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1. INTRODUCTION

Let fl be a real Hilbert space with inner product (.,.) and norm ll ll. W. consider

a linear, symmetric and coercive operator B : D(B) C H ---+ ll and suppose that
D(.B) has an infinite dimension.

We shall study abstract differential equations of the first order

y'(t)+p(t)By(t) - f(t), o <t<T (1)

and of the second order

, a"(t)+q(t)v'(t) +r(t)By(t)=g(r),0<r<?. (2)

We introduce on D(B) the energetic inner product

(u,r)n- (Bu,u), (V)u,u e D(B)

and the energetic norm

ll"llr: (u,u)!', (V)u e D(B).

By Hn we denote the energetic space consisting of all the vectors u e H with the

following properties:
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thereexistsasequence(u")"ofD(B) suchthat u, --+uin H; (3)

(u")" is a Cauchy sequence with respect to the energetic norm ll . lls,. (4)

A sequence (u")" with the properties (3) and (a) will be called an admissible

sequence for u. For u,u € H6 we define the scalar product

(u,v)n: lim(u., u,)r

for each (u,), and (u,)" admissible sequences for u and u respectively. It follows that
the scalar product (.,')r ir well-defined, ,EI6 is the completion of D(B) with respect

to the energetic norm and, if we identify 11 with its dual I/*, we have:

HnCHcHb,

where the embeddings Hn C H and 11 C Hfi are continuous.

One can easily see that the duality mapping BB : HB - HE of the energetic space

IIs is an extension of B, called the energetic extension. The Friedrichs extension

A: D(A) C H --+ H oI B is defined by

Au-Bsu,(V) ue D(A),

where

D(A)_ {, € Hn; Bnu e H}.

A is coercive and selfadjoint and

D(B)cD(A)cHrCH.

For all the things above see, e.g., Zeidler [5, p.280].

Remark. The Friedrichs extension is in fact the maximal monotone extension of
B in H since D(A) is dense in fI and A is closed selfadjoint and positive (see, e.g.,

Haraux [3, p.a8]).

In order to use an extended notion of solution we introduce the following "ex-
tendedtt equations

y'(t)+p(t)BBy(t):.f(t), o<t<r, (5)

. y"(t)+q(t)y'(t)*r(t)BBy(t):g(r), 0 < r < r. (6)

We intend to use the Fourier method so we suppose that the embedding Hn C H
is compact. In this case, we have the following result (see Moroganu and Sburlan [5])
Theorem 1. ( Multiple orthogonal sequence theorem). If all the aboue conditions

hold, then there erist the sequences (e,)">r C D(A) and (\^),s1 C (0, m) o! eigen-

uectors and corresponding eigenaalues of BB such that

(i) ("")">, is an orthonormal basis in HB;

(ii) (t/Ee")n>1 is an orthonorrnal basis in H;
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(iii) (Anen),)r is an orthonormal basis in Hfr;

(ir) ()"),>r is increasingly diaergent to +x.
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2. CAUCHY'S PROBLEM FOR THE FIRST ORDER DIFFERENTIAL
EQUATION

2.1. The existence theorem

We now study the Eq. (5) with the initial condition

y(o) = yo. (7)

We shall obtain some results more or less classical, but based on the Fourier
method.

Let us suppose that

p € .[-(0, T), p(t) ) ps > 0 a.e. t € (0, f). (8)

\4/e can prove the following
Theorem 2. Suppose that all the aboue hypotheses hold. If ys € H anil

f e L2(0,7;Hil then problern (i), (7) has a unique solution y e C(0,1.1;H)n
L2(0,7;HB) with y' e L2(0,f ;Hil in the sense that y uerifies (7) and

y'(t)(u) t p(t)BBy(tXr) = /(rXr), (V)u € HB, a.e. r € (0, ?).

