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Abstract
This paper proposes and investigates amodel for rumor spreading and control which accounts
for different attitudes and for a distinct type of variable, related to the strength and effec-
tiveness of rumor inhibiting mechanisms. The control mechanisms essentially amount to
budgeting and to adjusting the attitude of spreaders. The existence and stability of the trivial
(rumor-free) equilibrium and of the semi-trivial equilibrium are characterized in terms of
two threshold parameters which quantify the influence of both categories of spreaders. The
existence of a positive (rumor-prevailing) equilibrium is also established, its stability being
discussed with the help of a bifurcation theorem. A nonstandard finite difference (NSFD)
scheme is devised to construct approximate solutions while preserving their positivity, nec-
essary conditions for the existence of the optimal discrete rumor spreading controls being
then established.

Keywords Rumor spreading · Stability of equilibria · Conformable spreaders · Obstinate
spreaders · Influence numbers · Nonstandard finite difference (NFSD) scheme · Backward
bifurcation · Fixed horizon optimal control regime

Mathematics Subject Classification 34C23 · 34D05 · 91D30 · 92D30

1 Introduction

Rumors, unconfirmed and often unconfirmable elaborations uponmatters of private or public
interest for which truth is sometimes of little-to-no importance, can often distort facts and
shape misinformed opinions, irreparably damaging long-standing reputations in the process.
Rumors can also cause public unrest with unpredictable consequences, increase the volatility
of financial markets, and create panic in times of need such as during natural disasters and
disease outbreaks. In comparatively rarer occasions, rumors can also have a positive impact,
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drawing attention to deserving persons and raising public awareness of worthy causes or of
specific events. There are also viral marketing campaigns in which marketing information
can be spread to and by unsuspecting potential customers from person to person or shared
via the ubiquitous social networks.

Rumors often spread due to lack of scientific knowledge and official information. Releas-
ing official information may and often does contribute toward changing the attitude of rumor
spreaders, even to the point of stifling the rumor they previously spread with just as much
enthusiasm. Better knowledge of themechanisms of rumor spreading and a realistic approach
toward their modeling would be of major importance in containing the spread of misinforma-
tion and, on the other hand, in low-key dissemination of information meant to shape public
opinions.

In their pioneering papers Daley and Kendall (1964, 1965), Daley and Kendall proposed a
model of rumor spreading, now known as the Daley–Kendall (DK) model, which is function-
ally similar to a disease propagation model and makes use of three compartments: ignorants,
spreaders, and stiflers. However, they assumed that, upon hearing a rumor, an ignorant will
necessarily become a spreader. This shortcoming has been mitigated byMaki and Thompson
in Maki and Thompson (1973).

With the advent of complex network theory, further enhancements of the DK model
have been devised to account for network topology. Zanette (2001, 2002) proposed a rumor
propagation model on a small-world network and determined a critical threshold for rumor
spreading. The stochastic properties of the MT model on scale-free networks have been
investigated in Moreno et al. (2004) by means of Monte Carlo simulations. Kawachi (2008)
discussed an age-structured transmission model, accounting also for the variability of the
rumor. Dodds and Watts (2004) explicitly incorporated the memory of past exposures into a
susceptible-infected-removed (SI R) model. A comprehensive model which uses the concept
of information entropy to account for the role of memory, conformity effects, differences in
the subjective propensity to produce distortions, and variations in the degree of trust that
people place in each other has been proposed by Wang et al. (2017). Musa and Fori (2019)
distinguished between spreading by means of personal communication and spreading by
means of mass-media. Piqueira et al. (2020) introduced an additional class of fact-checkers
to discuss the propagation of fake news, building on an earlier work of Piqueira (2020).

Other recent developments include considering the effects of other mechanisms such
as forgetting mechanisms (Zhao et al. (2003)), incubation mechanisms (Al-Tuwairqi et al.
(2015)), hesitation mechanisms (Xia et al. (2015)), different probabilities for spreaders to
become stiflers (Zhao et al. (2013)), different spread inhibiting and attitude adjusting mech-
anisms (Li et al. (2021)), influence of dissenting opinions (Bodaghi and Goliaei (2018)), use
of evolutionary game theory to explore the causes of user behavior ( Xiao et al. (2019)), use
of fractional calculus to better capture the past history of variables (Singh (2019)), crowd
classification based on personality (Chen andWang (2020)), stochastic perturbations of white
noise type (Jia and Lv (2018)), and fuzzy environments (Kumar et al. (2020)).

