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1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. We consider
a linear, symmetric and coercive operator B : D(B) C H — H and suppose that
D(B) has an infinite dimension.

We shall study abstract differential equations of the first order

y()+p(t)By(t) = f(t), 0<t<T (1)
and of the second order
y'(t) +q(t)y'(t) + r(t)By(t) = (1), 0<t<T. (2)
We introduce on D(B) the energetic inner product
(u,v)g = (Bu,v), (Y)u,v e D(B)
and the energetic norm
lulls = (w,w)i?, (V)u € D(B).

By Hg we denote the energetic space consisting of all the vectors u € H with the
following properties:
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there exists a sequence (uy), of D(B) such that u, — u in H; (3)

(un)n is a Cauchy sequence with respect to the energetic norm || - ||£. (4)

A sequence (u,), with the properties (3) and (4) will be called an admissible
sequence for u. For u,v € Hg we define the scalar product

(u,v)g = lim(un, va)E

for each (un)» and (v,), admissible sequences for u and v respectively. It follows that
the scalar product (-,-)g is well-defined, Hg, is the completion of D(B) with respect
to the energetic norm and, if we identify H with its dual H*, we have:

Hg C H C Hg,

where the embeddings Hg C H and H C H}; are continuous.

One can easily see that the duality mapping Bg : Hg — Hj; of the energetic space
Hg is an extension of B, called the energetic extension. The Friedrichs extension
A:D(A) C H— H of B is defined by

Au = Bgu, (Y)u € D(A),
where
D(A) = {u € Hg; Bgu € H}.

A is coercive and selfadjoint and
D(B) c D(A) C Hg C H.

For all the things above see, e.g., Zeidler (5, p.280].
Remark. The Friedrichs extension is in fact the maximal monotone extension of

B in H since D(A) is dense in H and A is closed selfadjoint and positive (see, e.g.,
Haraux [3, p.48]).

In order to use an extended notion of solution we introduce the following ”ex-
tended” equations

y'(1) +p()Bey(t) = f(t), 0<t<T, ()

y'(t) + q()y'(t) + r()Bey(t) = g(t), 0<t<T. (6)

We intend to use the Fourier method so we suppose that the embedding Hg C H

is compact. In this case, we have the following result (see Morogsanu and Sburlan [5])
Theorem 1. ( Multiple orthogonal sequence theorem). If all the above conditions

hold then there exist the sequences (en)n>1 C D(A) and (A)n>1 C (0,00) of eigen-
vectors and corresponding eigenvalues of Bg such that

(1) (en)n>1 is an orthonormal basis in Hg;

(i1) (\/-X:en)n21 is an orthonormal basis in H;
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(1) (Anen)n>1 s an orthonormal basis in H};

(iv) (An)a>1 is increasingly divergent to +oo.

2. CAUCHY’S PROBLEM FOR THE FIRST ORDER DIFFERENTIAL
EQUATION
2.1. The existence theorem

We now study the Eq. (5) with the initial condition

y(0) = yo. (7)

We shall obtain some results more or less classical, but based on the Fourier
method.
Let us suppose that

pEL®(0,T), p(t)2po>0 ace. te(0,T). 8)

We can prove the following
Theorem 2. Suppose that all the above hypotheses hold. If yo € H and
f € L*0,T; Hg) then problem (5), (7) has a unique solution y € C([0,T); H)n
L*(0,T; Hg) with y' € L?(0,T; Hy) in the sense that y verifies (7) and

Y'(t)(v) + p(t) Bey(t)(v) = ft)(w), (Y)ve Hg, ae. te(0,T).
Proof. We search for a solution of the form

y(t) = ibn(t)em ‘ (9)

where (e5)n>1 is the sequence given by Thm. 1. So we can formally deduce that the
coefficients b,(t) satisfy

