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This  paper  investigates  the  dynamics  of  a competitive  single-prey  n-predators  model  of  integrated  pest
management,  which  is  subject  to  periodic  and  impulsive  controls,  from  the  viewpoint  of  finding  sufficient
conditions  for  the  extinction  of  prey  and  for  prey  and  predator  permanence.  The per  capita  death  rates
of  prey  due  to predation  are  given  in  abstract,  unspecified  forms,  which  encompass  large  classes  of  death
rates arising  from  usual  predator  functional  responses,  both  prey-dependent  and  predator-dependent.
The  stability  and  permanence  conditions  are  then  expressed  as  balance  conditions  between  the  cumula-
tive  death  rate  of prey  in a  period,  due  to predation  from  all predator  species  and  to  the  use  of  control,
and  to  the  cumulative  birth  rate  of  prey  in  the  same  amount  of  time.  These  results  are  then  specialized
for  the  case  of  prey-dependent  functional  responses,  their  biological  significance  being  also  discussed.
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mpulsive controls
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ntegrated pest management

. Introduction

Recently, impulsively perturbed predator–prey models have
een employed by many researchers to discuss the efficiency of

ntegrated pest management strategies (see, for instance, Jiao et al.,
008; Liu et al., 2004; Tang et al., 2005; Mailleret and Grognard,
009). Usually, a combination of a biological control, consisting

n the release of natural predators of the prey (pest), and of a
hemical control, consisting in pesticide spraying, is used, possibly
ogether with an epidemiological control, consisting in the release
f infective pest individuals, being supposed that these controls
ccur in periodic pulses. Further developments include consider-
ng models with stage structure for the predator (Georgescu and
hang, 2010), delay due to pest hatching (Zhang et al., 2008), state-
ependent impulsive perturbations (Tang and Cheke, 2005), age
tructure and defence mechanisms for pests (Zhang and Georgescu,

010), and patch structure (Yang and Tang, 2009). Another direc-
ion was considering higher-dimensional food chains (Baek, 2010),

ultiple prey species (Georgescu, 2011), and multiple predator

∗ Corresponding author.
E-mail addresses: v.p.georgescu@gmail.com (P. Georgescu),

ongzhang@ujs.edu.cn (H. Zhang).

303-2647/$ – see front matter ©  2012 Elsevier Ireland Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.biosystems.2012.10.001
species (Pei et al., 2005). For a discussion on the optimal control
of three-dimensional food chains, see Apreutesei (2011, 2012).

To understand the nature of predator–prey interactions, it is of
paramount importance to quantify the effects of predation upon the
growth rates of the prey and predator classes, respectively. Ulti-
mately, for predator–prey models quantifying control problems,
the predation rate determines the extent to which the prey pop-
ulation can be regulated and the success of the predation-based
biocontrol strategy.

In this regard, the canonical form of a predator–prey interaction
can be expressed as⎧⎪⎨
⎪⎩
dN

dt
(t) = N(t)f (N(t)) − P(t)F(N(t), P(t)) − dN(N(t))N(t)

dP

dt
(t) = P(t)G(N(t), P(t)) − dP(P(t))P(t),

where N = N(t) and P = P(t) are the density of prey and predator,
respectively, f = f(N) is the per capita growth rate of the prey, F = F(N,
P) is the functional response of the predator, that is, the density of
prey individuals consumed by a single predator per unit time and

G = G(N, P) is the numerical response of the predator, that is, the per
capita growth rate of the predator class as a result of predation. Also,
dN(N) and dP(P) are the natural mortalities of prey and predator,
respectively.

dx.doi.org/10.1016/j.biosystems.2012.10.001
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:v.p.georgescu@gmail.com
mailto:hongzhang@ujs.edu.cn
dx.doi.org/10.1016/j.biosystems.2012.10.001
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Following the standard Lotka–Volterra reasoning, one often
ssumes that the growth of the predator population is propor-
ional with the amount of prey ingested, which leads to the
umerical response being expressed as G(N, P) = eF(N, P), the con-
tant e being thought as an “efficiency” constant. If F = F(N) (that
s, the functional response depends only on prey density), F is
ermed “prey-dependent”, while if F = F(N, P) (that is, the func-
ional response depends on both prey and predator density), F is
ermed “predator-dependent”, as the dependence on prey den-
ity is implicit. In the particular case in which F = F(N/P) (that is,

 depends on predator density through the ratio between prey and
redator density), F is termed “ratio-dependent”, the above termi-
ology being introduced in Arditi and Ginzburg (1989).  Also, one
ay  denote F(N, P) = NF1(N, P), F1 being the per capita death rate of

rey due to predation.
A comparative analysis of several functional responses has been

arried out in Skalski and Gilliam (2001),  a case for predator-
ependence being constructed. See also Ginzburg and Colyvan
2004), which point out several fallacies of both prey-dependent
unctional responses and predator-dependent functional responses
no predator interference, dealing with intrinsically different
ime scales for consumption and reproduction for prey depend-
nce, perfect resource sharing for ratio dependence), McCallum
2000) for a modelling viewpoint and Jeschke et al. (2002),
řivan and Vrkoč (2004) for other comparative views of func-

ional responses with a particular stress on the role of prey
andling.

Recent investigations show that in typical food webs, the prey
as to face many types of predators. Investigating a total of 92 food
ebs, Schoener (1989) found an average of 2.8 predator species
reying on each prey species, a close figure (3.2) being obtained
y Cohen et al. (1986).  Studying a particular desert ecosystem
Coachella Valley), Polis (1991) identified a food web totalling a
ew thousand species which averages 9.6 predator species per prey
pecies. See also Sih et al. (1998) for a discussion on the emergent
ffects of multiple predators on a single prey (risk reduction, caused
y predator–predator interactions, and risk enhancement, caused
y conflicting prey responses to multiple predators). Discussing the
uppression of the pea aphid Acyrtosiphon pisum,  pest of the alfalfa
lucerne) crop Medicago sativa,  Cardinale et al. (2003) found out that
hen all its three natural enemies, the coccinnelid beetle Harmonia

xyridis, the damsel bug Nabis sp. and the parasitic wasp Aphidius
rvi were present, the combined effect was more than predicted
rom summing the impact of each species alone, which validates
he view that biological control can be more effective under a mul-
iple predator structure. In this regard, it has been suggested in
ylianakis and Romo (2010) that a diverse predator structure may
e more effective when the prey has a complex life cycle and is
atchily distributed in space and time, which narrows the effec-
iveness of this approach to arthropod control in heterogeneous
nvironments.