A model which keeps track of ignorant, spreader, and stifler populations, respectively,
along with a fourth compartment quantifying the cumulative rate of awareness programs, has
been employed by Huo et al. (2019) to describe the effects of behavioral changes induced
by awareness campaigns via media reporting on rumor spreading. The model of concern in
Huo et al. (2019) also accounts for loss of awareness that happens as a result of forgetting
mechanisms or of other social reasons, allowing aware individuals to become ignorants again.
Apart from a stability analysis, a control problem with media reporting as a control variable
is also investigated in Huo et al. (2019), the objective being the minimization of negative
effects caused by rumor dissemination.
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A model for rumor spreading on social networks has been introduced in Zhu and Wang
(2020), its distinguishing features being the use, in addition to the population compartments
mentioned above, of a fourth one, the rumor-indifferent population, which believes the rumor
but does not transmit it, and of a silence-forcing function acting as a limiting factor for rumor
spreading. Also, the model allows for a rumor-indifferent or rumor-propagating individual to
self-recover (i.e., to become a stifler) as a result of own judgment. Apart from a stability and
bifurcation analysis, an optimal control problem for which the control variable is a certain
component of the silence-forcing function is investigated, the objective being to reduce the
number of rumor-propagating individuals with minimal investment.

Another model for rumor spreading on social networks allowing for both instant and
delayed conversion of ignorants into spreaders has been investigated in Zhu et al. (2020),
sufficient conditions for the Hopf bifurcation of the rumor-elimination equilibrium being
presented alongside extensive numerical simulations. A control problem for an associated
nondelayed model is also investigated, the objective being increasing the number of stiflers
and decreasing the number of spreaders with minimal costs.

It is then of great importance for the concerned governmental bodies to establish rumor
control mechanisms to identify and mitigate potentially disruptive rumors. However, dis-
pelling and rebutting rumors at a societal level requires coordinate efforts and a dedicated
personnel, necessitating adequate budgeting. In our model of rumor spreading, we attempt
to introduce the inhibiting mechanism, which depends only upon governmental input, acting
toward changing the attitude of spreaders. We then discuss the qualitative properties and
optimal control regime of the inhibiting mechanism upon rumor spreading together with the
influences of the design parameters on budget input and, respectively, the natural decay rate
of the inhibiting mechanisms, our aim being to provide a more accurate perspective to rumor
control, along with actionable insights.

Most previous studies on rumor spreading relied, as mentioned above, on models which
were originally introduced as disease progressionmodels. This is not the casewith ourmodel.
Apart from using a state variable which is not related to the attitude toward rumor spreading
(that is, not related to disease status, in an epidemiological setting) but to the strength and
efficiency of rumor control mechanisms, there is no natural progression between the spreader
compartments in our model, which consequently cannot and should not be thought as an
augmented SE I R model.

The remaining part of this paper is organized as follows. In Sect. 2, after detailing ourmod-
eling considerations, we introduce our rumor spreading model, which accounts for different
attitudes toward rumor spreading and attempts to quantify the effects of rumor control mea-
sures taken by the concerned bodies. In Sect. 3, stability properties for the trivial (rumor-free)
and semi-trivial equilibrium, respectively, are established in terms of threshold parameters
which bear a certain resemblance to the basic reproduction number of mathematical epidemi-
ology and quantify the influence of spreaders. The existence of a positive (rumor-prevailing)
equilibrium is also established, its stability being discussed with the help of a bifurcation
theorem. In Sect. 4, we devise an NSFD scheme for the construction of the approximate
solutions, discuss its consistency, and then establish necessary conditions for the existence
of the optimal discrete rumor spreading controls. In Sect. 5, we illustrate and enhance our
theoretical findings via numerical simulations. Finally, several concluding remarks are given
in Sect. 6.
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2 Modeling considerations

2.1 Model parameters and control variables

The population which is subject to rumor control mechanisms is assumed to be of variable
size (N ), being subdivided into the following compartments: ignorants (I ), conformable
spreaders (latents) (L), obstinate spreaders (S), and stiflers (R). Also, P is a rumor control
variable which quantifies the strength and effectiveness of the rumor control mechanisms.
We make several assumptions upon the ways in which the rumor spreads and is controlled,
as shown in Fig. 1 and then summarized below.

(i) The movement of individuals between compartments is irreversible.
(ii) The rumor spreads in a populationwhich is subject to both immigration and emigration.

All recruitment is into the ignorant class, at a constant rate Λ. The emigration rate is
μ, independent of the compartment.

(iii) Upon successful contactwith a spreader, an ignorantmoves to the conformable spreader
compartment. That is, it is assumed that not even the most obstinate spreaders are
persuasive enough to turn ignorants into obstinate spreaders immediately (or perhaps
not even the most gullible ignorants can be instantly persuaded to become rumor
spreading zealots without further evidence). Also, it is assumed that only an obstinate
spreader can turn a conformable spreader into an obstinate spreader, while another
conformable spreader cannot. Specifically,when an ignorant contacts a conformable (or
obstinate) spreader, the former turns into a new conformable spreader with probability
β1 (respectively, β2). When a conformable spreader contacts an obstinate spreader, the
former turns into an obstinate spreader with probability β3.