Proof. We search for a solution of the form

y(t):f a"1,;"", (e)

where (e,),11 is the sequence given by Thm. l. So we can formally deduce that the
coefficients D"(t) satisfy

I u"(t) * l"p(r)6"(r) = /"(t), a.e. t.€ (0,7)
I a"(ol =y;" " - \-'- / (10)

where

. uo. = ),(uo, ""), f"(t) 
: 

^"(BEr 
f0), e")a.

Since y6 € II and f e L2(O,T;Hil we have

@

,F,^t' 
f:(il - ll/(r )ll'r;, a.e . t €(0, ?).

(11)

(12)

and
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It is obvious that the problems (10) have unique solutions.

By multiplying (10.1) by 6"(t) and integrating on [0,t] we deduce (see also (8))

'ruZ1l * t,polo'u?*(r)a, <f,fi,* l' | /"(r) ll b,(s) | ds, t e [0,?]. (18)

So, for e > 0 small enough we have

1 - 1t^
znbi,G)+rcJobig)ds s ftfi^+|lo'u'^G1a'* *1"'ryds, r e [0,?]. (14)

It follows that

lr u?^p1a, s c (++ /'fur,) (r5)
Jo \4" Jo  'n /

which implies the convergence of the series (9) in .L2(0, T; Ha) and its sum g belongs

to L2(0,7; Hn).

Using again (14) we obtain the uniform convergence of the series 
:if 

a;trl ."a

this implies y e C(l},T'l;H). 
@

By (10.1) we have the convergence of the series f ,\;2[b;(t)]'in.Ll(0,?), so the

@

series !bi(l)e, is convergent in ,L2(0, f ; Hil and its sum y' belongs to ,L2(0, f; Hh).

L iJlUvio,,,. that y(t) given by (9); (10) is'a solution for (5), (7) and (9) assures

the uniqueness.

Remark. (14) implies the following estimation (the continuous dependence of the

solution with respect to the initial value /q and to the function /):
rT rT

lly(t)ll' + / llv(')ll?d' S c(llyoll' + /. ll/(')ll'aid'), 0 < r < ?. (16)

In particular, (16) leads to the uniqueness of the solution.

2.2. The regularity of the solution

Let us make the same assumptions as above. Then we can prove the following.,

Theorem 3. If yo€ H and. f e L2(0,7;H) theny belongs to C((0,T1;He).

Proof. By (10) we deduce

b,(r) : ,-^^ lo'ni)d'ro, * 
lo' "-^^ 

[!ot'lo' . I,1r1d,

' and consequently

(17)

tz^(t) s2yf,ne-2^^not + #1"'fi(s)ds, 
r € [0,?]. (18)

Let 6 e (0, T) be fixed. Then (18) implies

b?,(t) < Y3' 1 [t "2' '''ffi* 
^^e"J"fi$)ds 

for 6(t(? (1e)
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so that y e C(l6,Tl;HB), (V)6 € (0,?). Thus, y € C((0, Tl;Hn).
Using (18) we obtain that for lo€ HB and / € L2(0,T;I/) y belongs to C([0, T];Hd.

Remark. If p(t) = ps > 0 one can continue the discussion concerning the regula.rity

as in Gridinaru [2].
Let us study into further details the regularity of the solution. We denote

V : D(A"/2) : {, e a; i,li-" (u, e,)2 < oo} (20)

for every s ) 0, where A't2 . D(Ast') c H;;,. defined by

€
A" | 2 u = \ \rr- " 

/ 2 (u, e^) e.
a=l

for every u e H. We set

Vo: H (21)

and

V" : (V-")* for every s < 0. (22)

It.is obvious that V" is a Hilbert space equipped with the inner product

(u, u)" = (A"l2u, A"lzu).

For s : 1, Vr : Hn and (u, u)1 : (u,u)e.
A straightforward computation shows that (\l-"+tltz",r.11 is a Hilbertian basis

in V" and

llvoll3 : il;*'(yo, r")?, (23)
n=1

for every Uo € V.
Finally we obtain a nonincreasing family of subspaces %, s € lR. Obviously, V",

is dense into V", if s2 < s1 , the injection of V", into %, being compact.

