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Abstract

A metapopulation model which explicitly integrates vector-borne and sexual trans-
mission of an epidemic disease with passive and active movements between an urban
city and a satellite city is formulated and analysed. The basic reproduction number
of the disease is explicitly determined as a combination of sexual and vector-borne
transmission parameters. The sensitivity analysis reveals that the disease is primarily
transmitted via the vector-borne mode, rather than via sexual transmission, and that
sexual transmission by itself may not initiate or sustain an outbreak. Also, increasing
the population movements from one city to the other leads to an increase in the basic
reproduction number of the later city but a decrease in the basic reproduction number
of the former city. The influence of other significant parameters is also investigated via
the analysis of suitable partial rank correlation coefficients. After gauging the effects
of mobility, we explore the potential effects of optimal control strategies relying upon
several distinct restrictions on population movement.

Keywords Vector-borne disease - Passive mobility - Metapopulation model - Sexual
transmission - Control mechanism

1 Introduction

Technological advancements in contemporary transportation have enabled people to
travel more often and on longer routes. Epidemic outbreaks occurring in local com-
munities can now easily spread to the world at large, potentially threatening public
health at a global scale. Therefore, adopting and enacting effective, coordinated epi-
demic control strategies through international and inter-community cooperation is of
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vital importance in order to mitigate the threat of global epidemics (MacPherson et al.
2007).

The detection and containment of several recent epidemics (Ebola in West Africa
and Zika in the Americas) lead to significant logistic challenges (Pompon 2017; Shen
et al. 2015). Part of these challenges has been addressed by the coordination of the
World Health Organization (WHO) and the resources of the Global Outbreak Alert
and Response Network (GOARN) (WHO 2016a; Majumder et al. 2016). Research
institutes have also been collaborating with the involved health administrations to set up
and enact effective control strategies and policies, for better and more comprehensive
epidemic control.

In this context, appropriate modelling of geographical communities and population
movements becomes mandatory. It should be noted that accounting for the effects of
population movements on the spread of an infectious disease can be accomplished in
several ways, illustrating the fact that human mobility encompasses a wide variety of
social phenomena taking place on vastly different time scales. An approach towards
modelling population heterogeneity and movements relies on the use of metapopula-
tion models, which consider distinct spatial locations called patches, corresponding to
countries, cities or local communities harbouring distinctive traits, connected by path-
ways for human migration and mobility (Arino and van den Driessche 2003; Hethcote
1978; Sattenspiel and Dietz 1995).

The cooperation and complementarity between urban and satellite cities create
successful urban-satellite relationships. Large urban cities are often linked with several
satellite cities, with only a few local jobs depending on the urban city for employment,
shopping and essential services such as specialized medical care. More often than not,
people from the urban cities also move to satellite cities for recreational activities,
especially on weekends and national holidays.

In this paper, the movements of people between the urban city and the satellite city
are classified as active and passive. The active movements are the casual movements
of people acting on their own free will, while passive movements are the movements
of some severely infected individuals who require intensive treatment of their disease.
The satellite clinics move these severely infected individuals from the satellite city to
the urban city through ambulance services. The individuals who move passively to the
urban city are typically to be confined to a hospital to receive intensive medical care,
while individuals who move actively can decide whether or not to move to the urban
city because solutions to their problems can be found in either city.

The theory of metapopulations was first introduced in 1969 (Levins 1969) in the field
of ecology. The succeeding years have witnessed an increased focus on the develop-
ment of metapopulation models aiming at epidemic containment. Disease containment
strategies such as travel restrictions (Colizza et al. 2007; Meloni 201 1) and vaccination
have been widely employed in metapopulation models (Hufnagel et al. 2004; Lima
et al. 2015). Further attempts at realism have accounted for the effects of behavioural
changes of individuals and timely dissemination of information upon disease contain-
ment (Meloni 2011).

However, only a few of these models have considered a metapopulation model
that incorporates a vector-borne disease which also spreads via sexual transmission.
Zika is one of the few diseases, if not the only one, that is transmitted through both
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sexual and vector avenues (Duffy 2009; Gao 2016; WHO 2016b). ZIKV, the Zika
virus, is a Flavivirus with functional similarities to DENYV, the dengue virus, and is
predominantly transmitted to humans by an infected female mosquito of the Aedes
genus. ZIKV has other possible routes of transmission including mother to child, sexual
and blood transfusions (Duffy 2009). ZIKV has been detected in serum, saliva, urine
and semen. In some cases, ZIKV may not be detected in the blood, but is still present
in urine and semen for 27 and 62 days after the onset of febrile illness, respectively
(Musso 2015a). The World Health Organization (WHO) declared the Zika epidemic
as a Public Health Emergency of International Concern (PHEIC) (WHO 2016b).

A study formulated two control models for investigating the impact of infecting
Aedes aegypti mosquitoes with Wolbachia strains on the transmission of ZIKV in
Brazil and concluded that the release of the male Wolbachia-infected mosquitoes is
the best strategy for controlling the spread of Zika virus, possibly even eradicating
wild mosquitoes eventually (Aliota et al. 2016; Wang et al. 2017). Further studies sug-
gested that risky human behaviours involving multiple sexual partners, particularly
among male populations, substantially increase the population of infected individu-
als, contributing significantly to the disease burden in the community (Agusto et al.
2017). Therefore, prevention and control efforts against ZIKV should target both the
mosquito-borne and sexual transmission routes (Gao 2016). A comparison analysis
of ZIKV outbreaks in French Polynesia, Colombia and the state of Bahia in Brazil
concluded that there are variations within the attack rates in the three different loca-
tions, but there exists an association between the amount of precipitations and ZIKV
outbreaks (He et al. 2017). However, in the USA, the Food and Drug Administration
issued guidelines restricting the use of genetically modified animals to control vector-
borne diseases. Consequently, it is crucial to explore alternative control scenarios by
assessing the potential impact of mobility restrictions on the magnitude and time-line
of an epidemic.

Mathematical modelling has become a vital tool for formulating and testing preven-
tion and control measures for infectious diseases (Zhang et al. 2017). A recent study
Arino and Portet (2015) used an SIR metapopulation model for investigating the spread
of infectious disease between a larger urban centre and several smaller communities,
using a mix of standard incidence (for the urban centre) and mass action incidence
(for the satellite cities). In this regard, the disease spread could be caused by either
human to human contact or through sexual intercourse with an infected person. It is
therefore instructive to investigate the role of passive and active human movements on
the spread of vector-borne and sexually transmitted infectious diseases. For the sake of
simplicity, we formulate a metapopulation model which incorporates both vector and
sexual transmissions together with active and passive movements of people between
an urban city and a single satellite city and then investigate its effect on the spatial and
temporal spread of the disease. The stability of a conceptually related model devised
to describe the spread of cholera between two communities connected by migration
has been discussed in Njagarah and Nyabadza (2014).

In this paper, we formulate a metapopulation model for the propagation of a vector-
borne disease which is also sexually transmitted, keeping track of two patches linked
together by means of active and passive mobilities. We then investigate the following
problems:
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e What is the main driving force for disease propagation in our concrete metapopu-
lation model?

e To what extent can active and passive mobilities lead to the spread of the disease
in both cities?

e Will restriction mechanisms acting upon active and passive movements between
the two cities lead to the elimination of the disease?

2 Model Formulation

To formulate our model, we divide the human population into two communities (urban
and satellite cities). Each community is further divided into five compartments accord-
ing to the disease status of the individuals. In each community, the individuals are
classified in the following way: susceptible individuals (S), exposed but not yet infected
individuals (E), infected individuals harbouring mild symptoms (1), infected individ-
uals with severe symptoms (/) and recovered individuals (R). Within each community,
the subpopulations are assumed to be homogeneous. To distinguish between similar
populations in both communities, of humans or vectors, we associate with the variables
and parameters related to the satellite city the subscript 1, while the corresponding
parameters and variables for the urban city have no subscript.

Our metapopulation model accounts for two movement patterns, active and pas-
sive. First, all populations except for the severely infected can freely move from one
community to the other, being assumed that no new infections occur during travel.
Typically, they show mild symptoms or no symptoms at all. Once reaching their des-
tination, they conform to the disease dynamics of the respective community.

Secondly, we assume that the infected humans harbouring severe symptoms (7, and
Ip1) are to be confined to a hospital, as they would be seeking strict medical attention
to recover from the disease. Therefore, the movement of infected individuals with
severe symptoms across communities is assumed to take place only from the smaller
community to the larger one (as a passive movement (gq)), since only the urban city is
assumed to possess the appropriate facilities to treat them.

New susceptible individuals are recruited in the urban and satellite communities
at rates b and by, respectively. Conversely, the susceptible individuals are depleted
through contact with infected vectors at a rate 6, as well as through sexual intercourse
with the exposed population at rate « and with the mildly infected population at rate
7, respectively, in the urban community, and at rates «1 and 7; with the exposed and
mildly infected populations, respectively, in the satellite community.

The exposed individuals transfer to the respective compartments of infected indi-
viduals with mild symptoms in both communities (/, and I,1) at rates y and yy,
respectively, and the infected individuals with mild symptoms have their health con-
dition further deteriorate into becoming infected individuals with severe symptoms
at rates of § and §; for both communities, respectively. The infected individuals with
severe symptoms (I and /;1) undergo medical treatment and recover at rates  and o1,
respectively. The recovered individuals acquire permanent immunity to the disease, in
both communities. Individuals in each compartment suffer natural mortality at rates
of d and d for the first and second communities, respectively.
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Exposed and infected individuals transfer the pathogens (viruses) to the susceptible
vector populations at rates 8, A,k for the urban city and 8,1 A1 7y1 for the satellite city,
respectively. The susceptible vectors are recruited at the respective rates b, and b,
for both cities and move to the exposed compartment after coming into contact with
exposed and infected human populations. The exposed vectors either die by natural
death at rates d, and d, for both cities or transfer to the infected vector population
at rates ¥, and 1, respectively. The vector populations are assumed to be present
in both communities, and hence, their transmission dynamics is considered to be the
same in both communities.

