(1/h) |Sn(h)xn − Tn,Y (h)xn −Wn(h)Bnxn|]
]

= 0.

(LUB) If x ∈ D and if {xn}n≥1 is a {ϕn}-bounded sequence such that
xn ∈ Dn for n ≥ 1 and xn → x as n →∞, then there are δ > 0 and Mδ > 0
such that

sup
n≥1

[(1/h) |Sn(h)xn − Tn,Y (h)xn −Wn(h)Bnxn|] ≤ Mδ for h ∈ [0, δ].

Proof. The implication from (EC) to (LU) has already been proved. It is
obvious that (LU) implies (LUB). For the implication from (LUB) to (EC),
let x ∈ D and let {xn}n≥1 be a {ϕn}-bounded sequence such that xn ∈ Dn

for n ≥ 1 and xn → x as n →∞. Then

|Sn(h)xn − xn| ≤ |Tn,Y (h)xn − xn|+ hMδ + |Wn(h)Bnxn|

and the conclusion follows from Trotter-Kato theorem and Theorem 2.2.

4 The convergence argument

We devote this section to the proof of our main theorem.
(I)→(II) Assume that condition (EC) holds. Let x ∈ D and let xn ∈ Dn

be a {ϕn}-bounded sequence such that xn ∈ Dn for n ≥ 1 and xn → x as
n →∞. Let ε > 0, τ > 0 and α > eaτ (ϕ(x)+bτ). Since the growth condition
(GC) is satisfied, one sees that S(t)x ∈ Dα for t ∈ [0, τ ].

Let β = β(α) a number given by (C2). We may suppose that β >
eaτ (supn≥1 ϕn(xn) + bτ), so that Sn(t)xn ∈ Dn,β for n ≥ 1 and t ∈ [0, τ ].
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We aim to establish our convergence result using discrete schemes. To this
purpose, we construct a time-discretizing sequence {tk}N

k=0 and an associate

sequence of approximating sequences
{{

y
(k)
n

}
n≥1

}N

k=0
satisfying

(1) t0 = 0, y
(0)
n = xn for n ≥ 1 and tN = τ ;

(2) 0 < tk+1 − tk < ε for 0 ≤ k ≤ N − 1;

(3) y
(k)
n ∈ Dn,β for n ≥ 1 and y

(k)
n → S(tk)x as n →∞;

(4) lim
n→∞

∣∣∣Tn,Y (tk+1 − tk)y
(k)
n + Wn(tk+1 − tk)Bny

(k)
n − Sn(tk+1 − tk)y

(k)
n

∣∣∣
≤ (tk+1 − tk)ε

and
|TY (tk+1 − tk)S(tk)x + W (tk+1 − tk)BS(tk)x− S(tk+1)x|

≤ (tk+1 − tk)ε for 0 ≤ k ≤ N − 1.

To initialize the discrete scheme, we first set t0 = 0 and
{
y

(0)
n

}
n≥1

=

{xn}n≥1. Let us now suppose that {tj}k
j=0 and

{{
y

(j)
n

}
n≥1

}k

j=0
have been

constructed in such a way that (2), (3), (4) and the first half of (1) are
satisfied for 0 ≤ j ≤ k − 1.

If tk < τ , we define

(4.1) ĥk = sup {h ∈ (0, ε] ∩ (0, τ − tk]; (4.2), (4.3) hold} ,

where

(4.2) lim
n→∞

∣∣Tn,Y (h) y(k)
n + Wn(h)Bny

(k)
n − Sn (h) y(k)

n

∣∣ ≤ hε

and

(4.3) |TY (h) S (tk) x + W (h)BS (tk) x− S (tk + h) x| ≤ hε.

As noticed in Theorem 3.1, one has

lim
h↓0

[
sup
n≥1

[
(1/h)

∣∣Sn(h)y(k)
n − Tn,Y (h)y(k)

n −Wn(h)Bny
(k)
n

∣∣]] = 0,

since
{
y

(k)
n

}
n≥1

is {ϕn}-bounded and y
(k)
n → S(tk)x as n →∞. Also,

lim
h↓0

|TY (h)S(tk)x + W (h)BS(tk)x− S(h + tk)x| = 0

and hence ĥk > 0. We then choose hk ∈ (ĥk/2, ĥk), put tk+1 = tk + hk and

apply (C2) to find
{
y

(k+1)
n

}
n≥1

such that
{
y

(k+1)
n

}
n≥1

→ S(tk+1)x as n →∞.