{ B(1) + Mp(Dba(t) = fult), ace. 1€ (0,T) "
bn(o) = Yon

where
Yon = ’\n(yoaen), fn(t) = /\n(BEIf(t)aen)E-
Since yo € H and f € L*(0,T; H},) we have

oo
A8, = llvoll? (11)
n=1

and

SR = 1Ol ae. te(0,7) (12)
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It is obvious that the problems (10) have unique solutions.
By multiplying (10.1) by b,(t) and integrating on [0,¢] we deduce (see also (8))

1, tlo 1, ¢

- <z

SB0) + dapo [ B()ds < 532+ [ 1 £a(s) 1 Bals) I ds, tE0,7)  (13)
So, for € > 0 small enough we have
1

2
2 < 2 f()
. +po/b (s)ds A —u + /b )ds +2E [ 552ds, ten.T). (4)

[ s <0 (e + [Tla) (13

which implies the convergence of the series (9) in L?(0,T; Hg) and its sum y belongs
to L*(0,T; Hg).

It follows that

Using again (14) we obtain the uniform convergence of the series E%bi(t) and
this implies y € C([0,T); H).

n=1

By (10.1) we have the convergence of the series Y A;2[b(1)]* in L'(0,T), so the

n=1
series Zb )en is convergent in L*(0,T; Hg) and its sum y’ belongs to L2(0,T; Hj,).

It is obv1ous that y(t) given by (9), (10) is a solution for (5), (7) and (9) assures
the uniqueness.

Remark. (14) implies the following estimation (the continuous dependence of the
solution with respect to the initial value yo and to the function f):

2 T 2 2 4
iyl +/0 ly(s)llzds < Cllwoll +/0 If()lpds), 0<t<T.  (16)

In particular, (16) leads to the uniqueness of the solution.

2.2. The regularity of the solution

Let us make the same assumptions as above. Then we can prove the following -
Theorem 3. Ifyo € H and f € L*(0,T; H) then y belongs to C((0,T); Hg).
Proof. By (10) we deduce

t
= s)ds t :
ba(t) =€ /"p( i y0n+/ e L £ (5)ds (17)
0
and consequently
t
B(0) < e 4 [ f2(s)ds, 1€ [0,T) 18)
AnPoJo

Let 6 € (0,T) be fixed. Then (18) implies

Ry < Yooy L/‘f?(s)ds for 6<t<T (19)
T Aaped Anpodo 7T - -
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so that y € C([6,T]; Hg), (V)6 € (0,T). Thus, y € C((0,T); Hg).

Using (18) we obtain that for yo € Hg and f € L*(0,T; H) y belongs to C([0, T};HE).
Remark. If p(t) = po > 0 one can continue the discussion concerning the regularity
as in Grddinaru [2].

Let us study into further details the regularity of the solution. We denote

Vo = D(A7?) = {u € H; 3N~ (u,e)? < o0} (20)

n=1

for every s > 0, where A*/? : D(A*/?) C H — H is defined by

(> <]
AT = SN, e

n=1
for every u € H. We set
Vo=H (21)
and
Vs = (V)" for every s < 0. (22)

It is obvious that V is a Hilbert space equipped with the inner product
(u,v)s = (A% %u, A*/%0).

For s=1, Wy = Hg and (u,v); = (u,v)g.
A straightforward computation shows that (A(**1)/2¢,),5; is a Hilbertian basis
in V; and

llvolls = DA (vo, en)s (23)

n=1
for every yp € V.
Finally we obtain a nonincreasing family of subspaces V;, s € R. Obviously, Vi,
is dense into V;, if s; < sy, the injection of V;, into V,, being compact.
The duality mapping J, : V; — V" is defined by

(Js(u),v) = (u,v)s, forall u,v € V.
It is easy to see that for every n € N* and s > 0
J (Aot 2e,) = Aot1/ 2, (24)

Theorem 4. Under the above hypotheses we have the following:
1) yo € H, f € L*0,T;H) implyy € C((0,T);V:) N C*((0,T); Vi_z) for every
s €R;
2) yo € Vi, feL*0,T;V,.y) implyy € C([0,T); V;) N L2(0,T; Viyr)N
NH(0,T;V,-1) N C([0,T}; Vs—2) for every s € R.