The duality mapping J" ; V"' y"* is defined by

(J"(u), u) : (u, u),, for all u)u e V,.

It is easy to see that for every n € N. and s ) 0

J"(\l-"+r)12"") = )1"+t)/zr^. (24)

Theorem 4. Und,er the aboue hypotheses we haue the following:
7) yo e H, f e L2(0,7;H) imply y e C((0, Tl;v") n c1((0, Tl;v"-r) for every

s € lR.;

2) yoev", f € L2(0,7;v"-1) imply y € c([0,7];v") n12(0,?;%+t)n
nf/r(0, T;V"-t) n Cr([0, Tl;V"-r) for every s € R.

l-
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Proof. Let s € R be fixed. By multiplying (18)

)f 'U'"(t) S 2e-2\'Pot 
^';t 

y3* +

For 6 € (0,f] fixed we have

2e-\'Pot ' );-
An

for n ) to € N sufficiently large. Thus,

.U-'u'^(t) S ++ 1 \'-2 ['
An prl;- " 

Jo fT(s)ds, for n ) no(e)'

Thanks to (25) we obtain

y e C((0,rh %).

(25)

(26)

Then

and so

);-tlb,^(t)J, < 2M2l;-t ur"(t) + z.u-t fr(r),
where p(t) I M f.or a.e. t e (0, r). From (27) one deduces

y' € C((0,71 iV,-z).

To prove the second statement, we observe that

f^r tz^1ra, s t (+* l"4gr,) (2e)
\,.3 J0 Ai /

and, for the same reiuions, y e L2(0rT;V"+r).
Obviously, y e C(ll,Tl;V,) and in the same manner we can prove that

y' € L2(o,T;V"-r) n C((0, Tl;v"_r).
We study now the case Jf : 0.

Corollary l. II Vo e. H then

with u-t

*^t'lo'

we get

fi!)d'.

p(s)dt y3^

(27)

(28)

(30)

-2\vpstyh
),,

lb'^(t))' < 2(^1,p' (t)b?"(, ) + f:(t))

1t

Proof. y(t) - i, -^" Joo(

llv(t) ll s e-2)'lPstllyoll.

s)ds 
yo,enll- ir-' ^^lo'

)r,

H for t

@

L-J

n=l

-+ oo.
n=l Art

Remark. In fact, y(t) * 0 in ll . ll" for every s > 0.

S/e have

ir-r"/;'n(,)d,ro n€nll3 s ir-r^'f,p(s)ds #,
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< i"-r^.o", 
^". *. 

.-r,rorie -^"0* 
^1*.

We observe that for t t I we have e-'pot .o" < 1 for every r ) 0, and therefore

lly(t)ll" < e-^"^'llyoll fo. tl,rffi.iently large.

So, one can obtain V(t) - 0 in ll . ll" for t -r m.

2.3. The existence of periodic solutions to Eq. 5

Assume that / e L2(0,7,H). We search for a ?-periodic solution of the form (9).

From y(0) = y(T) we get formally

b"(o) - bn(T).

Hence

where

It is easy to see that (8) implies

c'^ s(#)' (1,' uAnPo(r-") I /'(') l ")

b^(t), s const * Io' ,^(s)2ds.

1t

+ [' "-^" 
J , P?)d'.f, 

(, )dr,'Jo

I' "-^- 
l,' o(r)drJ" 

(s)dsr=vTt 
- T

p(s)ds

1

7,-)nI-e

Therefore

So series (9) converges in fls, uniformly with respect to I € [0, ?] and its sum belongs

to C([0,T1;He).Of course, y is aweak solution, satisfying y(0) = y(f).
In fact, we can assume that / €. L2(0,f;Hil. From (31) we can deduce that

y € C([0,f];H). So, by Thm.2, y e L2(0,7;Hn) with sr' e L2(0,f;Hil. If / e

L2(0,7;%) then (31) implies y e C([0, Tl;V,+t).