(iv) The obstinate spreaders may cease to spread rumors only when they are subjected to
rumor control, in which case they become stiflers, at a rate ε f (P).

(v) The spread inhibiting function f (P) depends on the strength and effectiveness of the
rumor control mechanisms, satisfying:

(a) f (P) ≥ 0, P ∈ (0,+∞); (b) f ′(P) ≥ 0, P ∈ (0,+∞).

(vi) The effects of ongoing government policies upon the strength and effectiveness of the
rumor controlmechanisms are described by a positive, continuous, and bounded budget
input function ψ(t), while a parameter ρ can be used to describing the effectiveness
of the implementation of government policies. The parameter e represents the natural
decay rate of the rumor control mechanisms. In addition, the impact of spreaders
eluding rumor control mechanisms upon the rumor control variable can be quantified as
θ(t) = (1−λ(t))θ̄ , in which λ(t) = exp(γ i(t)−δ).Here, γ is the validation parameter
of the inhibiting mechanism and i(t)(> 0) is the attitude adjusting behavioral response
of the spreader population. Both ψ and i are to be understood as control functions. In
addition, δ is the positive rescaling decay parameter for the spreader population and θ̄ is
the maximum decay rate. We assume that the degradation of the inhibiting mechanism
and their natural clearance in the social environment are not as rapid as to make the
decay rate θ(t) negative.

Note that vertical arrows pointing upward are used in Figure 1 to indicate “media-
tion”(influence), rather than transition of individuals. For instance, the vertical arrow starting
from P which is perpendicular on the arrow going from S to R describes the fact that the
transition of εS f (P) individuals from the S class to the R class happens as a result of the
control mechanisms described through the use of the P variable.
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Fig. 1 A flowchart of the model

Remark 1 Examples of functions f satisfying (v.a) and (v.b) are the convex function f (P) =
aP2, the linear function f (P) = aP , the concave function f (P) = a

√
P , and the S-shaped

function f (P) = a
1+be−P , a, b > 0.

2.2 Themodel

On the basis of the above considerations, we may now introduce our rumor spreading model
as seen below:

d I

dt
= Λ − β1L I − β2SI − μI ,

dL

dt
= β1L I + β2SI − β3LS − μL,

dS

dt
= β3LS − εS f (P) − μS,

dR

dt
= εS f (P) − μR,

dP

dt
= ρψ(t) − (e + θ(t))P,

(1)

an overview of state variables and model parameters being given in Table 1.
Let us denote ψmax = supt∈[0,+∞) ψ(t).
By a comparison argument, it can be shown that the set:

Ω =
{
(I , L, S, R, P) ∈ R

5+ : 0 ≤ I + L + S + R ≤ Λ

μ
, 0 ≤ P ≤ ρψmax

e

}

is a positively invariant set of (1).
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3 The dynamics of the simplifiedmodel

3.1 The simplifiedmodel

To fully characterize the dynamical behavior of the solutions, we need detailed knowledge
about the profile of the control mechanisms. In what follows, we consider fixed values for
the control functions, that is, ψ(t) ≡ ψ and i(t) ≡ i , which in turn implies that θ(t) is also
a constant, that is, θ(t) ≡ θ . Since the stifler compartment does not directly influence the
dynamics of the other compartments, the rumor control variable P is directly supervised by
the concerned authorities and, on the long term:

lim
t→+∞ P(t) = ρψ

e + θ
,

we are led to considering the simplified autonomous form below:

d I

dt
= Λ − β1L I − β2SI − μI ,

dL

dt
= β1L I + β2SI − β3LS − μL,

dS

dt
= β3LS − εS f (

ρψ

e + θ
) − μS.

(2)

3.2 The conformable spreaders influence number

As previously done for the higher dimensional model (1), it can be shown that the simplified
model (2) is well posed and has positivity-preserving solutions. Also, (2) has a rumor-free
equilibrium E01, given by:

E01 =
(

Λ

μ
, 0, 0

)
.

To be able to establish the stability properties of (2), we now introduce a threshold param-
eter, which we shall call from now on the conformable spreaders influence numberR01 of the
model, defined ad hoc via the next generation method, an approach which has been proven
very successful in mathematical epidemiology.

Let X = (L, S)T . The second and third equations of (1) can altogether be written as:

dX

dt
= F(X) − V(X),

in which:

F(X) =
(

β1L I + β2SI − β3LS
β3LS

)
, V(X) =

(
μL

εS f ( ρψ
e+θ

) + μS

)
.