11



It is easily seen that (2), (3) and (4) are satisfied for this choice of hk.
We now need to show that the time-discretizing sequence {tk}k≥1 reaches τ
in a finite number of steps.

We shall argue by contradiction. Suppose that tk < τ for all 1 ≤ k < ∞.
Then there is s ≤ τ such that tk → s as k →∞. By (C2), there is a sequence
{zn}n≥1 such that zn → S(s)x as n →∞.

Using Theorem 3.1, one may deduce that there is h ∈ (0, ε] such that

(4.4) sup
n≥1

[(1/h) |Tn,Y (h) zn + Wn(h)Bnzn − Sn (h) zn|] < ε/3

and

(4.5) (1/h) |S (h + s) x−W (h)BS (s) x− TY (h) S (s) x| < ε/3.

Since
∑∞

k=0 hk = s, there is N ≥ 1 such that ĥk < h for k ≥ N . From the

definition of ĥk, it is seen that either

lim
n→∞

∣∣Tn,Y (h) y(k)
n + Wn(h)Bny

(k)
n − Sn (h) y(k)

n

∣∣ > hε

for infinitely many k ≥ N , or

|TY (h) S (tk) x + W (h)BS (tk) x− S (tk + h) x| > hε

for infinitely many k ≥ N .
In the first case, there is a subsequence kl →∞ such that

lim
n→∞

∣∣Tn,Y (h) y(kl)
n + Wn(h)Bny

(kl)
n − Sn (h) y(kl)

n

∣∣ > hε.

Consequently, there is a sequence nl →∞ such that

(4.6)
∣∣Tnl,Y (h) y(kl)

nl
+ Wnl

(h)Bnl
y(kl)

nl
− Snl

(h) y(kl)
nl

∣∣ > hε/2

and

(4.7)
∣∣y(kl)

nl
− S (tkl

) x
∣∣ ≤ 1/kl for l ≥ 1.

Then y
(kl)
nl → S(s)x as l →∞ and hence

∣∣∣y(kl)
nl − znl

∣∣∣ → 0 as l →∞.

One sees that

|Tnl,Y (h)znl
+ Wnl

(h)Bnl
znl

− Snl
(h)znl

|
≥ hε/2−

∣∣Wnl
(h)(Bnl

y(kl)
nl

−Bnl
znl

)
∣∣− ∣∣Tnl,Y (h)y(kl)

nl
− Tnl,Y (h)znl

∣∣
−

∣∣Snl
(h)y(kl)

nl
− Snl

(h)znl

∣∣ .
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Moreover, ∣∣Tnl,Y (h)y(kl)
nl

− Tnl,Y (h)znl

∣∣ ≤ ∣∣y(kl)
nl

− znl

∣∣
since all the semigroups Tn,Y , n ≥ 1, are contraction semigroups on Y . Also,
from the stability condition (S),∣∣Snl

(h)y(kl)
nl

− Snl
(h)znl

∣∣ ≤ ew(β,h)h
∣∣y(kl)

nl
− znl

∣∣ .

Using Theorem 2.2, one may obtain∣∣Wnl
(h)(Bnl

y(kl)
nl

−Bnl
znl

)
∣∣ ≤ h

∣∣Bnl
y(kl)

nl
−Bnl

znl

∣∣
and it is seen using (C3) that

∣∣∣Bnl
y

(kl)
nl −Bnl

znl

∣∣∣ → 0 as l → ∞, since both

y
(kl)
nl and znl

tend to S(s)x as l →∞. Hence, for l large enough, one has

(1/h) |Tnl,Y (h) znl
+ Wnl

(h)Bnl
znl

− Snl
(h) znl

| ≥ ε/3,

which contradicts (4.4).
In the second case, passing to limit as l →∞ in (4.6) one sees that

(1/h) |S (h + s) x−W (h)BS (s) x− T (h) S (s) x| ≤ ε,

which contradicts (4.5). In conclusion, τ can be reached in a finite number of
steps and the time-discretizing sequence {tk}N

k=0, respectively the associate

sequence of approximating sequences
{{

y
(k)
n

}
n≥1

}N

k=0
, having properties (1)

through (4) can be constructed as requested.
We now estimate |Sn(t)xn − S(t)x| for arbitrary t ∈ (0, τ ]. Let 0 ≤ k ≤