2.4. An example

Let O c RN be a nonvoid bounded and open set, and consider H = L2 (Q) equipped

with the usual inner product, D(B) : Cf"(O), B = -L,.
Then IIr : I/3 (O), the Friedrichs extension of B is ,4 = (-A)E , where (-Asu)(u) :
I VuVua, and D(A) : Ilol(O)n d'?(O). Consider the problem:

J9

Ut* (-A)sY - f(t,t) for r € O; 0 <t 17,

(31)

(32)

(33)A :0 on A0 x (0,?),
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Indeed

: [-1earat, (V)p e cf"(e)Jq-'
where Q: O x f e Cy1q1, vo e Cff(O) and dO sufficiently
smooth, V e Cf;(

This example nnection between (1) and (5).

y(o,0) = yo(") for c € O. (84)

If yo e Il and f € L2(A x (0,?)), then (32), (33), (84) has a unique solution
y e C((0,");14(O)) n C([0, T]; Lr(e) n r2(0, r;aol(O)) with yj e L2(0,"; /{-r(O)).

It is easy to see that y is a generalized solution for

Ut-Ly-f(*,,t) for 0€O, 0<t<7.

3. CAUCHY'S PROBLEM FOR THE SECOND ORDER
DIFFERENTIAL EQUATIONS

W-e study now (6) with the initial values

y(0) : yo; y'(0) : at.

Let us assume that

g,r€.1*(0,?); 0Sqa.e.te (0,?); (96)

r(t) > re >0 a.e. t € (0,7), yo€ Hn, yt€ H, 9 €.L2(0,T;H).

We search for y(1) of the form

v(t) = Du"(t)"^.

So, we can formally deduce

b:(t) + q(t)b;(t) + )"r(r)6,(r) : g"(r) (38)

with

6"(0) : yon, b!o(0) : au, 139)

where ,

, lon = (yo,"n)s = )'(yo, en), An = \n(h,en), (40)

g"(t) = )"(g(t),e,) for a.e. t € (0,r).

we suppose in addition that r(t) r rs ) 0. By multiplying (88) with bl(r) one can
obtain

(Lu;Af)' +q(t)b;(t)'+ fta"tr)21': s^1t)b!*(t) a.e.0 < r < ?.

(35)

(37)
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It follows that

1 \ z 1 , \nro,
;u"(t)' + ;robl(t) s t ?" * Tr,,"

Therefore

* Io' e,(s) bl,(, ) dr,

181

0 <t <7. (41)

lb'^(t)ls M*lo' lg,(r) ld,
and hence

(b'"(t))'

From (41) and (42) one can obtain

b'^(t) s c(r,,^+&+ t'n]d.Ii.;r), o <t<r
\ ' ),, ' Jo 

^n 
*" 

) ) -
By (42), (43) and (88) it follows that

(#)' < c (,t, . * * |,"#ds *'#)
It[ow,, (42), (43) , (44) imply that

(42)

(43)

(44)

(47)

y € C([0, T]; Hn) n C1([0, T];H) n H21o,r; HE) (45)

The proof can be continued as in Moroqanu and sburlan [5] thus obtaining that y is
a weak solution of (38), (Bg) in the sense that

y"(t)(p) + q(t)y'(t)(d + roBBy(t)(p) : g(t)(p), (V)p e Hs, a.e. , € (0, T) (46)

and

y(0) : yo, y'(0) : at.

Remark 1. If q(t) is also a constant function, C(i) = 9o ) 0, then b,(i) can be
expressed by a formula (the roots of the corresponding characteristic equation are
complex numbers, for n large enough, because tr, -* oo). In this case we could do as
in Moroqanu and Sburlan [5] and obtain new results.
Rernark 2. If r(t) : ri for t; 1 t 1t;11 where 0 : lr ( ... ( l7y : ? is a partition
of [0,?] we can obtain again the estimates (4r), (42) and (48) and so the previous
existenceresultstillholds'Moreover,ifrt)rz>...>
depend on N. In fact, we have

Proposition. If in addition to the aboue hypotheses we assurne that r is a nonin-
creasing function, then the problem (6), (b) has a unique weak solution y satisfying

done

b'^(t)'

(bv multiplying (38) with b;(t)) we have:

\/ \

) * qu)a"(t)'+;r(t)[b"(t)']' : sn(t)b',(t)

(45).