178 Morosanu, Georgescu and Gradinaru
Proof. Let s € R be fixed. By multiplying (18) with A3~ we get
NTUB(1) < 2emPmotye-lyz x’- / £2(s)
For 6 € (0,T] fixed we have
getnpot . \1-1 Ai ()t € (6,T)

for n > ng € N sufficiently large. Thus,

AR (1) < y"" A’ -2 / f2(s)ds, for n > no(e). (25)
Thanks to (25) we obtain
y € C((0, T V3). (26)
Then
[BL(1)])* < 2003p° ()05 (2) + £2(2))
and so

AT LO) < 2MPATI() + 20570 £2(8), (27)
where p(t) < M for a.e. t € (0,T). From (27) one deduces

y' € C((0,T]; Vi-a). (28)

To prove the second statement, we observe that

/ B2 (s)ds <c(y°" +/Tf2 s) (29)

and, for the same reasons, y € L2(0,T; V.y,).

Obviously, y € C([0,T]; V;) and in the same manner we can prove that
y' € L*(0,T;Vseh) N C((0,T); Viez).

We study now the case f = 0.
Corollary 1. Ifyo € H then

ly (Il < €727 lyo. (30)

/t ()ds / 3 = A Y5
Proof. |ly(t)|| = ||Z€ 0 yOnen” = Z LS 26-2 apot JOn

n=1 )‘n
< e‘””’“ZyAﬂ = e~ ?M7!||yo||. Therefore limy(t) =0 in H for t — oo
1 '\n

Remark. In fact, y(t) = 0 in |- ||; for every s > 0.
We have

t 22 = =An f'p(s)ds 2 < > —2/\nf‘p(s)ds L ygn
ly@IF = 1D e Jo P %ygneq |2 < 3 e do JYEn
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< Z —2Anpot /\s . :li\On < —/\lpotz —,\"pot/\s yOn

n=1 U n=1 n
s
We observe that for ¢ > — we have e™*P' . z° < 1 for every z > 0, and therefore

Po
lly()lls < e *P*|lyo]| for t sufficiently large.
So, one can obtain y(t) — 0 in |- ||s for t — oo.
2.3. The existence of periodic solutions to Eq. 5

Assume that f € L?(0,T, H). We search for a T-periodic solution of the form (9).
From y(0) = y(T') we get formally

b,(0) = b, (T).
Hence t t
i) =R /O’e‘*"/s plr)dr

where

=& T)dr
_ o ot
Ca . /0 o~ / fuls)d

It is easy to see that (8) implies

02 ( 1 )2 /Te—/\nPO(T_s) | fn(s) | ds ’ < Const L/Tf (5)2d5
1 — e=npoT 0 " B Ando 7

Therefore
2 1 T 2
bn(1)° < Const.— [ fa(s)*ds. (31)
A Jo

So series (9) converges in Hg, uniformly with respect to t € [0,7] and its sum belongs
to C([0,T); Hg). Of course, y is a weak solution, satisfying y(0) = y(T).

In fact, we can assume that f € L?(0,T; Hy). From (31) we can deduce that
y € C([0,T); H). So, by Thm.2, y € L*(0,T; Hg) with y' € L*(0,T;Hg). If f €
L*(0,T;V,) then (31) implies y € C([0,T7]; Vss1)-

2.4. An example

Let © C RY be a nonvoid bounded and open set, and consider H = L%(Q) equipped
with the usual inner product, D(B) = C§*(?), B = —A.