N −1 such that t ∈ (tk, tk+1]. Using the stability condition (S), one sees that

|Sn(t)xn − S(t)x|(4.8)

≤ ew(β,τ)(tk+1−tk)(|Sn(tk+1 − t)xn − xn|
+ |S(tk+1 − t)x− x|) + |Sn(tk+1)xn − S(tk+1)x| ,

and similarly

|Sn(tk+1)xn − S(tk+1)x|(4.9)

≤ ew(β,τ)(tk+1−tk)
(
|Sn(tk)xn − S(tk)x|+

∣∣S(tk)x− y(k)
n

∣∣)
+

∣∣Sn(tk+1 − tk)y
(k)
n − S(tk+1)x

∣∣ .
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Also,

∣∣Sn (tk+1 − tk) y(k)
n − S (tk+1) x

∣∣(4.10)

≤
∣∣Sn (tk+1 − tk) y(k)

n − Tn,Y (tk+1 − tk) y(k)
n −Wn (tk+1 − tk) Bny

(k)
n

∣∣
+

∣∣Tn,Y (tk+1 − tk) y(k)
n − TY (tk+1 − tk) S (tk) x

∣∣
+

∣∣Wn (tk+1 − tk)
(
Bny

(k)
n −BS (tk) x

)∣∣
+ |TY (tk+1 − tk) S (tk) x + W (tk+1 − tk) BS (tk) x− S (tk+1) x| .

Passing to superior limit as n → ∞ in (4.9), one deduces using (4.10) and
Trotter-Kato theorem that

lim
n→∞

|Sn(tk+1)xn − S(tk+1)x| ≤ ew(β,τ)(tk+1−tk) lim
n→∞

|Sn(tk)xn − S(tk)x|

+ 2ε(tk+1 − tk).

By an inductive argument, one obtains that

lim
n→∞

|Sn(tk+1)xn − S(tk+1)x| ≤ 2ετew(β,τ)τ .

Passing now to superior limit in (4.8) as n →∞, one sees that

lim
n→∞

|Sn(t)xn − S(t)x|

≤ ew(β,τ)τ

[
lim

n→∞
|Sn(tk+1 − t)xn − xn|+ |S(tk+1 − t)x− x|+ 2ετ

]
≤ ew(β,τ)τ

[
sup

h∈[0,ε]

(
sup
n≥1

|Sn(h)xn − xn|
)

+ sup
h∈[0,ε]

|S(h)x− x|+ 2ετ

]
.

Now, since

sup
h∈[0,ε]

[
sup
n≥1

|Sn(h)xn − xn|
]
→ 0 as ε ↓ 0

by (EC) and
sup

h∈[0,ε]

|S(h)x− x| → 0 as ε ↓ 0,

we conclude that

lim
n→∞

|Sn(t)xn − S(t)x| = 0 uniformly on [0, τ ].

This finishes the proof of the first implication.
(II)→(I) Let X =

{
{xn}n≥0 ; {xn}n≥0 ⊂ X, xn → x0 as n →∞

}
be the

space of the sequences in X which converge to their first component, endowed
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with the norm ‖·‖ defined by
∥∥{xn}n≥0

∥∥ = sup
n≥0

|xn|. It is easy to see that

(X , ‖·‖) is a Banach space.
Let x ∈ D and let {xn}n≥1 be a {ϕn}-bounded sequence such that xn ∈

Dn for n ≥ 1 and xn → x as n → ∞. For t ≥ 0, define V(t) : X → X by
V(t) = {Sn(t)xn}n≥0, using again the convention S ≡ S0 and x ≡ x0. From
our hypothesis, it is seen that V(·) is well-defined on [0,∞). For N ≥ 1 and
t ≥ 0, define also VN(t) : X → X by

VN(t) = {V n
N (t)xn}n≥0 , V n

N (t)xn =

{
Sn(t)xn; for 0 ≤ n ≤ N − 1;

S(t)x; for n ≥ N.

Then VN(·) is well defined and continuous on [0,∞) for all N ≥ 1. Since

‖VN(t)− V(t)‖ = sup
n≥N

|Sn(t)xn − S(t)x| ,

it is seen that ‖VN(t)− V(t)‖ → 0 as N →∞, uniformly on compact subsets
of [0,∞). Hence V(·) is continuous on [0,∞), which implies that (EC) is
satisfied. This ends the proof of our main result.
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