Proof. As already

/7
Iz
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so
1

ib'nU)'
For each m e N*

,^(t) -

f,r?^* lo'

by

.+ 
Io',(,)[b,(s)2]'ds

we define rmr [0, T] -r R

( i-r f +S"(t){ 2^ ' 
I 

)m
f, T'n,) if m S "(t)

Moroqanu, Georgescu and Gr5,dinaru

lg"(') l.lbl,(') ld'.

for i-Ir2,...rffi.2*

\

f {rrb'"(tt) - cftz^(to)+

lg(r) l.lb'n(') ldr.

the fact that r is decreasing we

It is clear that r^ converges to r in ,-(0,?). The monotony of r makes that r- is

defined and constant on intervals.

We rewrite the last inequality as:

Also:

-+lo'lr(r) - ,.,(r)l .[b,

* czb'"(tr) - rru|(t, ) * . . . )

We denote ro : 
,tff, 

r(t) and 11 : 
irlfi 

r(t)

obtain:

Ir,uf * \ l"'VAl- "*(,)1. [b"(s)2]'ds + \u^1t1' 3
1^ .\- ^ tt

s |ui"* t,,yI"+ /o I o(s) ll 6i(s) | ds.

Making that m tends to infinity we get

'zu;uf + \u^1t1, srrri-* *,,r8,* /' l r{,) | . I bi(s) | ds.

From now on, one can obtain estimations of kind ot. (42), (43), (44), as usually.

Remark 3. For the regularity of the solution one can see the discussion of the first
order case. To see the connection between (2) and (6) one can construct an example

as in the first order case.

3.2. The abstract boundary control problem

We consider a vibrating system whose motion is governed by the equation (2) with
g : 0 and with the boundary condition

(48)Zv(t)-v(t), 0S, <T
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and has the initial states as in (35), wherc Z : D(Z) C H -+ H2, and

B : D(B) C H + I/ are densely defined linear operators with D@) g DQ), Hz
being a second real Hilbert space.

we make the assumptions of (36) and let r be nonincreasing monotone a.e.

The control function cp is allowed to vary in the Sobolev space

nfi$,T; Hz) : {e e H2(0,7, Hz); p(0) : v(T) : p,(0) : p,(?) : 0i

Let us denote

Ds: {z € D(B); Zz : Q} (49)

and,6:Blno.
We suppose E : Ds --+ -FI as being selfadjoint and coercive, E: D(Et/2) S O1Z1

and the embedding n@) S 11 as being compact. We also assume that ye € E and
y'o € H . In the following we shall use the idea from Krabs [4].
Assumption 1. For every ry' € Hz therc exists exactly one element ut4, € D(B) such
that

8w,1, :0 and Zw,P = t[

and the linear operator G : H z --+ D(B) defined bV G(r/) = u,, is continuous.

For g € H!(0,7i H2) beinggiven we define r(t) : G(p(r)), (V)r e [0,7] and we

infer that

f €I/02(0,r;D@)):{f € H2(0,7;D(B)); f(0) : r(T):f'(0) :f'(?) :0}.

Let y e C(l0,Tl; D(B)) n Cl([0, T); H) be a solution of (2) with 9 : 0, (4S), (35)

for s € H!(O,T;D(B)) being given.

Then we define I : A - f,and conclude that Zy(t) : ZV(t) - Zt(t)= 0, and so

Finally we deduce

y e C([0 ,T]; Do) n Ct ([0, T; H).

y"(t) + q(t)y'(t) *'@BJil(r) : -F"(r) - q(t)r'(t)

and

!(0) = yo, y'(0) : w.