Then Hg = H} (), the Friedrichs extension of Bis A = (—A)g , where (—Agu)(v) =
/Vqudz and D(A) = H}(Q) N H*(Y). Consider the problem:

v+ (—A)gy = f(z,t) for z€Q, 0<t<T, (32)

y=0 on 00 x (0,T), (33)
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y(z,0) = yo(z) for z € N. (34)

If yo € H and f € L*(Q x (0,T)), then (32), (33), (34) has a unique solution
y € C((0,T); Ho(M)) N C([0, T); LA(Q)) N L*(0, T; H3(R)) with y; € L2(0, T; H™(Q)).

It is easy to see that y is a generalized solution for
y—Ay=f(z,t) for z€Q, 0<t<T.

Indeed
Jy(=ei= Ap)dzd = Jfedzdt, (Vo€ C7(Q)

where @ = Q x (0,T). Moreover for f € C§°(Q), yo € C(0) and 9N sufficiently
smooth, y € C§(Q).

This example clearly shows the connection between (1) and (5).

3. CAUCHY’S PROBLEM FOR THE SECOND ORDER
DIFFERENTIAL EQUATIONS

We study now (6) with the initial values
¥(0) = y0; ¥'(0) =y (35)
Let us assume that
¢r € L*(0,T); 0<q ae. te(0,7); - (36)

T(t) 2r9>0 ae te (OﬁT)’ Yo € HEa € Ha g€ LZ(OvTa H)
We search for y(t) of the form

oo

y(t) = 3 ba(t)en. (37)
n=1
So, we can formally deduce
ba(t) + q(1)br,(t) + Aur(2)ba(t) = ga(t) (38)
with
bn(O) = Yon, b;(O) = Yin, (39)
where -
Yo = (yoaen)E = )‘n(yann)7 Yin = ’\n(ylv en)a (40)

gn(t) = An(g(t),en) for ae. t € (0,T).
We suppose in addition that r(t) = ro > 0. By multiplying (38) with ¥.(¢) one can

obtain

20 (1) = gu(t)8y(t) ae. O0<t< T,

(807) +atp, 07 +
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It follows that

(07 + rab2(0) < Dokt 20702 1 [0 (0) | [800) s, 02T )
Therefore .
| 8(0) 1 b+ Darosda+ [ 1 gals) | ds
and hence -
(B () < Cuhat M+ [ g2(s)ds), 0<t<T. (42)

From (41) and (42) one can obtain

B2(t) < C(y0n+y1”+/ gals s),osth. (43)

y (42), (43) and (38) it follows that

(i_> <C (y0n+y‘—"+/ glo) g, ;”2). (44)

n n

Now, (42), (43), (44) imply that
y € C([0,T); Hg) n C*([0,T); H) N H*(0, T; Hy) (45)

The proof can be continued as in Moroganu and Sburlan [5] thus obtaining that y is
a weak solution of (38), (39) in the sense that

¥ (1)) + at)y' ()(#) + roBry(1)(#) = 9(t)(¢), (V)¢ € Hp, ace. te (0,T) (46)

and

¥(0) =0, ¥'(0) = w1 (47)
Remark 1. If ¢(t) is also a constant function, q(t) = go > 0, then b,(t) can be
expressed by a formula (the roots of the corresponding characteristic equation are
complex numbers, for n large enough, because \, — 00). In this case we could do as
in Moroganu and Sburlan [5] and obtain new results.
Remark 2. If r(t) = r; fort; < t < tiys where 0=t < ... <ty =Tisa partition
of [0,T] we can obtain again the estimates (41), (42) and (43) and so the previous
existence result still holds. Moreover, if r; > ry > ... > ry-1 the constant C does not
depend on N. In fact, we have
Proposition. If in addition to the above hypotheses we assume that r is a nonin-
creasing function, then the problem (6), (5) has a unique weak solution y satisfying
(45).
Proof. As already done (by multiplying (38) with b.,(t)) we have:

(5807) + (07 + 22r(olba(el = guteit o
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SO .
422 [ r()bu(eVds < 59+ [ 19a(s) 11 Hi(o) | ds.
For each m € N* we define r, : [0,T] — R by

i—1 . i—1 Skl .
r(t) =4 if % _<_r(t)<§7;for i=1,2,...,m-2
m, if m <r(t)

It is clear that r,, converges to r in L*(0,T). The monotony of r makes that r,, is
defined and constant on intervals.