We obtain:

F = DF |E01 =
(

β1Λ
μ

β2Λ
μ

0 0

)
, V = DV|E01 =

(
μ 0
0 ε f ( ρψ

e+θ
) + μ

)
.
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The conformable spreaders influence numberR01 of (1) is then defined as the spectral radius
of the matrix FV−1, which leads to:

R01 = β1Λ

μ2 , (3)

and can be interpreted as the average number of ignorants turned into conformable spreaders
by a single conformable spreader when introduced into a totally ignorant population. It is to
be noted thatR01 does not depend upon f , since f characterizes control mechanisms which
are applied to the compartment of the obstinate spreaders only.

It is easily seen that R01 > 1 implies that the system (1) has yet another semi-trival
equilibrium, namely an ignorant and conformable spreader-only equilibrium E02, given by:

E02 =
(

μ

β1
,

μ

β1
(R01 − 1), 0

)
.

Note that the very existence of E02 shows the fact that our model is not a direct equivalent of
a SE I model (or of a related one, for that matter), for which no such semi-trivial equilibria
exist, although one could think of conformable spreaders as being “the exposed”. This hap-
pens, since in our model, there is no natural progression between the conformable spreader
compartment and the obstinate spreader compartment.

3.3 The obstinate spreaders influence number and the stability of the equilibria

First, it is seen that R01 is a threshold parameter for the stability of E01.

Theorem 1 The rumor-free equilibrium E01 = (Λ
μ

, 0, 0) is locally asymptotically stable
provided that R01 < 1 and unstable provided that R01 > 1.

Proof The Jacobian matrix of the system (1) at E01 is:

J (E01) =
⎡
⎢⎣

−μ −β1Λ
μ

−β2Λ
μ

0 β1Λ
μ

− μ
β2Λ
μ

0 0 −(ε f ( ρψ
e+θ

) + μ)

⎤
⎥⎦ . (4)

We then obtain that J (E01) has the following eigenvalues:

λ1 = −μ, λ2 = −(ε f (
ρψ

e + θ
) + μ), λ3 = μ(R01 − 1).

While λ1, λ2 < 0, it is seen that R01 < 1 if and only if λ3 < 0. Also, R01 > 1 if and only
if λ3 > 0. Hence, E01 is locally asymptotically stable provided that R01 < 1 and unstable
provided that R01 > 1. This completes the proof. 
�

We now turn our attention toward investigating the stability of E02. As seen above, this
equilibrium exists if and only ifR01 > 1. We first see that the Jacobian matrix of the system
(1) at E02 is given by:

J (E02) =

⎡
⎢⎢⎣

−Λβ1
μ

−μ −β2μ
β1

Λβ1−μ2

μ
0 β2μ

β1
− β3(Λβ1−μ2)

μβ1

0 0 β3(Λβ1−μ2)
μβ1

− (ε f ( ρψ
e+θ

) + μ)

⎤
⎥⎥⎦ . (5)
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We then find that J (E02) has the following eigenvalues:

λ1 = −μ, λ2 = μ(1 − R01), λ3 =
(

ε f

(
ρψ

e + θ

)
+ μ

) (
β3μ(R01 − 1)

β1(ε f (
ρψ
e+θ

) + μ)
− 1

)
.

While λ1 is always negative, λ2 is also negative whenever E02 exists, and consequently, the
stability of E02 is determined by the sign of λ3. Let us define:

R02 = β3μ(R01 − 1)

β1(ε f (
ρψ
e+θ

) + μ)
, (6)

which is to be interpreted as being the average number of conformable spreaders turned into
obstinate spreaders by a single obstinate spreader when introduced into a population which
is at the semi-trivial equilibrium. From now on, R02 will be called the obstinate spreaders
influence number. Using the above considerations, it is then seen that the following result
holds true.

Theorem 2 The ignorant and conformable spreader-only equilibrium E02 = (
μ
β1

,
μ
β1

(R01 −
1), 0) is locally asymptotically stable provided that 0 < R02 < 1 and unstable provided that
R02 > 1.

Note again that in our model, neither the conformable spreaders naturally progress to the
obstinate spreader compartment, nor the obstinate spreaders have the capability to turn igno-
rants directly into obstinate spreaders. Consequently, it is natural to have the stability (or lack
thereof) of E02 linked to the influence of obstinate spreaders upon the conformable spreaders
only. Also, while R01 is akin to a basic reproduction number, R02 is more like an invasion
reproduction number, being related to the capability of a compartment to disrupt an equilibria
involving the other compartment only.