Thanks to multiple orthogonal sequence theorem (see Moroganu and sburlan [b])
we obtain the sequences (e,),>r C Do and (1")" C (0,*) such that

1. (r")" is an orthonormal basis in B1

2. (t/Ee")" is an orthonormal basis in IJ'
3. ()"e")" is an orthonormal basis in E'1

4. (),)* is increasingli divergent to +oo and, Be,= )n€n (V)n e N-.
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Let gn - t8",. We search for a weak solution y-(i) of the form:

v : f;v*U)p^. (50)

We can formally deduce:

y':(t) + c!)y'"(t) * \"r(t)y,(t): -F'$),p) - c(t)(r'(t),p,) (V)n e N..

Let xr. and x2. be functions satisfying:

! {,:)'{th q(rxcl)'(r) + }*r(t)o}(t) : o

t il(bl': o,'t'll'(oj : !'tr (51)

respectively

I @'")" (t) + q (t)(r'")'(r) * )",r(t) *'^(t) : 0

I ,'"(o) : 1, (*?")' (o) : 0.

/"(r) - -(F"(r), ?") - q(s)(r'(s), e).

be represented in the form:

We will denote

(52)

(53)

Then

-. /J\ Utn -' 
- tt 

l /-\--2lr\ -t r,t 2r .r /r(t) , t2 r\y"(t): Tn '"tq t ys"x|(t) + /o [cl(")"r"U) - a1"(t)ri(")1ffids (5a)

where

Yn = (ar,gn), !on: (yo,?n), (55)

w^(s): cl(s)cl'(s) - 'l1s;'l'1'). (56)

We therefore define a weak solution of (2) with 9 : 0, (48) and (35) by y : y *i,
with F - G(p) and y given by (50) and (54).

According to this definition, the weak solution y can

y(t)::i lk*(r) *yon,'^(t] ,,-p,
' .e[i q(')o"lrl(t)*r^(r) - ,].(, )rr^(t)](r(r), p^)dr)

/

and its time derivative is given by:

(57)

y, (t) : i lk.'^, 
(t) + y o^*r^, (r)], ^- p, rtr

.rfi qb)dr@,|(t)r|(r) 
- ,r^(r)*r^'(t)](r(r) , g^)d

If the control space H3(0,7i Hz) is replaced by

HJ(0 ,T; Hz) - { u e H'(0 ,T; Hz);u(0) : Lr{f) - 0}
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then y : y(t) defined by (57) with f : G(p) for g chosen in f/or(0,T;Hz) is taken

as weak solution of (2) with g:0, (48) with this 9 and (35), y' given by (58) being
chosen as its time derivative.

We are now in position to solve the null-controlability problem associated to (2)
with g :0, (48) and (35).

Null-controlability problem. Given ? > 0, Ao € E and y[ € 11, find 9 e
Ilor(0,?;I12) such that the weak solution y : y(t), t € [0,?] of (2) with 9 : 0, (48)

with this 9 and (35) given by (57) with r : G(V) satisfies the end conditions

vQ)-0, y'(?) :0,

forall 7€N*
Then (60)

. Io' 
,(, ), : 

Ir' 
,(s )e/, 

q(r)d"r 
,,1 (s )a,

by parts

I )n"dt

I )' Zv')n"dt'

F,,Bp1) : (Zr,Zp)r"

and all r e D(B).
can be rewritten as

arn : - Ir' ,(t)el!q@a'r2,(rX zt, 2v)n"dt

,F^von I 
I'r1t7"tJq(s)ds 

*',(t)(zr, 2p)n"dt, (v)n e N*.