To gauge the effectiveness and impact of mobility restrictions, we employ an optimal
control approach using the Pontryagin’s maximum principle to determine the necessary
optimality conditions. We incorporate three time-dependent controls (u1(t), ua(t),
u3(t)) into the model (3) to determine the optimal strategy to control the disease.

e u1(t): The efforts of the satellite city to restrict the movement of human populations
(S1, E1, 141, R1) toreduce the movement of individuals that may be infectious into
the urban city.

e u>(t): The efforts of the urban city to restrict the movement of human populations
(S, E, I, R) to reduce the movement of individuals that may be infectious into
the satellite city.

e u3(t): The efforts of the satellite city to improve the treatment of the severely
infected individuals (/) to reduce the movement of the severely infected indi-
viduals into the urban city.

We assume that the satellite city will be able to upgrade the medical facilities during
a disease outbreak to improve the treatments of the inhabitants.

The control variables, u(¢), u>(t) and u3(¢), are bounded and Lebesgue inte-
grable functions. Our control problem involves a situation in which the number of
mildly infectious individuals, severely infected individuals, the cost of applying con-
trol mechanisms u(¢), uz(t) and the cost of the improvement of treatment u3(¢) are
minimized subject to the system (12). The given objective function is defined as

T
J(ul,uz,u3)=/ [c1ha + 2l + calun + eyl + csud + e + equd] dr, (1)
0

where 1,, I,1, I and Iy are the total infected human populations, 7 is the final
time and the coefficients c1, ¢3, 3, ¢4 are the unit costs of control mechanisms on the
mildly and severely infected individuals, and cs, ¢ and c¢7 are the unit costs of the
other control mechanisms. Our aim is to minimize the total cost of controlling infected
humans with mild and severe symptoms and at the same time save money on applying
control mechanisms u(?), uz(t), uz(t). Thus, we search for an optimal control (u’f,
u3, u3) such that

Jui, uy, u3) = mn;iznm {J(uy, u, u3)luy, uz, uz € 2}, 2)

@ Springer



Transmission dynamics with active and passive dynamics

4523

[;‘.-/::-K-'.- ES ﬂ;-/:;'r:-‘[ss;-

W:VE:‘ “‘.’7 ‘\..e b

L E o S |

‘d:,I:, Vd,E, vdS,
BALS BES| piIs

N, T e
h l '\ V] ‘\ A
b VE S, al)
T e S vy E e I : - > lb _— R

v ds v i ‘d[a ‘o’[_) ¥ ik

Fig.1 The flow chart of disease progression in an isolated community

in which the control set is

£ = {(ur, uz, uz)|u; :

[0,7 ]— [0, 1] Lebesgue measurable, i =1,2,3}.

The flow charts of disease progression are shown in Figs. 1 and 2, respectively.
Figure 1 shows the transmission of the disease in an isolated community, while Fig. 2
shows the transmission of the disease in two communities linked together by means of
transportation, with active and passive movements occurring between the urban and
the satellite city. Here, N, = S+ E + I, + R.

3 Model Analysis

For the sake of simplicity, we consider in this paper only the case of a single satellite
city linked to a single urban city. The corresponding equations of the model are given

below.
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Fig.2 (Colour figure online) The flow chart of disease progression in an urban city linked to a satellite city.

The red arrows represent the migration of the human population
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3.1 Positive Invariance

The total human population and the total vector population are given below. We assume
that the severely infected individuals do not infect anyone because they are hospital-
ized. That is, the severely infected and recovered ones have no infectivity to humans
or mosquitoes and are effectively removed from the population. The system (3) is epi-
demiologically feasible and mathematically well-posedin D = D, xD,, C ]REFO X Ri,
in which D, is the domain for the human subpopulations and D, is the domain for
vector subpopulations.

3.2 The Disease-Free Equilibrium

At the disease-free equilibrium, there is no infection in either the human or the vector
population. First of all, let us assume that there is no movement between the satel-
lite city and the urban city. The system (3) without mobility then has a disease-free
equilibrium E°, given by

b b b b
E®=(=,0,0,0,0,-%,0,0,-+,0,0,0,0, -,0,0) € R'®. )
d du dl dvl

Secondly, to obtain the disease-free equilibrium E ,91 for the system (3) with mobility,
we need to solve the equilibrium subsystem associated to the susceptible populations,
in the form

b+myS1 —(d+m)S =0,

(5)
by +mS — (dy +mp)S; =0.

It then follows that

b(d b b bi(d b b
0 = (Dditma) £ bima g Do g g, LLAEm Emb o 60,20 0,0).
ddy + dmy + md; dy ddy + dmy + md, dyi

3.3 The Basic Reproduction Number for an Isolated Community

The basic reproduction number is obtained using the next-generation method presented
in van den Driessche and Watmough (2002). It follows that the basic reproduction
number of an isolated community, described by the first eight equations of the system
(3) withm = my = 0, is given by

R + 4/ Rﬁh + 4Rﬁv

Ry = ,
0 2

in which Ry, is the basic reproduction number for sexual transmission and Ry, is the
basic reproduction number for vector-borne transmission, given by

Bty +k(d +9))
Rup = ,
(d+y)d+9)
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eﬂﬁwmbvd(rv (dy + ¥ry) + 1y (d + 5))

th = bd2
2(d +y)(d +8)(dy + Yv)

If the infection occurs in an isolated community, then the corresponding condition for
its persistence in terms of the basic reproduction number of the disease is given by
Ry > 1, which holds only if Ry + wa > 1.

3.4 The Basic Reproduction Number for the Connected System

If the infection occurs in a community which is connected to another one via population
mobility, the movements of individuals should be reflected in the reproduction number
of the disease. The reproduction numbers of the connected communities are then given

by
2 2
Runive + Ripim + 4R
Roim =
2
Rinom + /R oy + 4R o
Room = ,
2
in which
By +xk(d+ 8+ m))
Rumim =

Cd+y+md+8+m)’

Riviy = 9,33¢wv)\vbv(ddl +dmy + mdy) (ty(dy + Yry) + Ky (d + 8 + m))
v dg(b(dl +mo) +byma)d+y +m)d+8+m)dy +vy)

_ Biuyi +xidi + 81+ m2))
(di +y1 +mo)(di + 81 +m2)’

Rivo \/91ﬁ51¢11//v1)\u1bu1(dd1 + dmy + mdy) (ty1(dy1 + Yu1) + Kky1(d1 + 81 + m2))

M= .

’ 2, (b1(d +m) +mb)(dy + y1 +m2)(di + 8 +m2)(dy1 + Y1)

Rnhom

An estimation for the ‘global’ basic reproduction number Ry (somewhat less compu-
tationally intensive than the exact value, as it does not involve finding the inverse of
a higher-dimensional matrix) can then be given as the maximum of the reproduction
numbers associated with each community,

Ry = max{Roim, Roam}-
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The exact value of Ry can be obtained via the next-generation method. It is seen that

r Bk Bt 0 0 0B, 0 0 0 0 0 ]
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Buhvkubyd  Burytobud
h;” b;,, 0 0 0 0 0 0 0 0
F - 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 Bk pi1 11 0 0 0 61B1vd1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Bui )‘-L‘él)({\;‘l'lhvl dy Bui kréf{y:/hrl 4 g 9 0
L 0 0 0 0 0 0 0 0 0 0 _
M v 0 0 0 0 v 0 0 0 0 7
v3 V4 0 0 0 V5 V6 0 0 0
v7 Vg (o +d)71 0 0 Vg V10 V11 0 0
0 0 0 d+y)™" 0 0 0 0 0 0
Yy -1
v-l = 0 0 0 @rvod dy 0 0 0 0 0
V12 0 0 0 0 V13 0 0 0 0
V14 V15 0 0 0 V16 V17 0 0 0
vig V19 0 0 0 v v (@ t+a+g)! 0 0
0 0 0 0 0 0 0 0 di+v)™" 0
Lo o 0 0 0 0 0 0 TS it
where

by =ddy +dmy+dyy+diy +dim+ymo+yy +myp)

by =(ddy +dmy+ds; +di15+dim+8my+ 88 +mé))

az=di’y +2dyymy+diy S +diyyi+ym® +ympd +yman
+y 8y +mmoy

as=dyi+diy+ym+ydi+yyi+my

a; = (d1 +a1+q)(y1 +di +m2) (61 +di +m2)y + y1 (mady + (a1 + q)ma
+319)m)d +méiq (1 +di +ma)y +y1 (d+m))

by =(a+d)((y1 +di +m2)y + (d+m)d +dmy + y1 (d +m))

X (di+oa1+q) - ((61+d1 +mp)é+ (d+m)d +dms + 61 (d+m))
ay = (v (@ + o1 +q)yma> + (@ +a1+9) (@ +m+y)yi+y G1+d))m;
+oivigd+m+y)d+diglymma+yr (d+m)d+m+y))
bg=(+d)((d+y)mr+ (1 +di)(d+m~+y)) (di +ar+q)

(61 +di +m2)d +dmy + (81 + dy) (d + m))
ag =d*y1 +dsy1 +dy y1 + 2dmy, + 8y yi +Smy) +y mma
+ymyr +m*y

dy +y1 +my
V= ————
by
myp
V) = —
2=
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%= bib
di + 81 +mo
V4 = b—2
asmy
Vs =
>~ bibs
my
Vg = b_2
ay
v7 = b_7
as
BT atrd) bt +q)
ag
Vg = 5
_ dgdi+didmy+dmyqg +Smyay + 6 g8 +mgé
o= (@ +d) by (dr + a1 +q)
v = 4
"= fa+¢) (@t d)
m
v = by
d+y+m
V13 = by
_dn+diy+éyi+yma+yyi+my)m
= baby
m
vis = b_z
ore — 416
6= 3 b
d+38é+m
vy = b
S dyntdiytdnitymetyytmy)m
B byby (di + a1 +q)
_ m81
o= by (di +a1+¢q)
o — S1aie
0= boby (di + a1+ q)
81 (d+8+m)
v =
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i wi wy O % 0§Z¢ w3 wg O 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
ws5 We 0 0 0 w7 wg 0 0 0
Fy-l = 0 0 0 0 0 0 0 0 0 0
0D G L we 0 0w G
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
wiy wiz O 0 0 wie wis 00 0
i 0 0 0 0 0 0 0 0
where
Bk (di+y1+ma) PBraz
w) = +
by boby
Wy — BT (di + 81 +mp)
2T ddy +dms +dd +di 8 +dim+Sma + 881 + mdy
Brmy  Brasmy
w3 =
3T T baby
_ Btmy
T dd £ dma + dd +di S +dim + Sma + 88, + mdy
We — Bu Ay iy by d (dy + y1 +m2) Bvry Ty by dasz
5 bd, b, bd, byb,
We = Bv Ay Ty byd (di + 81 +m2)
6= bd, bs
wn — Bu Ay kybydmy By Ay Ty by dasm
! bd, by bd, byb,
Bo iy Ty by dmy
wyg = ——77"——
bd, by
Bitim
wyg = ———
by
prt (d+y+m)
wip =
by
01 B1v 1 Yy
wj=——"Q
(dvi + Y1) dyi
Wiy = Buvi Aviky1 by dym
bidy by
Bvi Avi Tyrbyrdy (dyy +diy +8yityma+yyi +my)m
+
by dy; b1by
Bvi dvi Ty by dim
w13 =

bidy; by
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Table 1 Descriptions of notations for variables