The remaining part of this paper is organized as follows. In
ection 2, we introduce the mathematical model to be discussed
nd indicate the biological relevance of the assumptions on which
he model is based upon. Several auxiliary notions relating to the
loquet theory of impulsively perturbed differential systems are
iven in Section 3, where the biological well-posedness of the
odel is also established. In Section 4, several quantitative prop-

rties of the so-called prey-free periodic solution are indicated
nd the relationship between its stability properties and the suc-
ess of the pest management strategy is pointed out. Sufficient
onditions for the local and global stability of the prey-free peri-

dic solution are established in Section 5. Section 6 is devoted to
iscussing the permanence of the system, while in Section 7 the
reviously obtained results are contextualized for the case of prey-
ependent functional responses. Finally, a biological interpretation
ems 110 (2012) 162– 170 163

of our results is provided in Section 8, together with a few conclud-
ing remarks.

2. The Mathematical Model and its Biological
Well-posedness

Following the previously mentioned considerations, we  are now
ready to formulate the mathematical model which is of concern in
this paper in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
(t) = x(t)(r − ax(t))

−
n∑
i=1

x(t)yi(t)ϕi(x(t), y(t)) t /= (n + l − 1)T, t /= nT;

dyi
dt

(t) = cix(t)yi(t)ϕi(x(t), y(t))

−diyi(t) t /= (n + l − 1)T, t /= nT,

1 ≤ i ≤ n;

�x(t) = −ıxx(t), t = (n + l − 1)T;

�yi(t) = −ıiyi(t), t = (n + l − 1)T,

1  ≤ i ≤ n;

�x(t) = 0, t = nT;

�yi(t) = �i, t = nT, 1 ≤ i ≤ n.

(S)

In the above model, x = x(t) represents the density of prey, being
understood that all prey individuals belong to the same species,
while yi = yi(t) represents the density of the predator species i,
1 ≤ i ≤ n, and y = (y1, y2, . . .,  yn) is the vector of all predator densities,
where n ∈ N

∗ represents the number of predator species. Gener-
ally, bold letters will be used in this paper to denote vector-valued
functions or their particular values. The constants r and a denote the
intrinsic birth rate of the prey and the effects of intraspecific compe-
tition among the prey individuals, respectively, while the constants
ci and di, 1 ≤ i ≤ n, represent the efficiency of prey conversion into
newborn predators of species i and the natural mortality of preda-
tor species i, respectively. Also, T is the common periodicity of the
impulsive perturbations and 0 < l < 1 is a parameter used to describe
the time lag lT between predator release and pesticide spraying,
which do not occur simultaneously. Here, � (t) =  (t +) −  (t),
  ∈ {x, yi, 1 ≤ i ≤ n}, represent the instantaneous jumps of the popu-
lations sizes each time the controls are used, 0 ≤ ıx < 1 and 0 ≤ ıi < 1,
1 ≤ i ≤ n, are the fixed proportions of the prey and predator popula-
tions, respectively, which are removed from the environment each
time the pesticides are sprayed and �i is the constant amount of
predators from species i, 1 ≤ i ≤ n, which are released each time.

The prey death rates due to predation by predator species i,
ϕi : [0, ∞)n+1 → [0, ∞), ϕi ∈ C([0, ∞)n+1), 1 ≤ i ≤ n, are assumed to
satisfy the following monotonicity assumptions.

(H0) For all 1 ≤ i ≤ n, (x, y) → xyiϕi(x, y) is locally Lipschitz.
(H1) For all 1 ≤ i ≤ n, x → ϕi(x, y) is nonincreasing for fixed y ∈ [0,

∞)n.
(H2a) For all 1 ≤ i ≤ n, yi → yiϕi(x, y) is nondecreasing for fixed x and

yk, k /= i.
(H2b) For all 1 ≤ i ≤ n, yj → ϕi(x, y) is nonincreasing for fixed x and

yk, k /= j, for all 1 ≤ j ≤ n.
Hypothesis (H1), (H2a), (H2b) are satisfied, for instance, if the
functional responses of the predators species are prey-dependent
of Holling type I, for which ϕ(x, y) = a, of Holling type II, for
which ϕ(x, y) = (a/1 + bx),  or of Holling type IV, for which ϕ(x,
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) = (a/b + cx + x2), or of Ivlev type, for which ϕ(x, y) = (a(1 − e−kx)/x).
hey are also satisfied if the functional responses are predator-
ependent of Beddington–deAngelis type, for which ϕ(x, y) =
b/1 + kx +

∑n
j=1kjyj). Hypothesis (H1) amounts to the fact that if

he prey density increases and the amount of predators remains
onstant, then the death rate of the prey decreases, due to the sat-
ration of predators. Hypothesis (H2a) amounts to the fact that the
eath rate of prey due to predation from species i increases if the
opulation size of species i increases. Hypothesis (H2b) amounts
o the fact that predators from a given species hinder predators
rom all species (that is, there is intra- and interspecies competition
etween predators, rather than cooperation).

. Preliminaries

As our approach relies on the use of Floquet theory and of com-
arison estimations for impulsively perturbed systems of ordinary
ifferential equations, we  shall hereby indicate for future reference
everal auxiliary results pertaining to the above. We  first give a
esult which provides estimations for the solution of a system of
ifferential inequalities.

emma  1. (Bainov and Simeonov, 1993) Let the function u ∈
C1(R+, R) satisfy the inequalities

du

dt
≤ (≥)p(t)u(t) + f (t), t /= �k, t > 0;

u(�k+) ≤ (≥)dku(�k) + hk, k ≥ 0;

u(0+) ≤ (≥)u0,

(1)

here p, f ∈ PC(R+, R) and dk ≥ 0, hk and u0 are constants and (�k)k≥0
s an increasing sequence of positive real numbers. Then, for t > 0,

u(t) ≤ (≥)u0(
∏

0<�k<t

dk)e

∫ t

0

p(s)ds

+
∫ t

0

(
∏
s≤�k<t

dk)e

∫ t

s

p(�)d�
f (s)ds

+
∑

0<�k<t

(
∏

�k<�j<t

dj)e

∫ t

�k

p(�)d�
hk.

n the above, by PC(R+, R) (PC1(R+, R)) is meant the class of real
iecewise continuous (real piecewise continuously differentiable)
unctions defined on R+. For other results on impulsive differen-
ial equations, see Bainov and Simeonov (1993) or Benchohra et al.
2006).