To find the coordinates of the rumor-prevailing equilibrium E∗ = (I ∗, L∗, S∗), one needs
to solve the equilibrium system:

Λ − β1L
∗ I ∗ − β2S

∗ I ∗ − μI ∗ = 0,

β1L
∗ I ∗ + β2S

∗ I ∗ − β3L
∗S∗ − μL∗ = 0,

β3L
∗S∗ − εS∗ f ( ρψ

e + θ
) − μS∗ = 0.

(7)

One easily sees that:

L∗ = ε f ( ρψ
e+θ

) + μ

β3
, I ∗ = Λ

β1L∗ + β2S∗ + μ
,

while S∗ is a root of the equation AS∗2 − BS∗ + C = 0, with:

A = β2β3L
∗, B = β1β3L

∗2 + μ(β2 + β3)L
∗ − Λβ2,

C = −μβ1(L
∗)2(R02 − 1).

(8)

It is obvious that R02 > 1 implies that C < 0. Also:

L∗ >
−μ(β2 + β3) +

√[
μ(β2 + β3)

]2 + 4β1β2β3Λ

2β1β3
,

that is:

R02 < R∗
02,
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where:

R∗
02 = 2β3(R01 − 1)

−(β2 + β3) +
√

(β2 + β3)2 + 4
μ2 β1β2β3Λ

,

implies that B > 0. On the basis of the above considerations, we then obtain the following
existence result.

Theorem 3 The following statements hold.

(i) IfR02 > 1, then (2) has a unique rumor-prevailing equilibrium E∗ = (I ∗, L∗, S∗), in
which S∗ = −B+√

B2−4AC
2A .

(ii) If R02 = 1 > R∗
02, then (2) has a unique rumor-prevailing equilibrium E∗ =

(I ∗, L∗, S∗), in which S∗ = −B
A .

(iii) If R∗
02 < R02 < 1 and B2 − 4AC = 0, then (2) has a unique rumor-prevailing

equilibrium E∗ = (I ∗, L∗, S∗), in which S∗ = −B
2A .

(iv) If R∗
02 < R02 < 1 and B2 − 4AC > 0, then (2) has two rumor-prevailing equilibria

E∗
1 = (I ∗

1 , L∗
1, S

∗
1 ) and E∗

2 = (I ∗
2 , L∗

2, S
∗
2 ), in which S∗

1,2 = −B±√
B2−4AC
2A .

(v) IfR∗
02 < R02 < 1 and B2 − 4AC < 0, then (2) has no rumor-prevailing equilibrium.

(vi) If R02 < min{R∗
02, 1}, then (2) has no rumor-prevailing equilibrium.

3.4 Backward bifurcation

While the stability analysis for E01 and E02 is rather straightforward, as it relies on a sign
analysis, E∗ is not really amenable to this kind of approach. Instead, we shall now perform
a bifurcation analysis using Theorem 4.1 of Castillo-Chavez and Song (2004), a theoretical
result based on the Center Manifold Theory, which will yield consequences regarding the
stability of E∗ as a byproduct. To conform to the framework of Castillo-Chavez and Song
(2004), we use the following notations:

I = x1, L = x2, S = x3.

The system (2) can then be written in vector form as:

dX

dt
= H(X),

where X = (x1, x2, x3)T and H = (h1, h2, h3)T , with:

h1
.= Λ − β1x1x2 − β2x1x3 − μx1, h2

.= β1x1x2 + β2x1x3 − β3x2x3 − μx2,

h3
.= β3x2x3 − (ε f (

ρψ

e + θ
) + μ)x3.

Let us choose β3 as being the bifurcation parameter. While it is certainly possible to choose
other bifurcation parameters, we intended to emphasize the influence of obstinate spreaders
via both this choice of a bifurcation parameter and stating Theorem 4 chiefly in terms ofR02,
the obstinate spreaders influence number. When R02 = 1, β3 takes the critical value:

β∗
3 = β1(ε f (

ρψ
e+θ

) + μ)

μ(R01 − 1)
.

123



  125 Page 10 of 22 C. Wenkai et al.

The Jacobian matrix J (E02) evaluated for β3 = β∗
3 is given by:

J (E02)|β3=β∗
3

=
⎡
⎢⎣

−Λβ1
μ

−μ −β2μ
β1

μ(R01 − 1) 0 μ
β1

(
β2 − β∗

3 (R01 − 1)
)

0 0 0

⎤
⎥⎦ .

This matrix has a right eigenvector w = (w1, w2, w3)
T associated with the eigenvalue 0 at

β3 = β∗
3 , with:

w1 = β∗
3 (R01 − 1) − β2

β1(R01 − 1)
, w2 = β1Λ

(
β2 − β∗

3 (R01 − 1)
) − β2μ

2(R01 − 1)

β1μ2(R01 − 1)
,

w3 = 1

and a left eigenvector v = (v1, v2, v3) associated with the eigenvalue 0, with:

v1 = v2 = 0, v3 = 1.