(5e)

(60)

(61)

(62)

(63)

Let F{(t) -
Integrating

For every u € L'(0,7; Hz) let us define

Then p'(t) - u(t) a.e. t € [0, T], i.".
The end condition g(f) - 0 is now

So, in order to solve

u e L'(0,7, Hz) which

t e [0, r].
and p(0) - 0.

to find some

g'.
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A e exists exactly one

wu€ to,(t):(),
Zr"(

B

U

(64)

Let us define ,5 : -L2 (S]("), Sl(u))"6p, where

( ,p*)dlI Ynt-- 
(65)

I I , en)itt.(

Let us also define c

(66)

So, the null-control o finding u e L2(0,7;H2) such

that

(67)

We also obtain

(sl("))'+ (sT@D' t(ry(t))'+ (Fi(t) )'l(r"(t), v)'dt

so that

iftsl( u))' + (s;(r))'l < cllr, llzp,1o,r;a)01',113110,11,E) + ll*rll3to,rr,E))

and hence ^S(r2(0, T; Hz)) c I'z((R'?)N).

In addition, S is closed. Therefore, by the closed graph theorem, ^9 is continuous.

Its adjoint S. : /2((lR2)N) --+ 1,2(0, T;Hz) is given by

(68)(s.),x t):e,# @Iel(,) - v'^F:(r)) 2v^

for almost all I € [0,f] and y - (yt",Ui)"en e-12((R')n).



The Fourier Method

Let us define g : L2(0, ?; Hz) -, L2(0, T; Hz) by

9(u) 'u-ilr'"(t)dt, for ue L'(o,T;uz).
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( 70)

S(Q(u)): a. (6e)

lf.ue L2(0,7;Hz) solves (68) then f(u) : u solves (69) and, conversely,

if.u e L2(0,7;Hz) solves (69) then u :9(r) solves (6?).

From now on, the approach is similar to that of Krabs [4].

To be complete, we write down the essential arguments.

Using the dual formula of norm, one can show that (69) has a solution
u e L2(0,T;Hz) if and only if there exists a constant ) > 0 such that
(c,y)o S f ll(,9 o Q)-(y)117,p,rfi2\ so one has to solve the following

Minimization problem. Minimize 
I t t t- t r l - i 1 ""' 

r) (t) dtll2L, (o,r. n 
"1 

for

y e ll((R'z)N) subject to (c,y)p : I.

that g is linear, continuous, selfadjoint una 
lo' {9tu)Xt)dt : 0, for every

Hz).
he null-controlability problem is equivalent to finding u e L2(0,7;Hz)

Let y b" a solution . One can show that if
1

, S.(i)Xr)dlllpp,r,d : 0

then (69) has no soluti

I
, S. (i)Xr )d,tllr, @,r,n il

then there exists ) > 0

((9 o S.)(9;, (9 o S-)(y))r,z(o,riH2): \(c,y)e

for all s e t'z((R'z)N), hence, if weput t:lfeoS.)(i) then,S(f(a)) :. und

A@) e L2(0,7;H2) and solves (67).

Let us suppose that (70)holds. If wedefine O- =Kthen y. e l'z((R'z)N)and solves

(SoQoS.)(s.) :t (71)

that can be rewritten as

1rT
S(S'(y.) - i J".9.(y.)(t)dt) = c.

One can show that S o Q o,5* is coercive and so (71) has a unique solution which

is given by y* : (S o I o ,S')-lc.
So, if (70) holds, the null-controlability problem has a unique solution.



188 Moroqanu, Georgescu and Gridinaru

REFERENCES

[1] V. Barbu, Boundary Value Problems lor Partial Differential Equations, Ed. Academiei,
Bucharest, 1993 (in Romanian).

[2] V. Gr5dina,ru, La methode de Fourier pour des equations abstraites, Ann. Math. Blsise
Pascal, 3 (1996), 111-116.

[3] A. Haraux, Nonlinear Euolution Equations. Global Behauior o! Solutions, Lecture Notes
in Math., Vol. 841, Springer-Verlag, Berlin, 1981.

[4] w. Krabs, on abstract boundary control problems for vibrations, (to appear).

[5] G. Moroganu and S. Sburlan, Multiple orthogonal sequence method and applications,
An. $t. Unio. Ouidius Constanla,2 (1994), 188-200.

[6] E. Zeidler, Applied Functional Analysis,Applied Math. sci., vol. 10g, springer-verlag,
Berlin. 1995.