It is now possible to prove that the Cauchy problem with strictly
ositive initial data is well-posed for our system (S),  that is, solu-
ions (x(·), y(·)) starting with strictly positive initial data remain
trictly positive and bounded on their whole domains, the strict
ositivity of a vector being understood component-wise.

emma  2. The positive orthant (R∗+)n+1 is an invariant region for the
ystem (S).

The proof of Lemma  2 is given in the Appendix. See also
enderson and Luca (2011, 2012) for related results.

We are now ready to show that all solutions of (S) starting in

R

∗+)n+1 remain bounded and are actually defined on the whole R+.

emma  3. All solutions (x(·), y(·)) of (S) with initial data
x(0), y(0)) ∈ (R∗+)n+1 are bounded and defined on R+.
ems 110 (2012) 162– 170

The proof of Lemma  3 is given in the Appendix. Note that, as seen
from this proof, yi, 1 ≤ i ≤ n are ultimately bounded by constants not
depending on their initial population sizes.

We  now state a local stability (or lack thereof) result for impul-
sive and periodic systems of ordinary differential equations which
will be used in Section 5 to discuss the stability properties of the so-
called prey-free periodic solution. To this purpose, let us consider
the impulsive linear differential system⎧⎨
⎩
dX

dt
(t) = A(t)X(t), t /= �k, t ∈ R;

�X = BkX, t = �k, �k < �k+1, k ∈ Z.

(2)

under the following hypotheses.

(A1) A( · ) ∈ PC(R, Mn(R)) and there is T > 0 such that A(t + T) = A(t)
for all t ≥ 0.

(A2) Bk ∈ Mn(R), det(In + Bk) /= 0 for k ∈ Z.
(A3) There is q ∈ N

∗ such that Bk+q = Bk, �k+q = �k + T for k ∈ Z.

Let now ˚(t) be a fundamental matrix of (2).  Then there is a unique
nonsingular matrix M ∈ Mn(R) such that ˚(t + T) = ˚(t)M for all
t ∈ R, which is called the monodromy matrix of (2) corresponding
to ˚. All monodromy matrices of (2) corresponding to different
˚’s, being similar, have the same eigenvalues �1, �2, . . .,  �n, which
are called the Floquet multipliers of (2).  These eigenvalues deter-
mine the stability of (2),  as seen in the following stability result,
where by elementary divisors of a square matrix we  understand
the characteristic polynomials of its Jordan blocks.

Lemma  1. (Bainov and Simeonov, 1993) Suppose that conditions
(A1)-(A3) hold. Then

(i) The system (2) is stable if and only if all Floquet multipliers �k,
1 ≤ k ≤ n satisfy

∣∣�k∣∣ ≤ 1 and if |�k| = 1, then to �k there corre-
sponds a simple elementary divisor.

(ii) The system (2) is asymptotically stable if and only if all Floquet
multipliers �k, 1 ≤ k ≤ n satisfy

∣∣�k∣∣< 1.
(iii) The system (2) is unstable if there is a Floquet multiplier �k such

that
∣∣�k∣∣> 1.

See also the paper by Klausmeier (2008) on the use of Floquet
theory in ecological and evolutionary modeling, which identifies
three potentially important uses: defining fitness of structured
populations in periodic environments, calculating invasion crite-
ria for interacting structured populations in periodic environments
and testing the stability of a limit cycle.

4. The Prey-free Periodic Solution

A fact with significant consequences for the dynamics of (S) is
that the predators are never in short supply, due to the periodic
predator release, but the prey may  tend to extinction, since there
is no periodic prey release. When there are no prey individuals,
the equations for the predator species decouple and we are led to
consider systems of type⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy

dt
(t) = −dy(t), t /= (n + l − 1)T, t /= nT

�y(t) = −ıy(t), t = (n + l − 1)T;

�y(t) = �, t = nT;

y(0+) = y0,

(3)
where (d, ı, �) ∈
{

(di, ıi, �i); 1 ≤ i ≤ n
}

. It is seen that the system
constructed with the first three equations in (3) has a periodic solu-
tion which attracts all solutions of (3) starting with strictly positive
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0, as observed in the following Lemma  (Lemma  4.2 of Georgescu
nd Moroş anu, 2008).

emma  2. (Georgescu and Moroş anu, 2008) The system con-
tructed with the first three equations in (3) has a T-periodic solution
∗
d,ı,�

, given by

∗
d,ı,� =

⎧⎪⎨
⎪⎩

�

1 − e−dT (1 − ı)
e−d(t−nT), t ∈ (nT, (n + l)T]

�

1 − e−dT (1 − ı)
e−d(t−nT)(1 − ı), t ∈ ((n + l)T, (n + 1)T].

(4)

ith this notation, the following properties are satisfied.

(i)
∫ T

0
y∗
d,ı,�

(t)dt = �
d(1−e−dT (1−ı)) [(1 − e−dlT ) + (1 − ı)(e−dlT −

e−dT )].
(ii) lim

t→∞
|y(t) − y∗

d,ı,�
(t)| = 0 for all solutions y(t) of (3) starting with

strictly positive y0.
iii) sup

t≥0
|y∗
d,ı,�

(t) − y∗
d̃,ı,�

(t)| ≤ f2(d, d̃; T, a, ı, �), with

lim
d̃→d

f2(d̃, d; T, a, ı, �) = 0.