We rewrite the last inequality as:
l, 2 /\n t 21 /\n ! 2y
~ n i o <
B0 + 22 [[1r(5) = rm(Nba(o)ds + 32 [ rml)a(s)7Vds <
1 t
< —y? b .
< gvht [ 19) |- 18,(s) 1 ds
Also:

22 [1r(5) = ()] [ba(o)7Vs + 22 (1) - crbito)+

1 ? ,
erbl(ta) = bl () + o) S syh+ [ 1g(s) |- 1 8,(5) | ds.

We denote ro = [ionij r(t) and r; = supr(t) and using the fact that r is decreasing we
0 [0.7]
obtain:

+ 32 1) = rm(o)] - Ba(s) Vs + 222,07 <
_—ym+%1yoﬂ+/|g )1l 8,(9) 1 ds.

Making that m tends to infinity we get

1

S0 + 22 (0 <

A\ t
2 o An 2 I
2bn(1)? < 5yt ravde+ [ 14(s) |- [ ,(s) | ds.

From now on, one can obtain estimations of kind of (42), (43), (44), as usually.
Remark 3. For the regularity of the solution one can see the discussion of the first
order case. To see the connection between (2) and (6) one can construct an example
as in the first order case.

3.2. The abstract boundary control problem

We consider a vibrating system whose motion is governed by the equation (2) with
g = 0 and with the boundary condition

Zy(t)=o(t), 0<t<T (48)
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and has the initial states as in (35), where Z : D(Z) ¢ H — Hjz, and
B : D(B) C H — H are densely defined linear operators with D(B) C D(Z), Hy

being a second real Hilbert space.

We make the assumptions of (36) and let r be nonincreasing monotone a.e.
The control function ¢ is allowed to vary in the Sobolev space

H3(0,T; Hz) = {p € H*(0, T, Hz); ¢(0) = o(T) = ¢'(0) = ¢(T) = 0}

Let us denote
Do ={z€ D(B); Zz =0} (49)
and B= B |p, .
We suppose B : Dy — H as being selfadjoint and coercive, E = D(BY/?) C D(Z)
and the embedding D(B) C H as being compact. We also assume that yo € E and
Yo € H. In the following we shall use the idea from Krabs [4].

Assumption 1. For every ¢) € Hyz there exists exactly one element w, € D(B) such
that

Bwy =0 and Zwy, =9
and the linear operator G : Hz — D(B) defined by G(%) = wy, is continuous.

For ¢ € H}(0,T; Hz) being given we define 7(t) = G(p(t)), (¥)t € [0,T) and we
infer that

7 € H3(0,T; D(B)) = {r € H*(0,T; D(B)); #(0) = #(T) = #(0) = #(T) = 0}.
Let y € C([0,T]; D(B)) N C'([0,T); H) be a solution of (2) with g = 0, (48), (35)

for ¢ € HZ(0,T; D(B)) being given.
Then we define § = y — 7, and conclude that Z§(t) = Zy(t) — Z7(t) = 0, and so

g € C([0,T]; Do) N C([0,T); H).

Finally we deduce

§"(t) + q(t)g'(t) + r(t)By(t) = —"(t) — q(t)7'(2)
and
75(0) =y, 7'(0) = n.

Thanks to multiple orthogonal sequence theorem (see Morosanu and Sburlan [5])
we obtain the sequences (en)n>1 C Do and (A,), C (0, 00) such that

1. (en)n is an orthonormal basis in E;

2. (vV/An€n)n is an orthonormal basis in H;

3. (Ane€n)n is an orthonormal basis in E*;

4. (An)n is increasingly divergent to +oc and Be, = Ae, (V)n € N*.