To apply the bifurcation result presented in Castillo-Chavez and Song (2004), let us compute
the quantities involving the second-order partial derivatives indicated therein, given by:

a = Σ3
k,i, j=1vkwiw j

∂2hk
∂xi∂x j

(E02, β
∗
3 ), b = Σ3

k,i=1vkwi
∂2hk

∂xi∂β∗
3
(E02, β

∗
3 )

Consequently:

a = v3w2w3
∂2h3

∂x2∂x3
+ v3w3w2

∂2h3
∂x3∂x2

= 2β∗
3w2w3.

Also:

b = Σ3
i=1v3wi

∂2h3
∂xi∂β∗

3
= ε f ( ρψ

e+θ
) + μ

β∗
3

> 0.

By applying Theorem4.1 of Castillo-Chavez and Song (2004), we obtain the following result.

Theorem 4 The rumor-prevailing equilibrium E∗ is locally asymptotically stable forR02 >

1 but close to 1 and the system (2) has a backward bifurcation at R02 = 1 if one of the
following equivalent conditions is satisfied:

(i) β2 >
β1(ε f (

ρψ
e+θ

)+μ)

μ
and Λ >

β2μ
2(R01−1)

β1(β2− β1(ε f ( ρψ
e+θ

)+μ)

μ
)

;

(ii) β2 >
β1Λ(ε f ( ρψ

e+θ
)+μ)

μ
(
β1Λ−μ2(R01−1)

) and Λ >
μ2(R01−1)

β1
;

(iii) β2 >
4μ(R01−1)(ε f ( ρψ

e+θ
)+μ)

Λ
and β1 ∈ (β∗

1 , β∗
2 ), in which:

β∗
1 =

Λβ2 −
√

(Λβ2)2 − 4β2Λμ(R01 − 1)(ε f ( ρψ
e+θ

) + μ)

2Λ
μ

(ε f ( ρψ
e+θ

) + μ)
,

β∗
2 =

Λβ2 +
√

(Λβ2)2 − 4β2Λμ(R01 − 1)(ε f ( ρψ
e+θ

) + μ)

2Λ
μ

(ε f ( ρψ
e+θ

) + μ)
.
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4 The nonstandard finite difference (NSFD) scheme

In this section, we make use of the nonstandard finite difference (NSFD) scheme approach
devised by Mickens (1994), and further elaborated by Anguelov and Lubuma (2001). This
approach is proved to be more appropriate than the classical Euler and Runge–Kutta approxi-
mation schemes, because, as far as the existence and positivity of the equilibria are concerned,
it is dynamically consistent with the original continuous-time model (2), regardless of the
step size taken in the numerical simulations. Most importantly, the dynamical consistency
guarantees the positivity of solutions, contrary to other numerical schemes that may produce
negative or spurious approximate solutions. The main features of a NSFD scheme are as
follows (see also Anguelov and Lubuma (2003), Mickens (2007), Garba et al. (2001) for
further details).

– The standard denominator value Δt = h of the discrete derivatives is replaced by a more
general function φ(h), which satisfies the condition φ(h) = h + o(h2).

– Nonlinear as well as linear terms are approximated in a nonlocal way using more than
one mesh point.

4.1 The discretizedmodel

By employing a NSFD scheme, we hereby construct the following discretized version of the
model (2):

In+1 − In
φ1(h, μ)

= Λ − β1 In+1Ln − β2 In+1Sn − μIn+1,

Ln+1 − Ln

φ2(h, μ)
= β1Ln In+1 + β2 In+1Sn − β3Ln+1Sn − μLn+1,

Sn+1 − Sn

φ3
(
h, μ, ε f ( ρψ

e+θ
)
) = β3SnLn+1 − ε f (

ρψ

e + θ
)Sn+1 − μSn+1,

(9)

in which:

φ1(h, μ) = φ2(h, μ) = eμh − 1

μ
, φ3

(
h, μ, ε f (

ρψ

e + θ
)
) = eμ+ε f ( ρψ

e+θ
) − 1

μ + ε f ( ρψ
e+θ

)
.

Hereinafter, In = I (tn), Ln = L(tn), and Sn = S(tn) are the sizes of the of ignorant,
conformable spreader, and obstinate spreader populations, respectively, at time tn = nΔt .
All other parameters have the same meaning and values given in Table 1.

4.2 Positivity of solutions

In this section, we establish the positivity of the approximate solutions constructed via the
NSFD scheme, as seen in the following result.