When the prey species is extinct, the system consisting of the
rst n + 1 equations of (S) has a periodic solution E∗ = (0, y∗), which
ill be called in what follows the prey-free periodic solution. Here,

∗ is the n-dimensional vector whose ith component is y∗
di,ıi,�i

,

enoted also in what follows by y∗
i
. Although in concrete situa-

ions the desired outcome of an IPM is not necessarily the complete
xtinction of all pests, as this may  be infeasible from a practical
oint of view, or may  damage the ecosystem, but the stabiliza-
ion of their total population size under an economically significant
hreshold called the economic injury level (EIL), it is not a large
tretch of imagination to interpret the success of our IPM strategy
n terms of the stability properties of E∗. That is, if E∗ is globally
symptotically stable, then the pests can be eradicated irrespective
f their initial population sizes, while if E∗ is only locally asymp-
otically stable, then the pests can be eradicated only in favorable
ircumstances.

. Local and Global Stability Results

We  shall now search for sufficient conditions for the local and
lobal stability of E∗. In what follows, let us denote ε = (ε, ε, . . .,
) and let M1, M2,. . .,  Mn be ultimate boundedness constants for
1, y2, . . .,  yn given by Lemma  3. We  shall denote by P and PM,
espectively, cumulative death rates of prey due to predation under
ertain specific circumstances,

P(x, y) =
n∑
i=1

yiϕi(x, y),

PM(x, y) =
n∑
i=1

yiϕi(x, M1, . . . , Mi−1, yi, Mi+1, . . . , Mn)

rom which we see that

P(0, y∗(t)) =
n∑
i=1

y∗
i (t)ϕi(0,  y∗(t))PM

(
r

a
+ ε, y∗(t) − ε

)
n∑
=
i=1

(y∗
i (t) − ε)ϕi(

r

a
+ ε, M1, . . . , Mi−1, y∗

i (t) − ε, Mi+1, . . . , Mn

)
.

ems 110 (2012) 162– 170 165

Note that if ϕi depends only on the size of the prey population and
of the size of the ith predator population, then PM ≡ P. Also, PM is
nonincreasing in ε.

Theorem 1. The prey-free periodic solution E∗ is locally asymptoti-
cally stable if∫ T

0

P(0, y∗(t))dt − ln(1 − ıx) > rT. (5)

Further, E∗ is globally asymptotically stable if∫ T

0

PM

(
r

a
, y∗(t)

)
dt − ln(1 − ıx) > rT. (6)

Proof. To discuss the local stability of E∗, we shall use the method
of small amplitude perturbations. To this purpose, let us denote

x(t) = u(t), yi(t) = vi(t) + y∗
i
(t), 1 ≤ i ≤ n,

where u and vi, 1 ≤ i ≤ n, are understood to be small amplitude per-
turbations. The linearization of (S) is then given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
(t) = u(t) (r − P(0, y∗(t)) , t /= (n + l − 1)T, t /= nT;

dvi
dt

(t) = ciu(t)y∗
i (t)ϕi(0,  y∗(t)) − divi(t) t /= (n + l − 1)T, t /= nT,

1 ≤ i ≤ n;

�u(t) = −ıxu(t), t = (n + l − 1)T;

�vi(t) = −ıivi(t), t = (n + l − 1)T,

1  ≤ i ≤ n;

�u(t) = �vi(t) = 0, t = nT, 1 ≤ i ≤ n.

(7)

We  need now study the stability of the null solution of (7).  Let ˚L be
a fundamental matrix of the differential system constructed with
the first n + 1 equations of (7).  Consequently, ˚L satisfies

d˚L
dt

(t) = A(t)˚L(t),

where

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r − P(0, y∗(t)) 0 0 . . . 0

c1y∗
1(t)ϕ1(0,  y∗(t)) −d1 0 . . . 0

c2y∗
2(t)ϕ2(0,  y∗(t)) 0 −d2 . . . 0

...
...

... . . .
...

cny∗
n(t)ϕn(0,  y∗(t)) 0 0 . . . −dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A fundamental matrix ˚L of (7) which satisfies ˚L(0) = In+1 is a lower
triangular matrix with

(˚L(t))1,1 = e

∫ t

0

r − P(0, y∗(s))ds

(˚L(t))i,i = e−di−1t , 2 ≤ i ≤ n + 1.

Since
u(t+) = (1 − ıx)u(t), vi(t+) = (1 − ıi)vi(t),

for t = (n + l − 1)T, and

u(t+) = u(t), vi(t+) = vi(t),
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or t = nT,  the monodromy matrix

= diag[1 − ıx, 1 − ı1, 1 − ı2, . . . , 1 − ın]˚L(T) (8)

s also lower diagonal. Its eigenvalues, found on the main diagonal,
re

�1 = (1 − ıx)e

∫ T

0

r − P(0,  y∗(t))dt
> 0,

�i = (1 − ıi−1)e−di−1T > 0; 2 ≤ i ≤ n + 1.

s �1 > 0 and �i ∈ (0, 1), 2 ≤ i ≤ n + 1, it follows that E∗ is locally
symptotically stable provided that (5) holds.

We shall now prove that E∗ is globally asymptotically stable
rovided that (6) holds. Due to (6),  let us choose ε > 0 such that

� = (1 − ıx)e

∫ T

0

r − PM(
r

a
+ ε, y∗(t) − ε)dt

< 1.

ince (dyi/dt)(t) ≥ − diy(t) for 1 ≤ i ≤ n, it follows from the com-
arison lemma  for systems of impulsively perturbed ordinary
ifferential inequalities (see Bainov and Simeonov, 1993) that
i(t) ≥ yi1(t) for all t ≥ 0 and 1 ≤ i ≤ n, where yi1 satisfies

dyi1
dt

(t) = −diyi1(t), t /= nT, t /= (n + l − 1)T;

�yi1(t) = −ıiyi1(t), t = (n + l − 1)T;

�yi1(t) = �i, t  = nT;

yi1(0+) = yi(0+).

(9)

t then follows from the properties of y∗
i

listed in Lemma  2 that
i(t) ≥ yi1(t) ≥ y∗

i
(t) − ε for t large enough; for the sake of sim-

licity, let us suppose that yi(t) ≥ y∗
i
(t) − ε for all t ≥ 0. Similarly,

ince (dx/dt)(t) ≤ x(t)(r − ax(t)), it follows that x(t) ≤ x1(t) for all t ≥ 0,
here x1 satisfies

dx1

dt
(t) = x1(t)(r − ax1(t)), t /=  (n + l − 1)T;

�x1(t) = −ıxx1(t), t = (n + l − 1)T;

x1(0+) = x(0+).