184 Moroganu, Georgescu and Gridinaru

Let ¢n = V/Anen. We search for a weak solution §(t) of the form:

7= Sun(t)on (50)

n=

We can formally deduce:

Yn(t) + ¢(O)ya(t) + Aar(t)yn(t) = =(7"(t), n) — ¢()(F(2),n) (V)n € N
Let zl, and z2 be functions satisfying:

(22)"(t) + ¢()(zL)'(t) + Aar (D)l (t) = 0 &
22(0) =0, (z,)(0) = VA )

respectively

(z2)"(t) (t) 22) (1) + Aar(t)z2(t) = 0
{zﬁ(O) , (22)(0) = 0. (52)

We will denote

fa(s) = =(7"(5), ¢n) = a(s)(F(s), @n)- (33)

where
Yin = (¥1,¥1), Yon = (Yo, %n), (55)
Wo(s) = z)(s)z2'(s) — 22(s)z}'(s). (56

n

~

We therefore define a weak solution of (2) with g = 0, (48) and (35) by y = § + 7,
with 7 = G(y) and y given by (50) and (54).

According to this definition, the weak solution y can be represented in the form:

Z yln 2} (1) + yonz( ]cpn-{-}:\/—(/ r(s)- (57)

el [ ()2 (s) m;(s)xg(t)](f(s‘), #n)ds) g, for € [0,T]

and its time derivative is given by:

Vi)=Y [57 V() + yonz?’ ]% + iﬁ ([ (58)

n=1

&R 1O (1)23(5) - 22 ()22 (O)F(S), pa)ds) o,
If the control space H3(0,T; Hz) is replaced by

Hy(0,T;Hz) = {u € H'(0,T; Hz);u(0) = u(T) = 0}
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then y = y(t) defined by (57) with 7 = G(¢) for ¢ chosen in H}(0,T; Hz) is taken
as weak solution of (2) with g=0, (48) with this ¢ and (35), y’ given by (58) being
chosen as its time derivative.

We are now in position to solve the null-controlability problem associated to (2)
with g = 0, (48) and (35).

Null-controlability problem. Given T' > 0, yo € F and y € H, find ¢ €
Hj(0,T; Hz) such that the weak solution y = y(t), t € [0,T] of (2) with g = 0, (48)
with this ¢ and (35) given by (57) with 7 = G(¢) satisfies the end conditions

y(T)=0, y'(T) =0, (59)
where y' = y'(t), t € [0,T]is given by (58).
It is obvious that the end conditions (59) are equivalent to
tin = o [ )RR (7). )

(60)
yon = VAL [ 7( efo“*)d’ A($)(F(s), pa)ds, (V)n €N

Assumption 2. There exists a linear operator Z : Dy — Hyz such that
(7, Be;) = (27, Z3)n,
for all j € N* and all 7 € D(B).
Then (60) can be rewritten as
Yin = ‘/,)T"(t)ef‘:q(’)d’zi(S)(Zﬂ Zpn)u, dt

T t . (61)
Viion = / r(t)eh 1% (1)(Z7, Zpa)m,dt, (V)n € N*.
/0

t s 4 s
Let F(t) = / r(s)efo #4722 (5)ds and Fpt) = / r(s)efo w7z (5)ds.
0
Integrating by parts one can deduce:

/ FrOQ' (1), Zon)uydt

(62)
\/"nycm= / FE (O (1), Zen)nsdt.

t
For every u € L*(0,T; Hz) let us define ¢(t) = / u(s)ds, te[0,T).
0
Then ¢'(t) = u(t) a.e. t € [0,T],i.e. ¢ € H(0,T; Hz) and ¢(0) = 0.
The end condition ¢(T') = 0 is now equivalent to

T
/0 u(t)dt = 0. (63)

So, in order to solve the null-controlability problem, one has to find some
u € L*(0,T; Hz) which satisfies (63) and (62) with u instead of ¢'.
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According to Assumption 1, for every u € L*(0,T; Hz) there exists exactly one
w, € L*(0,T; H) such that w,(t) € D(Z) for all t € [0,T] and Bw,(t) =0,
Zw,(t) = u(t) a.e. t €[0,T).