Description Variable

Total susceptible human population sT = (s, 81)

Total exposed human population ET = (E,Ey)

Total mildly infected human population IaT = g, 141)

Total severely infected human population 1 bT = (Ip, Ip1)

Total recovered human population RT = (R, Ry)

Total susceptible vector population ST = (Sy, Su1)

Total exposed vector population ET = (Ey, Ey1)

Total infected vector population 1T =y, L)

Total vector population Ny = (ST, Eg , 15 )
Non-susceptible human population J=(ET, laT, le, RT)
Non-susceptible vector population Jy = (ET, 13" )
Generic epidemiological population c=T,, SUT, Jv)
Total human population size N = 2121 Ni = 18T, Dl
Total vector population size Ny =[Nyl

Bui dvrkyibypdy (d+y +m) B Ay T bypdy are

w4 =

bydy; by b1dy; bi1by
w5 = Bvi ity byrd (d+ 68+ m)

by dy; by

The global basic reproduction number (Ry) is then given as the dominant eigenvalue of
the matrix FV ~! given above. An outcome is the fact that Ry does not depend upon the
passive movementrate g, which is perhaps because the severely infected individuals are
supposed to be hospitalized and isolated from the susceptible individuals. This changes
if a single category of infectives is considered for each location (see “Appendix B” for
details).

3.5 Uniform Strong Disease Persistence and Existence of Endemic Equilibria
Under the assumption of the constant recruitment, it is easy to see that the host is
strongly uniformly persistent. To simplify our results, we make the notations sum-

marized in Table 1. Since the recruitment rates b and b; are positive constants,
ST () > (0,0) forallz > 0, and there exist two positive constants 87 and 85 such that

lim inf ST (1) > (87,8%)
11— o0

for all non-negative solutions in the system (3). In fact, by the first subsystem in the
system (3)
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as BE +tl,) n 0Bvd 1,
dr Np Ny,
>b—(d+Bk+71)+60B,¢)S —mS.

b—(d+ )S—f—szl—mS,
Consequently, there exists § ’f € (0, +00), independent of the solution, such that

b
lim inf S(t) > =: 5%
100 d+ B +71)+ 0By +m

Similarly, there exists a 85 € (0, +o00) such that
liminf S (¢) > §;.
[—00

Hence, if Ry > 1, the disease is then uniformly strongly persistent as well. Since
ST(t) >> (0,0) forz > 0, the subsequent persistence results do not need the solutions
of system (3) to satisfy S (0) >> (0, 0). Also, if Ry > 1, and all recruitment rates b
and b are positive constants, then there exists some € > 0 such that

litm(i)gf Ci(t) >¢e,i=1,2, CeCand C=(C,C)

for all non-negative solutions of system (3) with
(ET(0), 1, (0). 1, (0). E; (0), 1] (0)) > 0.
Let

X={ST,ET, 1T, 1F, RT, ST ET IT) € (0, 00)'®|(ST, ST) € (0, +00)* and

v
ET, (I 1 RTET IT) e R1?).

> ta v

By Theorem A.32 of Thieme (2003), the solution takes its values in X for r > O.
Define p : X — R, by

p(ST ET 1] 1 R N =1,

s Lg o
for fixed I € {I,, I,1, Ip, Ip1, I, 1}, and p : X — R, by

1, +1 Ign+1 I+ 1
a b+ al b1+ U_Ul‘

o(ST ET 1T 1T RT N, =
o( b v) N, Nit

s Lag

Ny

In the language of Sect. A.5 of Thieme (2003), the semiflow ® induced by the solutions
of system (3) is uniformly weakly p-persistent by Theorem 4.3 in Dhirasakdanon et al.
(2007). The compactness condition in Sect. A.5 of Thieme (2003) follows from the
results above. Notice thatevery total orbitw : R — X of ® is associated with a solution
of system (3) that is defined for all times and takes value in X. By the irreducibility
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of the matrix (n?z ’g), p(w(0)) > 0 whenever p(w(t)) > 0 for all t € R. The

claim for C € {IaT , IbT , IUT } now follows from Theorem A.34 in Thieme (2003). For
C e {ET,RT,EI}, modify p(ST, ET, 17,1, RT,N,) = Ci. For C = S7, the
statement has already been shown in the content above. Similarly, for C = SUT , the
statement should be easily shown. The existence of an (endemic) equilibrium of system

(3) in (0, 00)'® follows from Theorem 1.3.7. in Dhirasakdanon et al. (2007).

4 Sensitivity Analysis

A sensitivity analysis is carried out to find the dependence of the basic reproduction
number upon the parameters of the model. This analysis is essential, enabling us to
identify the critical parameters to be acted upon if the disease is to be controlled
and eliminated. The sensitivity and uncertainty analyses are performed by using the
Latin hypercube sampling (LHS) scheme, which is a Monte—Carlo stratified sampling
method leading to an unbiased estimate of the model output for a given set of input
parameter values (Chitnis et al. 2008; Blower and Dowlatabadi 1994). The parameter
space is sampled without replacement, assuming statistical independence between the
parameters. The selected sample is then used to determine unbiased estimates of output
values for the reproduction numbers Ro1p and Rpo s of the model, respectively. Roi s
is the average number of infections that a single individual in the urban city causes over
the duration of the infectious period accounting for movements of humans between
both cities, and Ry is the average number of infections that a single individual
in the satellite city causes over the duration of the infectious period accounting for
movements of humans between both cities.

The partial rank correlation coefficients determined for the reproduction numbers
are graphically presented in tornado plots, as shown in Figs. 3 and 4. A positive (nega-
tive) correlation coefficient corresponds to an increase (decrease) of the reproduction
numbers as a result of an increase in the corresponding parameter. The parameters
Yy, 0, ¢ and A, have the lowest partial rank correlation coefficients (PRCCs) with
respect to Roipr, while 7,1, dq and 1,1 have the lowest PRCCs with respect to Roa .
However, their influences are visible. The human to human transmission parameters
7, k, 71 and k1 for both cities, respectively, have positive correlations indicating that
an increase in sexual transmission will lead to an increase in the basic reproduction
number.

The respective correlation values of k and 7 are too small to cause an outbreak of the
disease, but their combined contribution is large enough to prolong an outbreak in the
urban city. In this regard, any measures that increase vector mortality or reduce their
multiplication decrease not only the burden of infection but also the risk of contracting
it. Also, the rate 6 at which susceptible individuals become infected and the contact
rate f increase the basic reproduction number when increased. Further, increasing the
movement of infected individuals m and m, from one patch to the other leads to an
increase of the threshold for the latter and a decrease of the threshold for the former,
which increases the risk of local disease outbreak.
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Fig. 3 Tornado plot showing partial rank correlation coefficients (PRCCs) of the reproduction number

(Ro1 M) with respect to the parameter values

0.6 d_vi |
b_vi
T 1

d_tesf

m
A_vi

=)
o
cl

-0.6

0.6

-0.05

0.3

0.6

-0.07

Il 0.02

0.09

0.3

0.3

0.3

0.3

0.3

04

0.7

0.8

-0.8 -0.6 -04

-0.2 0

0.2

04

0.6 0.8 1

Fig. 4 Tornado plot showing partial rank correlation coefficients (PRCCs) of the reproduction number

(Ro2p) with respect to the parameter values

5 Optimal Control Strategies

Vector control techniques may be an effective way of reducing epidemic transmission,
as shown by our sensitivity analysis. However, we try to stay away from the contro-
versial issue of using genetically modified vectors to control the vector population.

@ Springer



4534 P.Harvim et al.

After the emergence of the HIN1 influenza in 2009, travel-related control strategies
during the early stage of the epidemic outbreak were used to slow down its spread.
Consequently, in this work we incorporate three time-dependent control variables into
the model (3) to determine the optimal strategy for controlling the disease. The model

(3) then becomes

ds KE+tl,  0Budl,
—=b—- S — S—dS 1-— t St —({1— t S,
& B N, N, + A —ui()maS; — (1 — uz(t))m
dE  kE+tl, . 0By,

— = S S—dE —yE 1— t E

a B 7 + N, YE+ (1 —ui(t)mk

— (I —uz(t))mE,

dl,

e yE —dl, — 81, + (1 —ui(t))malsy — (1 —uzx(®))ml,,

dlp

T 8y —aly —dlp + (1 —uz(t)qlp,

dR

E =alp —dR+ (1 —ui(t))myRy — (1 —up(t))mR,

ds K E + 11,

dtv = bv - IBU)\'UUN—hvaSU - dev7
dE Ko E + 1,1,

d[v = ﬁv)\‘UUN—hvaSU - dva - I/qum

dl,

E = vav - dvlvv

dsS; k1 Er + 11la 01Bv1d11v1

— =b; — S| — S —di S — (1 — t S

; 1— B Ni 1 N 1 —d1S1 — (1 —u1(t))my S

+ (I —u(t))msS,

dE, k1 E1 + 1141 S+ 01Bv1®11v1

=B S| —diEy —yiEr — (1 —u1(t))maEy

? N ! Npi
+ (1 —ur(t))mE,

dl

- vikEy —dilagr — 811p — (1 —uy(0))malyy + (1 — up(2))ml,,
dlp
X Sitlgy —ardpy —dilpy — (1 — u2(t))q1p1,

dR;

Tl aylpr —diRy — (1 —uy(t))maRy + (1 — u2(¢))mR,
dSy1 ko1 E1 + t1lan
d_: =by1 — ﬁvl)»vlvN—hlvaSul — dy1Su1,
dEy k1 E1 4 to1la1

dtv = ,BUIA,A”N—M””S“ —dy1Ev1 — Vo1 By,

dly

dr = wlevl _dvllvl- (6)
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Pontryagin’s maximum principle (Pontryagin et al. 1962) states a necessary condition
that must hold on an optimal trajectory. This principle converts the equations (12) and
(13) into a problem of minimizing pointwise a Hamiltonian H with respect to u1, u»
and u3.