(10)

Since lim sup
t→∞

x1(t) ≤ (r/a), it then follows that

(t) ≤ x1(t) ≤ (r/a) + ε for t large enough; for the sake of sim-
licity, let us suppose that x(t) ≤ (r/a) + ε for all t > 0. By the
onotonicity assumptions on ϕi, it is seen that

dx

dt
(t) = x(t)(r − ax(t)) −

n∑
i=1

x(t)yi(t)ϕi(x(t), y(t)) ≤ x(t)

(
r −

n∑
i=1

(y∗
i
(t) − ε)ϕi

( r
a

+ ε, M1, . . . , Mi−1, y∗
i
(t) − ε, Mi+1, . . . , Mn

))

≤ x(t)
(
r − PM

( r
a

+ ε, y∗(t) − ε
))

or all t /= (n + l − 1)T,  t /= nT and consequently⎧⎪ dx ( ( r ∗
))
⎪⎨

⎪⎪⎩
dt

(t) ≤ x(t) r − PM
a

+ ε, y (t) − ε , t /=  (n + l − 1)T, t /= nT;

x(t+) = (1 − ıx)x(t), t = (n + l − 1)T;

x(t+) = x(t), t = nT.
ems 110 (2012) 162– 170

By integrating the above inequality on ((n + l − 1)T, (n + l)T], it is seen
that

x((n + l)T) ≤ x((n + l − 1)T)(1 − ıx)e
∫ T

0
r−PM ((r/a)+ε,y∗(t)−ε)dt

,

that is, x((n + l)T) ≤ x((n + l − 1)T)�. Then x((n + l)T) ≤ x(lT)�n and con-
sequently

x((n + l)T) → 0 for n → ∞.  (11)

Since

0 < x(t) < x((n + l − 1)T)erT for t ∈ ((n + l − 1)T, (n + l)T],

it follows from (11) that x(t) → 0 for t→ ∞.
We now prove that yi(t) − y∗

i
(t) → 0 as t→ ∞ for all 1 ≤ i ≤ n. To

this purpose, let us denote

diε′ = di − ciε
′ϕi(0,  0)

and let us choose ε′ such that diε′ > 0 for all 1 ≤ i ≤ n. Since x(t) → 0
for t→ ∞,  it follows that there is T̃ > 0 such that 0 < x(t) < ε′ for t ≥ T̃;
without loss of generality, we may  suppose that

0 < x(t) < ε′ for t ≥ 0.

One then has

−diyi(t) ≤ y′
i
(t) ≤ −diε′yi(t)

for t /= (n + l − 1)T, t /= nT.  Let us denote

ỹi
∗ = y∗

diε′ ,ıi,�i
.

Using a comparison argument, it follows that yi1(t) ≤ yi(t) ≤ yi2(t)
and yi1(t) − y∗

i
(t) → 0, yi2(t) − ỹi∗(t) → 0 as t→ ∞,  where yi1 is as

defined in (9) and yi2 is defined through a system similar to (9)
with di replaced by diε′ .

Let now ε1 > 0. It follows that

y∗
i
(t) − ε1 ≤ y(t) ≤ ỹi∗(t) + ε1

for t large enough. Since sup
t∈[0,T]

|y∗
i
(t) − ỹi∗(t)| → 0 for ε′ → 0, 1 ≤ i ≤ n

and ε1 is arbitrary, it follows that yi(t) − y∗
i
(t) → 0 as t→ ∞,  which

ends the proof of the global stability result. �

6. The Permanence of the System

We shall now study the permanence of (S).  To this purpose, we
introduce the following definition.

Definition 1. The system (S) is said to be permanent (uniformly
persistent) if there are m,  M > 0 such that for each solution of (S)
with strictly positive initial data x(0), yi(0), 1 ≤ i ≤ n, it follows that
there is T0 > 0 such that m ≤ x(t), yi(t) ≤ M for all t ≥ T0 and 1 ≤ i ≤ n.
Here, T0 may  depend upon the initial data, but m and M do not.

In biological terms, if (S) is permanent, then for sufficiently large
t the pest and its predators will coexist without facing extinction
or growing indefinitely, their population sizes varying between
bounds not depending on the initial conditions. Obviously, the
permanence of (S) excludes any kind of stability of the prey-free
periodic solution and it is associated with a failure of our IPM strat-
egy. For further information relating to the mathematical theory
of persistence, see the comprehensive monograph of Smith and
Thieme (2011).  See also Teng et al. (2011),  which show that, for a
general class of impulsively perturbed models of Kolmogorov type,

permanence implies the existence of periodic solutions.

The following result establishes that (5) is a threshold inequal-
ity, as far as the stability of (S) is concerned, in the sense that if
the inequality with opposite sign is satisfied, then the prey-free
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eriodic solution E∗ loses its stability and the system (S) becomes
ersistent.

heorem 2. The system (S) is permanent provided that

T

0

P(0, y∗(t))dt − ln(1 − ıx) < rT. (12)

roof. Suppose that (x(·), y(·)) is a solution of (S) which starts
ith strictly positive initial data (x(0), y(0)). As previously noted,

here is a constant M > 0 not depending on the initial data such
hat x(t) ≤ M,  yi(t) ≤ M for t ≥ 0 and all 1 ≤ i ≤ n. Also, as done
bove, we note that yi(t) > y∗

i
(t) − ε′ for t large enough, for all

′ ∈ (0, (�ie−diT(1 − ı)/1 − e−diT(1 − ıi))). Consequently, yi(t) ≥ miy
or t large enough, where

1y = �ie
−diT (1 − ıi)

1 − e−diT (1 − ıi)
− ε′

nd ε′ is fixed as indicated above.
We  then only need to find m such that x(t) ≥ m for t large enough.

et us choose m and ε small enough, so that

 < m < min
{

di
ciϕi(0,  0)

;  1 ≤ i ≤ n
}
, m <

r

a
, (13)