Theorem 5 The solutions In, Ln, Sn of the discretized model (9) are positive at all times tn,
for n = 1, 2, · · · , provided that they start with positive initial conditions I0, L0, and S0.
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Proof By solving (9) at step n + 1, we obtain that:

In+1 = φ1Λ + In
1 + φ1(β1Ln + β2Sn + μ)

.= j1(In, Ln, Sn),

Ln+1 = Ln(1 + φ2β1 In+1) + φ2β2 In+1Sn
1 + φ2(β3Sn + μ)

.= j2(Ln, Sn, In+1),

Sn+1 = Sn(1 + φ3β3Ln+1)

1 + φ3
(
ε f ( ρψ

e+θ
) + μ

) .= j3(Sn, Ln+1).

(10)

The desired positivity property follows now from an easy induction argument. Consequently,
the solutions of (9) are always positive whenever they start with positive initial data. 
�

4.3 The fixed points of the discretizedmodel

The fixed points of the discretized model, corresponding to the equilibria of the continuous
model, can be obtained by solving the following algebraic equations:

I ∗ = j1(I
∗, L∗, S∗), L∗ = j2(L

∗, S∗, I ∗), S∗ = j3(S
∗, L∗). (11)

It is easy to see that the system (11) has the semi-trivial solutions (Λ
μ

, 0, 0) and

(
μ
β1

,
Λβ1−μ2

μβ1
, 0), which are also the semi-trivial equilibria of (2). As for the positive solution,

its components are determined as shown below.

From the third equation in (11), we see that L∗ = ε f ( ρψ
e+θ

)+μ

β3
. Also, solving the first

equation of (11) for I ∗, we obtain I ∗ = Λ
β1L∗+β2S∗+μ

. Substituting the values of L∗ and I ∗
into the second equation of (11), one notes that S∗ is the positive solution of the following
quadratic equation:

AS∗2 + BS∗ + C = 0,

in which the coefficients are same as those given in (8), which implies that the fixed points
of the NSFD scheme coincide with the equilibria of (2).

4.4 Necessary conditions for the fixed horizon optimal control regime

So far, we have investigated the dynamics of continuous and discretemodels of rumor spread-
ing which are subject to two control mechanisms: attitude adjustment via educational or
punitive measures and enhancement of strength and effectiveness of the rumor control mech-
anisms via more generous budgeting.

Our optimal control problem can be posed as the following question: What is the
best-combined control regime of attitude adjustment and budgeting for the discrete model
described above, so that the population size of the spreader population is reduced to aminimal
level?

In what follows, we focus on the optimal control problem with augmented states, which
can be solved by means of the discrete minimum principle introduced by Goodwin et al. in
Goodwin et al. (2005). Even thoughoptimal control theory for systemsof difference equations
seems to be an adequate tool for the social sciences, it is perhaps underused in population
dynamics. In our case, the control variables are ψ , the budgeting function, and i , the attitude
adjustment function. In what follows, we shall derive the necessary optimality conditions for
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the control mechanisms that minimize the size of the obstinate spreader population. To this
end, let us define:

{
Xn

} .=
{[

X1
n, X

2
n, X

3
n

]T
}

.=
{[

In, Ln, Sn

]T
}

,

{
Vn

} .=
{[

V 1
n , V 2

n

]T
}

.=
{[

ψn, in

]T
}

,

in which n = 0, 1, · · · , N − 1. Here, N is the (discrete) optimization horizon. Our control
problem can then be stated in the following form:

Minimize νN (Xn, Vn) = X3
N + ΣN−1

n=0 (X3
n + cψ(V 1

n )2 + ci (V
2
n )2)

= SN + ΣN−1
n=0 (Sn + cψψ2

n + ci i
2
n )

(12)

subject to:

X1
n+1 = In+1 = φ1Λ + In

1 + φ1(β1Ln + β2Sn + μ)

.= j1(Xn, Vn),

X2
n+1 = Ln+1 = Ln(1 + (φ1Λ+In)φ2β1

1+φ1(β1Ln+β2Sn+μ)
) + (φ1Λ+In)φ2β2Sn

1+φ1(β1Ln+β2Sn+μ)

1 + φ2(β3Sn + μ)
.= j2(Xn, Vn),

X3
n+1 = Sn+1 = Sn(1 + φn

3β3
Ln(1+ (φ1Λ+In )φ2β1

1+φ1(β1Ln+β2Sn+μ)
)+ (φ1Λ+In )φ2β2Sn

1+φ1(β1Ln+β2Sn+μ)

1+φ2(β3Sn+μ)
)

1 + φn
3

(
ε f ( ρψn

e+θn
) + μ

)
.= j3(Xn, Vn),

X0 = X̄ ,

(13)

in which cψ and ci are suitable weights. Also, X̄ is the initial state and:

φn
3 = eμ+ε f ( ρψn

e+θn
) − 1

μ + ε f ( ρψn
e+θn

)
, θn = (1 − λn)θ̄ , λn = exp(−γ in + δ).