By Assumption 2 we obtain:

%}_(u(t), 2oy = (wat) 05) (V)j € N,

Using (62) one can obtain that u has to verify

Yo VAR, et

(64)
on =~ [ VaER((walt), ea)it, n €

Let us define S : L2(0,T; Ha) — (R*)N by S(u) = (S} (w), S?(u))nen- where

Si) = [ VAR O, ea)i

T (65)
S3w) = = [ VAFR(t) (walt), pa)dt.
Let us also define ¢ = (cl, c2)nen+ € (R?)N by
cn = 5—’%; c2 = Yon. (66)

So, the null-controlability problem is equivalent to finding u € L?(0,T'; Hz) such

that
S(Tu) =g;
/0 u(t)dt = 0. (67)

We also obtain

(S3@))?+ (S2)7 < A [ IR+ (FF 0N w(0), )t

so that

oC

282w + ($2(w)?) < Cllwull Lo 7y (211 E 0 17,8 + 2l g0, 59)

n=1

and hence S(L%(0,T; Hz)) C *((R*)N).
In addition, S is closed. Therefore, by the closed graph theorem, S is continuous.
Its adjoint S* : I2((R?)N) — L*(0,T; Hz) is given by

(5"Y)(t) = f \}A—n<y;Fs(t)—y:F:<t)>Z% (68)

for almost all ¢t € [0,7] and y = (y2,y2)nen €12((RH)N).
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Let us define G : L?(0,T; Hz) — L*(0,T; Hz) by

1 /T 2
G(u)=u— T/o u(t)dt, for u € L*(0,T; Hz).

It is obvious that G is linear, continuous, selfadjoint and / T(g (u))(t)dt = 0, for every
u € L%0,T; Hy). ’
Therefore, the null-controlability problem is equivalent to finding v € L*(0,T; Hy)
such that
S(Gw))=C. (69)

If u € L*(0,T; Hz) solves (68) then G(u) = u solves (69) and, conversely,
if v e L*(0,T; Hz) solves (69) then u = G(v) solves (67).

From now on, the approach is similar to that of Krabs [4].

To be complete, we write down the essential arguments.

Using the dual formula of norm, one can show that (69) has a solution
u € L*0,T; Hz) if and only if there exists a constant A > 0 such that
(e, y)e < A(S 0G)*(y)l|z2(0,7:14) SO one has to solve the following

Minimization problem. Minimize %HS‘(y) - % OTS"(y)(t)dtHiz(oyT;Hz) for
y € P((RY)N) subject to (c,y)p = 1.

Let § be a solution of this problem. One can show that if

) 1 /T .
gIS°@) = 7 ) (S7@)(A)dtllz20,m;m) = 0

then (69) has no solution, and if
1 . 16T ...
S15°6) - 7 [ (" @) Wdtloramy > 0 (10)
then there exists A > 0 such that
((G 0 5™)(§), (G oS™)Y))r20.1:Hz) = Mery)e

for all y € I2((R?)N), hence, if we put & = %(g o S*)(y) then S(G(4)) = ¢ and
G(u) € L*(0,T; Hz) and solves (67).
Let us suppose that (70) holds. If we define y* =

N

then y* € 12((R?)N) and solves
(S0GoS™)(y)=¢c (71)
that can be rewritten as
S S* * 1 TS* * d
(S -5 [ S =«

One can show that S oG o S* is coercive and so (71) has a unique solution which
is given by y* = (S0 G o §*)7lc
So, if (70) holds, the null-controlability problem has a unique solution.
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