 = (1 − ıx)e
(r−am)T−

∫ T

0
P∗(m,y∗(t))dt

> 1, (13)

here

∗(m, y∗(t)) =
n∑
i=1

y∗
di−cimϕi(0,0)(t)ϕi(m,  y∗

1(t), . . . ,

y∗
di−cimϕi(0,0)(t), . . . , y∗

n(t)),

he choice of 	 being possible due to (12). We  first prove that there is
1 > 0 such that x(t1) > m. We  shall argue by contradiction. Suppose
hat x(t) ≤ m for all t > 0 and let us choose 
 > 0 such that

	′ = (1 − ıx)e
(r−am)T−

∫ T

0

P∗

(m, y∗(t))dt

> 1,

here

P∗

(m,  y∗(t)) =

n∑
i=1

(y∗
di−cimϕi(0,0)(t) + 
) · ϕi(m,  y∗

1(t) − 
, . . . ,

y∗
di−cimϕi(0,0)(t) + 
, . . . , y∗

n(t) − 
),

he choice of 	′ being possible due to the third inequality in (13).
et 1 ≤ i ≤ n. One then has

−diyi(t) ≤ y′
i
(t) ≤ −(di − cimϕi(0,  0))yi(t)

or t /=  (n + l − 1)T,  t /= nT,  while

i(t+) = (1 − ıi)yi(t) for t = (n + l − 1)T, yi(t+) = yi(t) + �i

for t = nT.

onsequently, there is n ∈ N  such that y∗
i
(t) − 
 ≤ yi(t) ≤

∗
di−cimϕi(0,0)(t) + 
 for t ≥ n1T and all 1 ≤ i ≤ n. One then has

dx
(t) ≥ x(t)((r − am) − P∗


(m,  y∗(t)))

dt

or t /=  (n + l)T, t ≥ n1T, while

(t+) = (1 − ıx)x(t) for t = (n + l − 1)T.
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By  integrating the above on ((n + l − 1)T, (n + l)T], n ≥ n1 + 1, one sees
that

x((n + l)T) ≥ x((n + l − 1)T)	′. (14)

Consequently, x((n + k + l)T) ≥ 	′kx((n + l)T) → ∞ as k→ ∞,  which
is a contradiction, since x(t) ≤ m for all t ≥ 0. As a result, there is t1 > 0
such that x(t1) > m.

If x(t) ≥ m for all t ≥ t1, there is nothing left to prove.
Otherwise, x(t1m) < m for some t1m > t1. Let us denote
s1 = inf

{
t > t1; x(t) < m

}
. If s1 /= (n + l − 1)T,  then x(s1) = m.

If s1 = (n + l − 1)T, then not necessarily x(s1) = m,  but x(s1) ∈
[m, (m

/
1 − ıx)]. Note that it is not possible that x(s) ≤ m for all

s > s1, so necessary x(t2m) > m for some t2m > s1. Let us denote
s2 = inf

{
t > s1; x(t) > m

}
and observe that necessarily x(s2) = m.

By a similar argument, one may  construct a sequence (sn)n≥2
such that

(1) x(s2k+1) ∈
[
m, m

1−ıx
]
, x(s2k) = m.

(2) x(s) ≤ m for s ∈ (s2k+1, s2k+2).
(3) x(s) > m for s ∈ (s2k, s2k+1),

showcasing the fact that x oscillates about m.
We  now show that T = sup

{
s2k − s2k−1; k ∈ N

∗}< ∞.  Suppose
that this is not the case. Then there is (kj)j≥1 such that s2kj − s2kj−1 >

jT . Consequently, in a way  similar to the derivation of (14), it follows
that

x(s2kj ) ≥ x(s2kj−1)	′j+2e−2rT ,

which is a contradiction, as 	′j+2 → ∞ for j→ ∞ and x(s2k) = m.  It
then follows that

dx

dt
(t) ≥ x(t)

(
r − am − M

n∑
i=1

ϕi(0,  0)

)

for t ∈ (s2k+1, s2k+2), and consequently

x(s) ≥ m̃ for s ∈ (s2k+1, s2k+2),

where

m̃ = me

(
r−am−M

n∑
i=1

ϕi(0,  0)

)
T

.

Putting m = min (m̃, m), it follows that x(t) ≥ m for t large enough,
so the prey population is permanent, which ends the proof of the
permanence result. �

7. Prey-dependent Functional Responses

Although readily interpretable from a biological viewpoint,
inequalities (5),  (6) and (12) might not be easily expressed in a
more explicit form, especially for more complicated dependence
of the functional responses upon the predator population sizes.
However, in the particular case in which all functional responses
are prey-dependent, the integrals involved in the above-mentioned
conditions can be computed explicitly. That is, for the case of prey-
dependent functional responses (ϕi(x, y) = ϕi(x), 1 ≤ i ≤ n), it is seen
from Lemma  2 that
∫ T

0

P(�, y∗(t))dt =
n∑
i=1

(∫ T

0

y∗
i (t)dt

)
ϕi(�) =

n∑
i=1

ϕi(�)Ai
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here by Ai we denote the integral of y∗
i

over a period, that is

Ai =
�i

di(1 − e−diT (1 − ıi))
[(1 − e−dilT ) + (1 − ıi)(e

−dilT − e−diT )].

rom Theorems 1 and 2, one obtains the following result.

heorem 3. The prey-free periodic solution E∗ is locally asymptoti-
ally stable provided that

n∑
i=1

ϕi(0)Ai − ln(1 − ıx) > rT.

urther, E∗ is globally asymptotically stable if

n∑
i=1

ϕi(
r

a
)Ai − ln(1 − ıx) > rT

nd the system (S) is permanent provided that

n∑
i=1

ϕi(0)Ai − ln(1 − ıx) < rT.

In particular, for n = 2 and ϕ1(x, y) = (a1/1 + b1x), ϕ2(x,
) = (a2/1 + b2x2), one obtains Theorems 3.1, 3.2 and 3.3 from
ei et al. (2009) as particular cases of Theorem 3. Also, for ϕi(x,
) = ai(1 − e−aix/x), 1 ≤ i ≤ n, one obtains Theorems 3.1 and 3.2 from
u  and Huang (2009),  while for ϕi(x, y) = (ai/1 + bix), 1 ≤ i ≤ n, one

btains Theorems 4.1 and 4.3 from Pei et al. (2005).