The Hamiltonian is given by

H=cil,+cIp +c3ly + calpr + C5u% + c6u% + cm%,

KE+1l,  0Byol,
As1b — S —
+ S{ B N, N,

S—dS+ 1 —ui(t)maS;

-- Mz(t))mS},

kE+1l, S 0B 1,
Np Np

+AE{/3 S—dE —yE + (1 —ui(t))myE

- —uz(t))mE},

+ A \VE —dly —81a + (1 —ur(1)malay — (1 —uz(t))mla},
+Ap{81a —alp —dlp + (1 —u3(t)qlpi},

+ )»R{Otlb —dR+ (1 —uy())maRy — (1 — uz(t))mR},

E 1,
+ )LSU{bv - ﬂvkvmsv - dvsv},
Np
KkyE + 1l
+ )\Ev{lgv)\vusv - dva - vav}a

+ )‘«Iu{l/fva - dvlv},

K1E1 + 11 0 1
+M.{b1—,31 Ertnida g 1Bv1®11y1

S1 —diS1
Npi Npi

— (1 =u1(t))mySy + (1 — uz(t))mS},

kK1Er + 111 0 1
-H»El{ﬂl vt olag 1Bvid1 11

S1—diE1 — i Eq
Npi Npi

— (0 —ur(®))mrEr + (1 - Mz(t))mE},

+ A niEr —dilgr — 81la1 — (1 —ur(t)malyr + (1 —ua(t))ml,},
+ A {811a1 — ot lpy — didpr — (1 — u3(t)qlp1},
+ Ar{arlpy —diRy — (1 —uy(t))maRy + (1 — ua(t))mR},

k1 E1 4+ o111
+ s, {bvl — Bothyl —————=S5y1 — dy1 Sy }
Nni
ko E1 4+ Tylsn
+ )LE,” {ﬂvlkvl#svl - dlevl - I/fleul},
Nni
+)‘11;1{1//U1Ev1 —dyi 1}, @)
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where Ag, Ag, A, A1y ARs ASys AEys Mys ASys AEps My Ay ARy ASyps AE, and Ap,
are the adjoint variables or co-state variables. The system of equations is found by
taking the appropriate partial derivatives of the Hamiltonian (15) with respect to the
associated state variables. Furthermore, the transversality conditions are

As(T) = re(T) = A1, (T) = A, (T) = AR(T) = A5,(T) = 1g,(T) = A, (T)
= )"S] (T) = )"E| (T) = )“Ial (T) = )\'Ibl (T) = )\-R| (T) = )‘-Sm (T) = )"Em (T)
= 2y, (T) = 0.

Finally, since in our optimal control problem there are no terminal values for the
state variables, we give transversality conditions at the final time T by 1;(T) = 0,
i=1, 2, 3.

On the interior of the control set, where 0 < u; < 1, fori = 1, 2, 3, we have

oH

E = 2csu1 — mpS1hs —maE1Ag —malg1Ahg, — maRiAg +m2S1As,
+myE\Ag, +malady,, +maRiAg, =0,

oH

8_ = 2ceur + mSAs + mEAg +mlh, + mRAgr —mSAs, —mEAE,

us

—mlgh,, —mRAR, =0,

oH

— =2cu3 — qlpihy, +qlpirg, =0.

ous

By the standard control arguments involving the bounds on the control variables,
we obtain

u} = min {1, max (0, uT*)} ,
u’ = min {1, max (0, u%*)} ,

u3y = min {1, max (0, u§*)} ,

1
uy; = ?[mzslks +maE\ g +molgihy, + maRiAR — maSiAs, —maE Mg,
5
—molgAp, —m2R1AR11|,
1
Uy = Yor —mSAs —mEMg —mlhj, — mRAR +mShs, +mEAE,
6

+mlghp, + mR)»Rli|,
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Table2 Average daily number of individuals travelling in each direction between Winnipeg and the satellite
community Steinbach. Data from 2011 Canadian census (Manitoba)

City Population Distance (km) Average daily travellers
Winnipeg 663,617 66 7505
Steinbach 13,524 66 7505

1
u;* — El:qlhl)\.[b — q]hl)»1,7]i|.

6 Estimation of Parameters

To estimate the movement rates, we use the approach employed in Arino and Portet
(2015). Let us consider the urban city S and its population Ng. Assume that the rate
at which individuals leave city S to move to the satellite city Sy is myy, . Thus, ceteris
paribus, N; = —mgs, Ny, which implies that Ng(1) = N (0)e ™17, Therefore, after
a day, Ny(1) = N;(0)e™ "1, that is,

<Ns(1)>
Mssy = —In{ ——).
N;(0)

Now, Ns(1) = Ng(0) — Py, , where Pgy, is the number of individuals going from S to
S1 each day. It follows that
P
Mgy = —In (l - = )
Ns(0)

This is computed for the pair of cities given in Table 2, using data from the 2011
Canadian census (Arino and Portet 2015).

All parameter descriptions are summarized in Tables 3, 4, 5, 6 and 7, together
with their explored ranges. Certain parameters are chosen to have the same values
in both cities (patches) because of their geographical proximity. The disease-related
parameters are taken to match those of Zika.

7 Numerical Simulations

In this section, we explore from a numerical point of view the potential effects of
optimal control strategies with restriction of movements on the dynamics of disease
transmission. The optimal control profiles are determined by solving the optimality
system consisting of 32 ordinary differential equations, representing the state and
adjoint equations.

We deal with the corresponding two-point boundary value problem with bound-
ary conditions at t+ = 0 and t = T by using a fourth-order Runge—Kutta method
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Table 3 Description of each

variable used for the model Description Symbol

Size of the susceptible human population in the urban S(1)
city

Size of the exposed human population in the urban city E(t)

Size of the infected human population with mild I1,(1)
symptoms in the urban city

Size of the infected human population with severe Ip(t)
symptoms in the urban city

Size of the recovered human population in the urban city R(1)

Size of the susceptible human population in the satellite S1()
city

Size of the exposed human population in the satellite Eq(t)
city

Size of the infected human population with mild 11 (1)
symptoms in the satellite city

Size of the infected human population with severe Ip1 (1)
symptoms in the satellite city

Size of the recovered human population in the satellite R (1)
city

Size of the susceptible mosquito population in the urban Sy ()
city

Size of the exposed mosquito population in the urban Ey(1)
city

Size of the infected mosquito population in the urban Iy(t)
city

Size of the susceptible mosquito population in the Su1(t)
satellite city

Size of the exposed mosquito population in the satellite Ey (1)
city

Size of the infected mosquito population in the satellite I, (?)
city

implemented in Matlab. Combining two control measures at a time or, in an instance,
combining all three control measures, we then compare the corresponding numerical
results. We choose the values for most variables and parameters based on available
information from a literature survey as shown in Tables 4, 5, 6 and 7, all other val-
ues being either estimated or assumed. The initial conditions used for simulations are
given in Table 8. Also, to illustrate the effect of each optimal scenario on the spread
of the disease in the population, we use the following cost factors: ¢; = 85, ¢ = 80,
c3 =70,cqa =75, c5 = 85, ce = 80 and ¢7 = 75. The approach of cost factors is
necessary and common in optimal control problems (Okosun et al. 2013; Cai et al.
2017; Zhang et al. 2017; Rodrigues et al. 2014; Stefanescu and Dimitriu 2012).

Next, we provide a quantitative discussion of the optimal control strategy by inves-
tigating different mobility restrictions.
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Table 4 Description of variables and parameters used for the urban city (I)
Para-meter ~ Description Value  Range explored  Source
B Contact rate between exposed or mildly 0.05 0.04-0.06 Gao (2016)
infected humans and susceptible
humans (day_l)
K Probability of transmission from exposed 0.3 0-1 Gao (2016)
humans to susceptible humans
(dimensionless)
T Probability of transmission from mildly 0.3 0-1 Gao (2016)
infected humans to susceptible humans
(dimensionless)
y Human progression rate from exposed to 0.6 0-1 Gao (2016)
mildly infected (day 1)
) Human progression rate from mildly 0.2 0.2-0.24 Bearcroft
infected to severely infected (day_l) (1956)
o Human progression rate from severely 0.053 0.04-0.07 Musso
infected to recovered (day_] ) (2015b)
[% Probability of transmission from an 0.4 0.1-0.75 Andraud et al.
infectious mosquito to a susceptible (2012)
human (dimensionless)
Table 5 Description of variables and parameters used for the urban city (II)
Para-meter Description Value Range explored  Source
Buv Vector biting rate (day*] ) 0.5 0.3-1 Andraud et al. (2012)
] Vector contact rate with humans 0.502 0.34-0.52 Blayneh et al. (2009)
(day™")

Ay Probability of transmission from an 0.5 0.3-0.75 Chikaki and Ishikawa
exposed or mildly infectious (2009)
human to a susceptible mosquito
(dimensionless)

Ky Vector contact rate with exposed 0.5 0.3-0.75 Chikaki and Ishikawa
human (day 1) (2009)

™ Vector contact rate with infected 0.5 0.3-0.75 Chikaki and Ishikawa
human (day 1) (2009)

b Natural birth rate of human 5 1-10 Chitnis et al. (2008)

population (day ™ )

d Natural death rate of human 0.00004 Nishiura et al. (2016)

population (day_l )

by Natural birth rate of the vector 5000 400-5000 Andraud et al. (2012)

population (day ™ 1

dy Natural death rate of the vector 0.02 0.013-0.134 Chitnis et al. (2006)

population (day_l)

m Movement from urban city to 0.5 0.25-0.73 Arino and Portet

satellite city (day_l) (2015)
Yy Vector progression rate from exposed 0.091 0.029-0.33 Chitnis et al. (2008)

to infected (day™ 1)
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Table 6 Description of variables and parameters used for the satellite city (I)

Para-meter  Description Value  Range explored  Source

B Contact rate between exposed or 0.054  0.04-0.06 Gao (2016)
mildly infected humans and
susceptible humans (day ™ )

K1 Probability of transmission from 0.3 0-1 Gao (2016)
exposed humans to susceptible
humans (dimensionless)

7] Probability of transmission from 0.3 0-1 Gao (2016)
mildly infected humans to
susceptible humans
(dimensionless)

Y1 Human progression rate from 0.6 0-1 Gao (2016)
exposed to mildly infected (day— )

81 Human progression rate from mildly 0.2 0.2-0.21 Bearcroft (1956)
infected to severely infected
(day™")

o] Human progression rate from 0.05 0.04-0.07 Musso (2015b)
severely infected to recovered
(day™")

01 Probability of transmission from an 0.4 0.1-0.75 Andraud et al. (2012)
infectious mosquito to a
susceptible human (dimensionless)

7.1 Control Strategies

Strategy A: the combination of u(¢) and u»(¢).
Strategy B: the combination of u(#) and u3(t).
Strategy C: the combination of u>(¢) and u3(¢).
Strategy D: the combination of u1 (), u>(t) and u3(z).