. Biological Significance and Concluding Remarks

Since the equation which describes the dynamics of the pest
pecies can be written in the form

dx

dt
(t) = x(t)

(
r − ax(t) −

n∑
i=1

yi(t)ϕi(x(t), y(t))

)

t is seen that the integral
∫ T

0
P(0, y∗(t))dt, equal to

n
i=1

∫ T
0
y∗
i
(t)ϕi(0,  y∗(t))dt, approximates the total per capita

oss of pest species in a period T due to predation from all predator
pecies. Also, rT approximates the per capita growth of the pest
pecies near extinction and − ln(1 − ıx) represents the per capita
oss of pest species due to pesticide spraying.

Consequently, when the pest population is near extinction and
he local stability condition (5) holds, its cumulative size loss in a
eriod due to predation and to the use of the chemical control sur-
asses its growth in the same amount of time and consequently
he prey cannot escape extinction. The significance of the global
tability condition (6) is similar, with the remark that this time the
redation is assumed to be strong even at higher prey densities,
hen saturation occurs, and in unfavorable circumstances (max-

mal population sizes for predators in the species other than the
urrent one for each term in the sum).

Similarly, the permanence condition (12) expresses the fact that
hen the pest is near extinction, its growth surpasses its cumu-

ative size loss due to predation and to the use of control and
onsequently the pest is able to avoid extinction.

It is interesting to see that neither the stability conditions (local
r global) nor the permanence condition depend on the efficiency
onstants, ci, 1 ≤ i ≤ n, being formulated in terms of the prey death

ates ϕi, 1 ≤ i ≤ n, only. This can be explained noting that due to the
egulatory effect of the periodic forcing represented by the preda-
or release, the dynamics of the population sizes of the predator
lasses is somewhat predictable once the dynamics of the prey class
ems 110 (2012) 162– 170

is known. In this regard, note that the unperturbed system is of Kol-
mogorov type, the equations for the predator classes being suited
to an analysis using comparison estimates as performed above. Of
concern is then only the survival of the prey class, which leads to
permanence, or its extinction, which leads to a certain stability, in
a stronger or weaker sense, of the prey-free periodic solution E∗

via a comparison analysis, the dynamics of the predator species
being obtained, in some sense, as a consequence. Note also that
our approach is successful even though the functional responses of
the predators are predator-dependent rather than prey-dependent
only, as it is usually the case in related papers, although certain
monotonicity properties with respect to the sizes of the predator
classes are still required.

Let us now suppose that ϕi, 1 ≤ i ≤ n, are differentiable and
denote by L1 and L2 the functions defined by moving all terms in the
local and global stability conditions, respectively, in the right-hand
side of the inequalities, that is,

L1(T) = rT + ln(1 − ıx) −
∫ T

0

P(0, y∗(t))dt,

L2(T) = rT + ln(1 − ıx) −
∫ T

0

PM(
r

a
, y∗(t))dt.

It is seen that

L1(0) = L2(0) = ln(1 − ıx) < 0,

L1(T) ≥ rT + ln(1 − ıx) −
n∑
i=1

ϕi(0,  0)Ai

L2(T) ≥ rT + ln(1 − ıx) −
n∑
i=1

ϕi(
r

a
, 0)Ai

and consequently

lim
T→∞

L1(T) = lim
T→∞

L2(T) = +∞.

Let us also note that

d2L1

dt2
(T) =

n∑
i=1

y∗
i
(T)

(
diϕi(0,  y∗(T)) +

n∑
j=1

∂ϕi
∂yj

(0,  y∗(T))djy∗
j
(T)

)

d2L2

dt2
(T) =

n∑
i=1

diy
∗
i
(T)ϕi

( r
a
, y∗(T)

)(
ϕi
( r
a
, M1, . . . , Mi−1, y∗

i
(T), Mi+1, . . . , Mn

)
+y∗

i
(T)
∂ϕi
∂xi

(
r

a
, M1, . . . , Mi−1, y∗

i
(T), Mi+1, . . . , Mn)

)
.

Consequently, for the case of prey-dependent functional responses,
for which (∂ϕi/∂yj) = 0 for all 1 ≤ i, j ≤ n, it follows that
(d2L1/dt2)(T) > 0, (d2L2/dt2)(T) > 0 for all T. As a result, the equa-
tions L1(T) = 0 and L2(T) = 0 have unique strictly positive solutions
T* and T*, respectively. It then follows that E∗ is globally asymptot-
ically stable for T ∈ (0, T*), (at least) locally asymptotically stable for
T ∈ (T*, T*) and unstable for T ∈ (T*, + ∞).  That is, T* can be regarded
as a threshold parameter as far as the stability of the system is
concerned.

However, if the functional responses are predator-dependent,
then (∂ϕi/∂yj) ≤ 0, due to (H2b), and the sign of (d2L1/dt2)(T) is
uncertain. As a result, multiple areas of local stability (T*1j, T*2j),
1 ≤ j ≤ m,  might arise, apart from (0, T*). A similar analysis, although
less precise, since, unlike its local stability counterpart, condition

(6) is not of threshold type, can be performed for global stability.

From an immediate analysis of the global stability condition (6),
one may  deduce that the global success of the pest control strat-
egy can be achieved provided that the pesticides have a strong



ioSyst

i
a

w
c
s
s

i
c
s
n
t
1

e
i
m
e
f
t
t
(
d
c

p
o
s
m
e
n
b
f
p

c
b
s
c
o
(
t
c

a

r

w
f
t
ϕ

a

r

P. Georgescu, H. Zhang / B

mpact on the pest species (ıx close enough to 1) or the controls
re employed often enough (T is close enough to 0). Also, since

L2(T) ≤ rT + ln(1 − ıx) −
n∑
i=1

ϕi

(
r

a
, M

)
Ai,

here M = (M1, M2, . . .,  Mn), it is seen that predators which are vora-
ious enough when prey is abundant (ϕi((r/a), M)  large enough for
ome 1 ≤ i ≤ n) ensure the global success of the pest management
trategy.

As far as prey-dependent functional responses are concerned,
t is seen that the global success of the pest management strategy
an be achieved by releasing many predators, even from a single
pecies (one or more �i’s large enough). Also, if the pesticides do
ot have a strong impact on the pest species, their low impact on
he predator species does not help (if ıi = 0, 1 ≤ i ≤ n, then Ai = �i,

 ≤ i ≤ n and
∑n

i=1ϕi(0)Ai − ln(1 − ıx) may  not be large enough).
Finally, let us discuss the influence of intrapredatory interfer-

nce upon the success of the pest control strategy. In this regard, an
mpulsive controllability analysis of a very general predator–prey

odel in which the functional and numerical response (not nec-
ssarily proportional) of the predator are given in an abstract
orm, depending on the sizes of the prey and predator populations
hrough parameter functions which satisfy affine sectorial condi-
ions has been performed by Nundloll et al. (2010).  In Nundloll et al.
2010),  comparison and direct estimation methods are employed to
iscuss the stability of the pest-free solution, two types of stability
onditions being then obtained.

The first one, an upper bound on the interference between
redators, is termed as “biological”, the second one, a lower bound
n the release rate of predators, being termed as “managerial”; in
ome sense, the biological condition is obtained as a prerequire-
ent for the managerial condition. A chemical control is not

mployed in Nundloll et al. (2010).  Also, Nundloll et al. (2010) does
ot rely on monotonicity of the functional responses themselves,
ut rather on the monotonicity of a certain lower boundedness
unction which is constructed ad hoc and on the possibility to com-
ute explicitly the integrals of the subsequent estimation terms.

Through our analysis, it has been seen that the introduction of a
hemical control drastically alters the picture, in the sense that the
iological condition is no longer necessary, since the pest control
trategy could be always rendered successful through the use of
hemical control alone, regardless of the biological characteristics
f the predator. To relate our findings with those of Nundloll et al.
2010), let us now suppose that ıx = 0 (no chemical control) and
hat yi → yiϕi(x, y) ≤ ˛i for 1 ≤ i ≤ n. Then, from the local stability
ondition (5),  one sees that

rT <

n∑
i=1

∫ T

0

y∗
i (t)ϕi(x, y∗(t))dt ≤

n∑
i=1

˛iT

nd consequently

 <

n∑
i=1

˛i, (15)

hich can also be interpreted as an upper bound on the inter-
erence between predators. To support this claim, let us suppose
hat the functional responses are of Beddington–deAngelis type,

i(x, y) = (bi/1 + kix +
∑n

j=1k
j
i
yj). Then ˛i can be taken as (bi/kii),

nd condition (15) reads as
 <

n∑
i=1

bi
ki
i

, (16)
ems 110 (2012) 162– 170 169

being a cumulative upper bound on the intraspecies interference
constants ki

i
. In this regard, when (16) is not satisfied, increasing the

amount of predators released each time or the release frequency
will not contain the pests.

Of course, there is room for improvement in the above results. As
pointed out by the referee, there are many assumptions which go
into the model itself. Especially, to make the mathematics tenable,
it has been assumed that r, a, e, ci, di, 1 ≤ i ≤ n, are constants and that
fixed proportions of prey and predators species ı and ıi, 1 ≤ i ≤ n,
are removed from the environment each time the pesticides are
used. While these assumptions are conceivable, it would be more
realistic to allow a certain degree of time dependence for some or
all of these parameters.
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Appendix

Proof of Lemma 2

Proof. Let us consider (x( · ), y( · )) : [0,  T0) → R
n+1 a saturated

solution for (S) which starts with strictly positive (x(0), y(0)). It is
seen that⎧⎪⎪⎨
⎪⎪⎩
dx

dt
(t) = x(t)

(
r − ax(t) −

n∑
i=1

yi(t)ϕi(x(t), y(t))

)
,

dyi
dt

(t) = yi(t)(cix(t)ϕi(x(t), y(t)) − di),

for 0 ≤ t < T0, t /= (n + l − 1)T, t /= nT,  1 ≤ i ≤ n, as long as the solution
remains positive component-wise. It then follows from Lemma  1
that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
x(t) ≥ x(0)(1 − ıx)

[
t + (1 − l)T

T

]
e

∫ t

0

p(s)ds

, 0 ≤ t < T0, 1 ≤ i ≤ n;

yi(t) ≥ yi(0)(1 − ıi)

[
t + (1 − l)T

T

]
e

∫ t

0

pi(s)ds

,

where⎧⎪⎨
⎪⎩
p(t) = r − ax(t) −

n∑
i=1

yi(t)ϕi(x(t), y(t));

pi(t) = cix(t)ϕi(x(t), y(t)) − di,

that is, x and yi, 1 ≤ i ≤ n remain strictly positive on [0, T0).

Proof. Let us consider a solution (x(·), y(·)) of (S) starting with
strictly positive (x(0), y(0)) and define the boundedness function
B : R+ → R+ by
B(t) = x(t) +
n∑
i=1

1
ci
yi(t), t ≥ 0.
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ne then has

dB

dt
(t) = x(t)(r − ax(t)) −

n∑
i=1

di
ci
yi(t)

nd, choosing 0 < d < min
{
di; 1 ≤ i ≤ n

}
,

dB

dt
(t) + dB(t) ≤ x(t)[(r + d) − ax(t)],

or t > 0, t /= (n + l − 1)T, t /= nT,  and consequently

dB

dt
(t) + dB(t) ≤ C = (r + d)2/(4a),

or t > 0, t /= (n + l − 1)T,  t /= nT.  Also

((n + l − 1)T+) ≤ (1 − ı)B((n + l − 1)T),

here ı = min
{
ıx, ı1, . . . , ın; 1 ≤ i ≤ n

}
, and

(nT+) = B(nT) +
n∑
i=1

�i
ci
.

y Lemma 1, it follows that

(t) ≤ B(0+)e−dt + C

∫ t

0

e−d(t−s)ds +
∑

0<nT<t

�e−d(t−nT),

hich yields

(t) ≤ B(0+)e−dt + C

d
+ �

edT

edT − 1
, t > 0, (17)

rom which the boundedness of B follows. Consequently, x, y1, . . .,
n are bounded and, by an easy argument, defined on the whole R+.
ote also that B is ultimately bounded by (C/d) + �(edT/edT − 1 + ˛)

or all  ̨ > 0, that is, by a constant not depending on the initial pop-
lation sizes.
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Iaş i, Romania, Bull. Inst. Pol. Iaş i, LVII (LXI), pp. 111–123.
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