Contour plots of the basic reproduction number in terms of certain significant
parameters are shown in Fig. 5. From Panels a, b, it is seen that the movement param-
eters (m and m») act somewhat differently on the dynamics of the disease propagation
in the urban city and the satellite city, respectively, as evidenced through their influ-
ence upon the value of the respective reproduction numbers. In the meantime, it is
observed from Panels c, d that the sexual transmission parameters (x, T, k1, and 71)
have similar effects on the dynamics of the disease propagation in the urban city and
the satellite city, respectively, as viewed through the same lens of influence upon the
value of respective reproduction numbers.

The estimation of the basic reproduction number R’ = max{Roias, Ro2p} is seen
to have the value R’ = 2.1126, where the component of R¢ characterizing sexual
transmission is Ry, = 0.1954 and the component characterizing vector transmission
is Ry, = 2.0125. This implies that vector transmission plays a critical role in the
spread of the disease, while sexual transmission is mostly responsible for increasing
the prevalence of the disease. Panels e, f show the effects of Ry, and Rp, on the basic
reproduction number Ry.
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Table 8 Initial conditions used

) . Description Symbol [Initialvalues
for simulations

Size of the susceptible human S(t) 125, 000

population in the urban city
S(t) 125, 000
Size of the exposed human E(t) 5000

population in the urban city
Size of the infected human I, (1) 2000

population with mild symptoms in
the urban city

Size of the infected human I (1) 2000
population with severe symptoms
in the urban city

Size of the recovered human R(t) 1000
population in the urban city

Size of the susceptible human S1(1) 75, 000
population in the satellite city

Size of the exposed human Eq(t) 4000
population in the satellite city

Size of the infected human 1,1() 2000

population with mild symptoms in
the satellite city

Size of the infected human Ip1(t) 2000
population with severe symptoms
in the satellite city

Size of the recovered human Ry (1) 800
population in the satellite city

Size of the susceptible mosquito Sy (t) 250, 000
population in the urban city

Size of the exposed mosquito Ey(1) 50, 000
population in the urban city

Size of the infected mosquito Iy(1) 20, 000
population in the urban city

Size of the susceptible mosquito Sy1(t) 250, 000
population in the satellite city

Size of the exposed mosquito Ey (1) 40, 000
population in the satellite city

Size of the infected mosquito Iy (1) 20, 500

population in the satellite city

From Fig. 6a, it is observed that an increase in the passive movements of infectives
leads to an increase in the global basic reproduction number of the simplified model
(shown in “Appendix B”). Figure 6b indicates that an increase in the passive move-
ments alone within the specified values will lead to an increase of approximately 10%
in the global basic reproduction number.

From the optimal control simulation results (Figs. 7, 8 and 9), it is observed that the
combination of the control measures u(¢) and u3(¢) decreases the size of the infected
human population in the urban city compared to the satellite city. This strategy suggests

@ Springer



Transmission dynamics with active and passive dynamics 4543

08
07
08
05 X
o
g 04
03
02
041
0
o 01 02 03 04 05
m

(a)

03
025
02
[S2E)
04
005
3

)

005 01 015 02 025 03

(d)

Fig. 5 (Colour figure online) Contour plots for the basic reproduction number in terms of significant
parameters. Panel a shows the contour plot of Ry in terms of my and m. Panel b shows the contour plot
of Roo s in terms of my and m. Panel ¢ shows the contour plot of R in terms of k and 7. Panel d shows
the contour plot of Ry in terms of k| and 71. Panel e shows the contour plot of Ry s in terms of Ry, s
and Rpp1 - Panel f shows the contour plot of Ry in terms of Ry and Rypop-
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Fig.6 (Colour figure online) Simulations showing the effects of passive and active mobility on the global
basic reproduction number of the simplified model (R(S))

that the restriction of movements of individuals from the satellite city into the urban
city has a significant effect on the control of the disease in the urban city. Similarly, the
combination of the control measures u(#) or uz(z) with us(¢) visibly decreases the
number of the infected human population in the satellite city. This suggests that the
restriction of movements of individuals from the urban city into the satellite city has
a significant effect on the control of the disease in the satellite city. Total restriction
of movements into both cities (the combination of all three control measures u(t),
uy(t) and u3(t)) significantly decreases the number of the infected population when
compared to the strategies combining only two control measures.
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Fig.7 (Colour figure online) a, b A comparison between the effects of all four control strategies A, B, C and
D on the sizes of the mildly infected human populations in the urban and the satellite cities, respectively.
The outcome of the control strategy D is a significant decrease in the disease incidence in both cities. The
reduction of the disease incidence is even more prominent in the satellite city when compared to the urban
city. This result shows that if both cities adhere to the effective implementation of the strategy D, then the
disease incidence will be greatly reduced. The profile of the control is shown in (c)
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Fig.8 (Colour figure online) a, b A comparison between the effects of all four control strategies A, B, C and
D on the sizes of the severely infected human populations in the urban and the satellite cities, respectively.
The outcome of the control strategy D is a significant decrease in the disease incidence in both cities. The
disease incidence is significantly reduced in the satellite city compared to the urban city. This result shows
that if both cities adhere to the effective implementation of the strategy D, then the disease incidence will
be greatly reduced. The profile of the control is shown in (c)

8 Conclusion

A metapopulation model is formulated in order to investigate the role of active and
passive mobilities on the spread of an epidemic between an urban city and a satellite
city. Mathematically relevant features such as the biologically significant invariant
region and the basic reproduction number of the disease for isolated communities and
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Fig.9 (Colour figure online) Simulations of the combinations of the control measures u1, up and u3

communities connected by migration, respectively, are introduced, and control strate-
gies are investigated. The basic reproduction number of the disease Ry is explicitly
determined as a combination of sexual and vector-borne transmission parameters.

From our sensitivity analysis, we observe that the basic reproduction number of
the satellite city (Rp2p7) has a positive correlation with the rate of movement from the
urban city to the satellite city (), which indicates that an increase in the movement
rate m will lead to an increase in the basic reproduction number of the satellite city.
Similarly, the basic reproduction number of the urban city (Roip) has a positive
correlation with the rate of movement from the satellite city to the urban city (m>3),
which indicates that increasing the rate of movement from the satellite city to the urban
city will increase the basic reproduction number of the urban city. As an increase in the
basic reproduction number leads to a corresponding increase in the disease prevalence,
this will in turn lead to an increase in the disease prevalence.

Itis also observed that the basic reproduction number is least sensitive to the sexual
transmission parameter «, with sensitivity index equal to 0.2, which suggests that
sexual transmission by itself may not initiate or sustain an outbreak and can only
increase the risk of infection and the size of the epidemic, leading to a complicated
scenario for the controlling of the disease. What is then realised from the sensitivity
analysis is that in our metapopulation model of a vector-borne disease which is also
sexually transmitted, the disease spreads mainly through the vector-borne mode of
transmission rather than through sexual transmission, which is attributed to the facts
that vectors abound and the vector to human contact rate is larger than both the human
to human contact rate and the rate of sexual activity.

In order to analyse the impact of mobility in disease propagation, we further include
three time-dependent control measures on the movement of individuals from the urban
city to the satellite city and vice versa. It is observed from the simulation results that
the optimal control strategies result in a significant decrease in the infected human
population in both cities (to be noted that this also depends on the weights chosen
for optimal control). When strategies A, C and D are employed, the decrease in the
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infected population of the satellite city is more prominent, while when strategy B is
employed, the decrease in the infected population in the urban city is more prominent.
The best control strategy is strategy D, the combination of all three control measures.
Another outcome of the simulations, consistent with the findings of related studies,
Arino and van den Driessche (2003); Arino and Portet (2015) the disease prevalence
can be controlled by targeting the urban city with major control measures.

The model formulated and analysed in this paper is related to the ones presented in
Arino and van den Driessche (2003), Arino and Portet (2015). However, while Arino
and van den Driessche (2003) and Arino and Portet (2015) discuss S7 R metapopu-
lation models (host-host transmission only, that is, albeit from an arbitrary number
of groups/cities), we further consider the effects of vector-host transmission. The
basic reproduction number of our model is explicitly computed for a given scenario
(without movement), an explicit estimation and a numerical estimation being pro-
vided for another scenario (with movement), while in Arino and van den Driessche
(2003), Arino and Portet (2015) the basic reproduction number can only be numeri-
cally estimated. Also, we incorporate control strategies in our model and investigated
the effects of the optimal restrictive measures upon the dynamics of our model, while
neither Arino and van den Driessche (2003) nor Arino and Portet (2015) is concerned
with control problems. Both our model and the those of Arino and van den Driessche
(2003), Arino and Portet (2015) agree in the finding that the movement rates may have
a significant impact upon the basic reproduction number of a single city (local basic
reproduction number), but their impact upon the global basic reproduction number
is smaller. (Particularly, they are not the main driving force of the infection for our
model.)

For our model, which considers both host-host transmission and vector—host trans-
mission, we have observed that the main driving force of the disease spread is the
vector population. The fact that active movements have comparatively little influence
upon the global basic reproduction number of the model indicates that although travel
restrictions restriction from the urban city to the satellite city may reduce the preva-
lence of the disease in the satellite city, significant control measures targeting the
densely populated cities will be required in order to eradicate the disease in the entire
region.

Like many other mechanistic attempts at distilling the essence of biological pro-
cesses, our approach has certain limitations. The model presented in this paper assumes
homogeneous mixing, which is stringent to achieve in vectors (mosquitoes) and in sex-
ual transmission of a disease. In practice, susceptibility to Zika virus varies, because
of differences in behavioural, social and environmental factors. Despite these set-
backs, this model presents a unique attempt to link the dynamics of a metapopulation
model with both vector and sexual transmission to the use of certain control measures,
mathematically and numerically. The model can also be extended by incorporating
additional interventions such as behaviour change and media campaigns.

Further, we assumed for the sake of simplicity that no new infections occur dur-
ing travelling, an assumption which is shared with most usual metapopulation models.
There are, however, documented instances of influenza transmission during train trans-
portation (Le 2010; Furuya 2007). Disease propagation is also known to occur on-board
aircrafts, although the occurrence risk is regarded as being significantly lower due to
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the nature of the modern ventilation systems and being concentrated close to infected
passengers with symptoms (Baker 2010) (A/HIN1), (Kenyon 1996) (tuberculosis).
See also Mangili and Gendreau (2005) for a generic assessment of transmission risks
during commercial air travel. In this regard, models accounting for infections occur-
ring during transportation have been considered in Arino et al. (2016), Knipl (2016)
and we see this avenue as another way of extending our model.
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9 Appendix A

Model equation

ds kE+1l, 0B,d1,

— =b- S — S—dS+myS; —mS,

dr p Nj Nj st

dE kE+1l, 0By 1,

— = S S—dE —vE Ei—mE,

a7 B N, + N, yE+myE] —m

dl,

E =yE—dl; —38lg +malqy —ml,,

drp

E =681, —al, —dIy +qlp,

dR

& =al, —dR +myRy —mR,

ds KoE + 11

d_lv = bv - ,BU)LUUN—hvaSv - dUSU7
dE KkoE + 11

dlv = lgv)‘va—hvaSv - dva - vava

dr

d_tv = vav —dyl,,

ds; kK1 Ey + 11141 01B8v19114151

— =bh; — S| — —di Sy —mpS S,
5 1— B N 1 Nt 151 —maS1+m
dE, kK1 Ey + t1la1 01B8v1011y151
— = S —d1E1 —v1E] — E E,
ar 1 N 1+ Ni 1Er —viEr—mEr+m
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dl/

d—atl =y E —dilg — 811y —maly +mly,

dip

el S1lgr — arlpy — dilpr — qlp,

dR

d_t] =oalp —diRy —maR; + mR,

dSy1 ko1 E1 + to1la1

=b, — Ayl ————————Sy1 — dy1Su1,
dr vl ,Bvl vl Nhl vl vivvl
dE, K1 E1 + Tl
— = ﬂvl)"vl#svl - dlevl - 1u”levl,

dt Ny

dly

d; = Y1 Evt —dy1 1. (8)

Positive Invariance

By Theorem A.4 in Thieme (2003), there exists a unique solution with values in
Rf that is defined on some interval [0,a) with a € (0,00). If a < o0, then
lim sup,_,,_ N(t) = 0o. We add all host equations in the system (3) and then derive
the following inequality

v _ b* —d*N,
dr —

in which b* = b+ b and d* = min{d, d;}. Assume that there exists a positive number
¢ such that

* d*— T N
b §7Nwhenever||(S ,DIl=N=>c.

By Diekmann and Heesterbeek (2000), dgt(’) < —%ﬁ(t) whenever t € [0, a) and
N(1) = c. This implies N(r) < max{c, N(0)} for all 7 € [0,a). So a = oo, and
lim sup,_, ., N(¢#) < c. Similarly, summing the total vector equations together, we
have

in which b} = b, + by and d;; = min{d,, dy1}. If there exists a positive number ¢,
such that

N, whenever [[(S}. J)|l=N, > c,,

then the total vector population N, (1) < max{c,, N,(0)}forallz € [0, a). Soa = oo,
and lim sup,_, o, Ny(¢) < c¢,. We then conclude that system (3) is epidemiologically

feasible and mathematically well-posed in D = D, UD, C R x RS, in which D,
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is the domain of the total human population and D, is the domain for the total vector
population.

The Disease-Free Equilibrium

At the disease-free equilibrium, there is no infection in either the human or the vector
population. First, let us assume that there is no movement between the satellite city
and the urban city. The system (3) without mobility then has a disease-free equilibrium
EO, given by

b b b b
E® = (3’0’ 0,0,0,-%,0,0, d—l,o, 0,0,0, d—“,o, 0) e RIS ©)
v 1 vl

To obtain the disease-free equilibrium E,% for the system (3) with mobility, we note
first that we are led to solving the equilibrium subsystem associated to the susceptible
populations, in the form

b+myS1 —(d+m)S =0,

(10)
by +mS — (di +mp)S; =0.
This subsystem has the solutions

_— b(d] +my) + bimy ok bl(d +m) + mb
" ddy +dmy+md, V" ddy + dma +md,

It then follows that

m

b(d b b bi(d b by
0 = (Hdirmdtbims 60,5 o0, 2LLEMEMD 560,20 0,0).
ddy + dmy + md; d, ddy + dmy + md; dy1

Computation of the Basic Reproduction Number Ry

To use the next-generation method, we note that the equations which model the dynam-
ics of the infected compartments E, I, I, E, and I, of the urban city and E1, 1,1,
Ip1, Ey1 and [, of the satellite city in (3) are

dE KE+7tl, . 0Byl

— = S S—dE —vyvE Ei—mE,
a B N, + N, yE+myEr —m
dil,

E = )/E —d[a — Sla +m21a1 —mla,

df

Ef:Sh—a@—d@+q@b

dE kKo E + 131

dtv = ﬂv)\vahUaSv - dva - Wva»

dr

d_tv = 1ﬁuEv —dyly,
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—d1Ey —y1E1 —myE1 +mE,

dE Ei+ 111 % I,1S
1 =ﬂ1K1 itala g 1Bv1911,1 51

dr Nni Npi

dlal

O =vE —dilg — 81ls —maly +mly,
dip

O S1lar — arlpy — dilpr — qlp1,
dE, ko1 E1 + i la

dl‘v = Pl vlvN—hlvaSvl _dlevl _wle‘Ula
dly;

d; ZWUIEUI _dvllvl-

Y

To fix our ideas, let us focus on the urban city, that is, on the first five equations of

(11). With the notations of van den Driessche
given by

- kE+tl, . 0fydl, T
S S
P Ny, * Ny,

O 3

KoE + 11, s
Ny, v
0

V=
ﬂv)"l}

and Watmough (2002), F and V are

dE +yE —myE| +mE
—yE+dl, + 681, —maly +ml,
=6l +aly +dI, — qlp
dyEy + Y Ey
_vav +dv]v

Assuming that m = my = 0, the associated Jacobian matrices of F and V at the

disease-free equilibrium are given by

B Bk Bt
0 0
F— 0 0
Bvrvkobyd  ByryTybyd
bd, bd,
L 0 0
[ (d+7y) 0 0
-y (d +8) 0
V = 0 -6 (o +
0 0 0
| 0 0 0

0 0 6o

0 0 0

0 0 0

0 0 0

0 0 0
0 0
0 0
d) 0 0
(dv+9¥v) O
_wv dv

The basic reproduction number Ry equals the spectral radius (dominant eigenvalue)

of the matrix FV~!, given by:

Run +/R?, +4R3,

Ry =
0 2
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where

_ By +x(d+96))
T d4y)d+9)

eﬂﬁwmbvd(n (dy + V) + ky(d + a))
bd2(d + y)(d + 8)(dy + V)

Rpy =

The Basic Reproduction Number for the System with Mobility

If the infection exists in a single community which is connected to another community
through population mobility, the phenomenon related to the movements of individuals
should be reflected in the disease threshold. When the communities are connected by
migration, the community-specific reproduction numbers are given by

Runim + vV Rl%th + 4R%UIM Rhnom +\/ Rl21h2M + 4R}21v2M

d Room =
5 and Room )

Roiym =

To compute Roipr and Rgops, we substitute the disease-free equilibrium points with
movement for

« _ bldi+m2) +bimy «_ bid+m)+mb gr = v g _@

ddy +dm> +md; ° "' ddy +dmy +mdy” TV dy,) ' dy

into the Jacobian matrix for F' before computing for the eigenvalues of the matrix
FV~!. We obtain the following results

By +Kk(d+ 6+ m))
d+y+md+8s+m)

Rioins = \/953¢l//v?»vbv(dd1 +dmy + md)(vy(dy + Py) + ky(d + 3 +m))
' d2(b(dy +m2) +bymo)(d +y +m)(d + 8 +m)(dy + V)
Bi(tiy1 +Kk1(dy + 81 +m2))
(di + y1)(d1 + 81 + m2)

Ris 01 82,01 Vu1 1 by1 (ddy + dma + mdy) (Ty1 (dy1 + Y1) + ko1 (dy + 81 +m2))
M =
’ d2, (b1 (d +m) + mb)(dy + y1 +m2)(dy + 81 + m2)(dy1 + Yu1)

Rumim =

Runom =

An estimation of the basic reproduction number, hereby denoted as R(’)”, can then be
given as the maximum of the community-specific reproduction numbers

Ry = max{Roim, Room}-

For a single isolated community, the corresponding persistence condition is Ry > 1,
which holds only if Ry + Rj, > 1. That is,

@ Springer



4552 P.Harvim et al.

Ry > 1
Run + \/ Ri), + 4R,
= > 1,
2
= Run+/ R}, +4R;, > 2,
= R}, +4R} >2— Ry,
2

= <,/R,§h + 4R,§U> > (2= Run)*.
=

=

RY, + 4R}, >4 — 4Ry, + RY,.
4Ry + 4R}, > 4,
— Ry, + Riv > 1.

Uniform Strong Disease Persistence and Existence of Endemic Equilibria

Under the assumption of the constant recruitment, it is easy to see that the host is
strongly uniformly persistent. Since the recruitment rates » and by are positive con-
stants, ST (¢) > (0,0) for all ¢+ > 0, and there exist two positive constants §7 and &3
such that

lim inf ST(z) > (67, 6%)
11— 00

for all non-negative solutions in model system (3). In fact, by the first subsystem in
the system (3)

E:b— d+,3(KE+TIa) +9ﬂv¢lv
dt Np Np

>b— (d+,3(l< +t)+9,3v¢)S—mS.

>S+m2S1 —msS,

Then, there exists a 8]" € (0, 400), independent of the solution, such that

b
liminf S(¢) > =:§7.
=00 d+ Bk +1)+0pp+m

Similarly, there exists a 85 € (0, +00) such that

lim inf S (1) > 83.
—00

Since ST (1) >> (0,0) for t > 0, the subsequent persistence results do not need
the solutions of system (3) to satisfy S7 (0) >> (0, 0). Also, if Rops > 1, and all
recruitment rates b and b; are positive constants, then there exists some € > 0 such
that
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“}Ll{},}f Ci(t) >¢e,i=1,2, CeCand C=(C,C)
for all non-negative solutions of system (3) with
(ET(0), 110, 1] (0), E] (0), 1] (0)) > 0.
Let

X = {(ST, ET 1717 RT, ST ET . IT) € (0, 00)'°|(ST. ST) € (0, +00)* and

vTv
v°Tv

ET 1 f RTEN IT) eRf}.

By Theorem A.32 of Thieme (2003), the solution takes its values in X for r > O.
Define p : X — R, by

p(STET I I . RT Ny =1,

s Lag o

for fixed I € {I,, I1, Ip, Ip1, I, Iy1}, and p : X — Ry by

Ia“l‘lb_’_lal“l‘lbl_i_lv‘i‘_lvl'

oST ET 1T, 1T RT,N,) =
p( b v) Ny Nii N,

s Lag

In the language Sect. A.5 of Thieme (2003), the semiflow @ induced by the solutions
of system (3) is uniformly weakly p-persistent by Theorem 4.3 in Dhirasakdanon et al.
(2007). The compactness condition in Sect. A.5 of Thieme (2003) follows from the
known results above. Notice that every total orbit  : R — X of & is associated
with a solution of system (3) that is defined for all times and takes value in X. By

’g), 0(w(0)) > 0 whenever p(w(t)) > 0

for all + € R. The claim for C € {IMT, IbT, IvT} now follows from Theorem A.34 in
Thieme (2003). For C € {ET, R, ET}, modify p(ST, ET, 1T, 1], RT, N,) = C;.
For C = ST, the statement has already been shown in the content above. Similarly,
for C = SUT , the statement should be easily shown. The existence of an (endemic)
equilibrium of system (3) in (0, 00)1© follows from Theorem 1.3.7. in Dhirasakdanon

et al. (2007).

the irreducibility of the matrix

Optimal Control Strategies

We use Pontryagin’s maximum principle to determine the necessary conditions for
optimal control of the epidemic disease. We incorporate three time-dependent control
variables into the model (3) to determine the optimal strategy for controlling the
disease. The model (3) then becomes

@ Springer



P.Harvim et al.

4554

ds kE+tl, 0Bvp 1y

—=b— S — S—dS 1— t St — (1 — t S,
” B 7 N, + A —u1()m2S1 — (1 —uz(t))m
dE Kk E + ‘L'Ia ‘9/3v¢1v

— = S S—dE —yE 1— t E

ar N, + N, vyE+ 1 —ui(1)mrky

— (I —uz())mE,

df

5 = VE—dla =8l + (L —m@)mala = (1= ux()mly,

df,

& =8 —aly = dly + (1= us()q 1.

dR

O =alp —dR+ (1 —ui(t))ymyR; — (1 —ur(t))mR,

ds K E + 11,

dtv = bv - ﬁv)\va—hUaSv - dev’
dE Ko E + 11,

d[u = ﬁUA‘UUN—hvaSU - dva - I/fvay

dl

d_l‘u = va - dvlvv

ds; k1 E1+ t1la 01Bv1d11v1

— =b; — S| — S1—diS1— (1 — t S

” 1— B Ni 1 N, 1 1851 = —uy(¥))my S,

+ (1 —uz())ms,

dE K1E1+ 11l 6 1
g b tulag 1Bv191 vlSl—d1E1—7/1E1—(1—M1(l))m2E1

? N ! Npi
+ (A —ux(®))mE,

dIal

- ik —dilgr — 811p — (1 —uy(@))malyy + (1 — up(t))ml,,
dip
ek Sitlgy —ardpy —dilpr — (1 — u2(t))q1p1,

dR;

DT aylpr —diRy — (1 —uy(t))maRy + (1 — u2(¢))mR,
dSy1 ko1 E1 + t1la1

d: = bvl - ,Bvl)‘vlvN—h]vaSvl - dUIS‘Ulv
dE,; k1 E1+ o1 la

dtv = ﬁvlkvlvN—hlvaSvl - dlevl - I/fleul,

dly

dr = wlevl _dvllvl- (12)

The control variables, u(¢), u2(t) and u3(t), are bounded, Lebesgue integrable func-
tions. Our control problem involves a situation in which the number of mildly infectious
individuals, severe infected individuals and the cost of applying screening control
u1(t), ua(¢) and u3(t) are minimized subject to the system (12). The objective func-

tion is defined as
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T
J(uy, uz, uz) = / [Clla +calp + 311 + calpy + csui + cous + cm%] dr,
0

(13)
where I,, 1,1, I and Ip; are the total infected human populations, 7 is the final
time and the coefficients c1, 2, ¢3, c4, ¢5, c, 7 are positive weights. Our aim is to
minimize the total number of infected humans and minimize the costs of control
mechanisms u(t), uz(t) and u3(t) at the same time. Thus, we search for an optimal
control (u}, u3, u3) such that

J(uy, uy, u3) = uln;iznm {J(ur, uo, u3)luy, uz, uz € 2}, (14)

where the control set
2 ={(uy, uz, u3)lu; : [0,7]— [0, 1]Lebesgue measurable, i =1, 2, 3}.

The existence of an optimal control is a result of the convexity of the integrand of
J with respect to u1, uy and u3, a priori boundedness of the state variables, and
the Lipschitz property of the state system with regard to the state variables. The
Pontryagin’s maximum principle (Pontryagin et al. 1962) converts the equation (12)
and the equation (13) into a problem of minimizing a Hamiltonian H with respect to
u, up and us.

H=cl,+cylp+c3ly +calp) + C5M% + c6u% + cm%,

E4tl, . 6Byl
+A5{b—ﬁk trlag 'BL¢vS—dS—l—(l—ul(t))m251—(1—u2(t))mS},
Nj Nj,
E+tl, . 6Bl
+AE{/6K ;”s+ ﬂ;;pvS—a’E—yE—}—(l—ul(t))ngl—(l—uz(t))mE},
h

+A \VE —dly =81, + (1 —ur()malyy — (1 —uz(t))mli,},

+ap 81y —alp —dly + (1 — us(t))glp},

+Ag{aly —dR+ (1 —ui(t))maRy — (1 —uz(t))mR},

KoE + 11,
Np

KwE 4+ 7l
+)LEU {/31))H)UN7haSv - dvEu - vav} 5

+)‘«ll, {WUEU - dUIU}a

k1 E1 + 11141 01Bv1911u1
+ As {b1 —Bi N
: Nii Np1
= —u1(®))m2S1 + (1 — uz(t))mS},
K1E1+ 111, 0 1
g, {,31 Bt alag 1Bvid1 11 Sy — diEy — )
N Npi
—( —ui(t))mE1 + (1 — u2(t))mE)},

+ A1, Er —dilg = 811a — (1 —uy(®)malar + (1 —ua(t))ml,},

+)¥SU {bv - ,Bv)\v Sv - dev} s

S1—diS1
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+ Agy 81lar — oy — dilpy — (1 = uz(®)qlp},

+ A {ailpr —diRy — (1 —u1(1))m2Ry + (1 — ua(t))mR},

k1 E1 + t1la1
Nni

Svl - dUlEvl - 1pulEvl } s

+As, {bvl — Buirl Sv1 — dvlsul} ,

koE1 4+ tylan
+)»Ev1 {ﬂvl}wlvihva

+ Ay (Y1 Evi — dui Lot} (15)

where Ags, Ag, A, A ARy AS,, AEy s AL,y ASs AELs ALy Adyys ARy Ay AE,, and Ag
are the adjoint variables or co-state variables. The system of equations is found by
taking the appropriate partial derivatives of the Hamiltonian (15) with respect to the
associated state variables.

_dﬁz['gw <1 S>+M<1_i>+d+(1_u2(t))m:|)\5

dt Np, N N Ni
E I S 0Byl S
—_ ﬂm 1— — )+ M 1—— ) |[rg,
Nj, Nj, Nj, Np,
kyE + 11,
+ [ﬂvxv%&i(ksy —E,) — (1 —ua(1))mis,,
h

dAg _ K | E N K | E d 1 A
‘W—[ﬂm( ‘N—hﬂ S‘[%( ‘N—h>+ Y ‘”2“”’”} £

o+ g (1= £ s PR S N Py
YAl v th N» Su v th N, E,

— (I —u2@))mrg,,
dig,

_ T | 1, N T | 1, N
o=t [ (o) s [ (-3 e
Iy

[ +8) + (1 — wa(e))m oy, — g, + [ﬂvxl,]f]—l; (1 _ N_h) }xsv

Ty 1,
- |:/3v)\v_ <1 - _) :|)\Ev - (- uZ(t))m)&lal,

Ny, Nj,
dx
— dl‘lb =—c2+ (0 +d)rj, — ahg,
dig
4 - (d+ (1 —u2@)m)rr — (1 — ua(t))mag,,
dig KhE + 11, KkoE + 11,
— L= AM——— +dy |As, — A———— |AE,,
dr [ﬂv v Nh + dy Sy ,Bv v Nh E,
drg,
_? = [dv + I/fv:|)LEv - %MU,

d)hlu _ 9,31)45 _ Q,Bvﬁb
_W = (dy)ri, + |: N, S])\S |:—Nh S])»E,
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dig, K1Ey + 11l N 01Bv1d11y1 S
=B l—— )+ — (1 - —
dr Ni1 Nni Nni Nni

+dy+(1— Ml(l))mz]?»sl

E 1, S 0 1 S
B |:/31K1 1+ tila (1__1> n 1Bv191 11 <1__1)}AE1
Npi Npi Npi Npi

Kkv1 E1 4+ 1141
+ [ﬂvlkvlv—zva
Nhl

da E E
— ElZ[ﬂli(l——]>:|)\51—|:,31i<l__])
dr Npi Ny Npi Npi

+di+y1+ 10— u1(t))M2:|)»E1

Sul]()»svl —Agy) — (I —ui(t))maAs,

Kyl E;
—Virp, + | Bvirvi— (1 — — ) [(As,, — AE,) — (1 —ui(1))modg,

Npi Npi
dip, [ 41 ( I )} [ 7 I
———=-a+|hi—|1- sy — | Bi— (1 — ) [AE
dr N1 Np1 ! Npi N1 :
+ [di + 81 + (1 —uy(t))my 1A, — 81y,
Tyl Iq
+ | BuiAvi (1 - )}(ksv —Agy) — (L —ur(@)mz Ay,
|:ﬂv " N Npi ! ! [ ]
da
—# = —c4+ [a1 +di + (1 —uz()q]rg, — [(1 —uz(t)g]rs, — arhg,,
dx
——pt = 1+ (= u@)m)hg, — [(1 = w1 @)ma g,
dis 1 k1 E1+ o1 la k1 E1+ to1la
) Ay —m d A — A A i
ds [ﬁvl vl Nt + uli| Sul |:ﬂv1 vl Nt :| Ey
dAg,
—Tl = [dvl + 1/fv1])~EU1 — Yo1r,,
diy, 01Bv19v151 01B8v19v151
— 2 — () SIS s RO T
& (dyD)Ar, + [ Nim ) Nim E|

Furthermore, the transversality conditions are

As(T) = re(T) = A1, (T) = A, (T) = AR(T) = A5, (T) = 1g,(T) = A, (T)
= )"Sl (T) = )"El (T) = )‘Ial (T) = )‘Ibl (T) = )\Rl (T) = )‘Svl (T) = )‘Evl (T)
=Ar, (T)=0.

Finally, since in our optimal control problem, there are no terminal value for the state
variable, we give transversality conditions at the final time T by

r(T)=0,i=1,2,3.
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On the interior of the control set, where 0 < u; < 1, fori = 1, 2, 3, we have

oH
ﬁ = 2cs5u; —maSiAs —maE\ g —maly Ay, — mayR1AR +m2SiAs,
1
+moEAg, +malgihy,, +maRiAg, =0,
oH
Fe = 2ceup +mShs + mEAg +ml hj, + mRAgr —mShs, —mEAE,
uz
—mlzhy,, —mRAg, =0,
oH
— =2c7u3 — qlp1ry, + qlpiry, =0.
3143
We obtain

1
uyt = Tor maSihs +maE1Ap +malgihy, + maRiAg —maSihs, — maEiAE,
5L

—mala1h, —M2R1?»R1},
skk 1 [
uy = E —mSAks —mEMg —mlshj, — mRAR +mSAks, +mEAE,

+mlshg, + mR)»Rli|,

1
M;‘* = E[qlbl)qb — q]b1k1h]i|.

By the standard control arguments involving the bounds on the control variables,
we conclude that

0 ifu*<0
up = quyt if0<uft <1,
1 ifui* > 1
0 ifuf*<0
uy = quy* if0<ui* <1,
1 ifuy* > 1
0 ifuf*<0
* _ PEEE *k
uy = § u3 1f0<u3 <1,

s kk
1 if usy* > 1
that is,

u} = min {1, max (0, u7*)},
uj = min {1, max (0, ué*)} ,

u} = min {1, max (0, u3*)} .
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10 Appendix B

Consider a simplified model with a single category of infectives for each location and

no active movements for infectives, in the form.

ds E+1l 6 I
— =b—,BK + a9 — Pvd S —dS +myS; —mS,
dr Ny, Np
dE kE+tl, 0By 1,
—_— = S S—dE —-yE Ei —mE,
a B N, + N, yE+myE —m
di,
E = )/E —dla —oela +qla1,
dR
& =al, —dR +myR; —mR,
ds KkoE + 1,1
d_tv = bv - ,Bv)LvUN—hUaSv - dem
dE KkoE + 1,1
dl‘v = lgv)‘va—hvaSv - dva - vav»
dr
d_tv = wUEU —dyl,,
ds E 711 0 IS
dsi_ —,31KI 1+ T alg _ 1Bv1611151 4y — maS; 4 mS.
dt Npi Nni
dE, kK1 Ey + 11141 01B8v1611y151
— = S1+ —d1E1 — v1E1 —myE1 +mE,
& Bi N 1 N 1E1 —yiEy 2By
di,
d(tl =y E1 —dila —aila — qla,
dR;
T = a1l —diRy —maR; +mR,
dSy1 k1 E1 4+ t1la1
dll‘) = bvl - ,Bvl)\vlvN—h]vaSvl - dvlSvh
dE, k1 E1 4+ t1l41
d: = lgvl)\vlvN—hlvaSvl —dy1 Ey1 — Yu1 Evt,
dly
= VfulEvl _dvllvl- (16)
dr
Using the next-generation method, we obtain F and V as follows:
B B Bt 008, 0 0 0 0 7
0 0 0 0 0 0 0 0
Borviybyd ByryTybyd 0 0 0 0 0 0
bd, bd,
Fo 0 0 0 0 0 0 0 0
B 0 0 0 0 Bik1 Bt 061Buidr |’
0 0 0 0 0 0 0 0
0 0 0 0 Buirvikuibyrdy Burdvituibyidy 0 0
bidy; bidy;
L 0 0 0 0 0 0 0 0 |
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F(d+y+m) 0 0 0 —my 0 0 0
—y (d+a) 0 0 0 —q 0 0
0 0 (dy+y) O 0 0 0 0
v 0 0 —Yy  dy 0 0 0 0
—m 0 0 0 (di +y1 +m2) 0 0 0
0 0 0 0 —y d +o1+q) 0 0
0 0 0 0 0 0 (dvl + 1’”vl) 0
L 0 0 0 0 0 0 —Y1 dy1
The matrix FV~! is given by
[a b 0 ¢ d e f 0O
0 0 00 0 0 0 O
g h 00 k£ I 0 O
1 0O 0 00 0 0 0 O
Fv—"= m 0 0 0 n p q r|’
0O 0 00 0 0 0 O
s 0 0 0 ¢t u 0 O
L0 0 0 0 0 0 0 O]

where

u— Bk (d1 +y1 +m))
ddy +dmy +dyy +dyy +dym+ymy+yy +my
Bt (di+my+q+oar+yDdiy tymaq+ympar+yqyr+yary +mqyr)
(e +d)(ddy +dmy +dy)+dyy +dim+ymy+yy +my)(d +a; +q)
Bt
atd’
o 0By Yo
(dy + Yo dy’
0By
d= 4

_ Brmy

€= ddy +dmy +dy) +dy +dim+ymy+yy +my
Bt (dqyr+diymy+ympq+ymaar+vyqyr+mqyr)
(¢ +d)(ddy +dmy +dyy +diy +dim+ymy+yy +myp) (d +a1 +q)°

fe Btgq

(di+oa1+¢q)(a+d)’
_ Bv Ay kybyd (dy +y1 +m2)
" bdy (ddy +dmy +dy) +d1y +dim+ymr+y oy +myr)

BvivTwbyd ((dy +my+q+oay+y)diy +ymaq+ymaar +yqyr+yary +mqyr)
bdy (@ +d)(ddy +dmy +dy; +diy +dim+ymr~+yy +my))d +o1 +¢q)

_ BvrvTybyd

bdy (@ +d)’

8

k= Bv Ay ky by dmy
bdy (ddy +dmy +dyy +d1y +dim+ymy+yy +myp)
Bvivtwbyd(dqyr +diymy+ympq+ymaar +yqyr +mqyr)
bdy (o +d) (ddy +dmy +dy +diy +dim+ymo+yy +my)) (d) +a1+q)’
/= Bv iy Ty bydg
bdy (dy +a1 +q) (@+d)’
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o Brkrm
ddy +dmy +dy) +dyy +dym+ymy+yy +my
4 Bitiyim
(ddy +dmy +dyy +dyy +dym+ymy+yyr +my) (d +ap+q)
ne Brky (d+y+m)
ddy +dmy +dy) +dyy +dym+ymy+yy +my
" Bitiyi d+y+m)
(ddy +dmy +dy) +dyy +diym+ymay+yy +my)di +a1+q)’

b= B1 1
di+a1+q°
g = 01 Brv 1 Y1
(dvi +Yv1) dyg ’
.o 01 Brv #1
dvl ’

5= Buvi Avp kyp bypdim
bydy; (ddy +dmy +dyy +dyy +dym+ymy +yy+myp)
. By1 dvi Ty bypdyyrm
bydy; (ddy +dmy +dyy +dyy +dim+ymy+yy +my) d+a1+q)’
(- Bvi Avikyr byrdy (d+y +m)
bydy; (ddy +dmy +dyy +diyy +dim+ymo+yy +myr)
n Byi dvi i byrdiyr (d+y +m)
bydy; (ddy +dmy+dyy +diy +dim+ymy+yy +my) d +a;+q)°
B hiwibyg d
T bidy ditor+q)

The basic reproduction number R (we use the superscript s to denote the fact that
we refer to the simplified model) is the spectral radius (dominant eigenvalue) of the
matrix FV~!. We substitute different values of the passive (¢) and active (m and
m2) movement rates to obtain the associated values of Rj. The effects of the passive
movement on the global basic reproduction number Rj are shown in Fig. 6.
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