To apply the Karush–Kuhn–Tucker (KKT) optimality conditions, we need to verify the
constraint qualification that the gradients of the equality constraints be linearly independent
when evaluated at the minimizers. Subsequently, we define a new variable:

X
.=

[
XT
0 , XT

1 , · · · , XT
N , V T

0 , V T
1 , · · · , V T

N−1

]T ∈ R
5N+3,

which comprises all the variables with respect to which the optimization is performed. Now,
let:

j(Xn, Vn) = [ j1(Xn, Vn), j2(Xn, Vn), j3(Xn, Vn)]
T .

We can then write the state equations (13) as 3(N + 1) equality constraints on X as follows:

h(X)
.=

⎡
⎢⎢⎢⎣

h0
h1
...

hN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

X̄ − X0

j(X0, V0) − X1
...

j(XN−1, VN−1) − XN

⎤
⎥⎥⎥⎦ = 0. (14)
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Let us also define:

∂ j

∂Xk

.=

⎡
⎢⎢⎣

∂ j1
∂X1

k

∂ j1
∂X2

k

∂ j1
∂X3

k
∂ j2
∂X1

k

∂ j2
∂X2

k

∂ j2
∂X3

k
∂ j3
∂X1

k

∂ j3
∂X2

k

∂ j3
∂X3

k

⎤
⎥⎥⎦ ,

∂ j

∂Vk

.=

⎡
⎢⎢⎣

∂ j1
∂V 1

k

∂ j1
∂V 2

k
∂ j2
∂V 1

k

∂ j2
∂V 2

k
∂ j3
∂V 1

k

∂ j3
∂V 2

k

⎤
⎥⎥⎦ , (15)

for k = 0, 1, · · · , N − 1. We then compute the (3N + 3) × (5N + 3) Jacobian matrix of the
vector-valued function h(X) in (14) as:

∂h

∂X
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−I3 0 0 · · · 0 0 0 0 · · · 0
∂ j

∂X0
−I3 0 · · · 0 0 ∂ j

∂V0
0 · · · 0

0 ∂ j
∂X1

−I3 · · · 0 0 0 ∂ j
∂V1

· · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · ∂ j
∂XN−1

−I3 0 0 · · · ∂ j
∂VN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (16)

where 0 denotes zero matrices of appropriate dimensions, and I3 denotes the 3 × 3 identity
matrix. Since the matrix ∂h

∂X in (16) has full row rank for all X ∈ R
5N+3, the gradients of the

equality constraints (14) are linearly independent inR5N+3, which implies that the constraint
qualification required by the optimality conditions of Theorem 2.5.5 (Karush–Kuhn–Tucker
Necessary Conditions) in Goodwin et al. (2005) is satisfied for all X ∈ R

5N+3.
Next, we introduce the Lagrange multipliers λ−1 ∈ R

3 for the initial state equation in
(13), and the other Lagrange multipliers:

{λ0, λ1, · · · , λN−1}, λk ∈ R
3, k = 0, · · · , N − 1,

for the other state equations in (13), and denote:

λ = [λT−1, λ
T
0 , · · · , λT

N−1]T .

We then construct the following Hamiltonian function L : R3N+3 × R
2N × R

3N+3 → R:

H(X , λ) = X3
N + ΣN−1

n=0 (X3
n + cψ(V 1

n )2 + ci (V
2
n )2) + ΣN−1

k=−1λ
T
k hk+1. (17)

According to the KKT conditions, we obtain the following necessary condition for the exis-
tence of the optimal rumor spreading control.

Theorem 6 A necessary condition for the sequences {X∗
0, · · · , X∗

N }, {V ∗
0 , · · · , V ∗

N−1} to be
the minimisers of the optimal control problem (12) and (13) is that there exists a sequence of
Lagrange multipliers λ∗ .= {λ∗−1, λ

∗
0, · · · , λ∗

N−1}, such that the following conditions hold:

(i) X∗ .= [
(X∗

0)
T , · · · , (X∗

N )T , (V ∗
0 )T , · · · , (V ∗

N−1)
T
]T

satisfies the state equations:
(13).

(ii) (λ∗
k−1)

T = ∂H(X∗,λ∗)
∂Xk

for k = 0, 1, · · · , N − 1, and (λ∗
N−1)

T = (0, 0, 1)T .

(iii) ∂H(X∗,λ∗)
∂Vk

= 0 for k = 0, 1, · · · , N − 1.

5 Numerical simulations

In this section, we perform several numerical simulations to illustrate the modeling consid-
erations and theoretical findings presented in the previous sections. We first choose Λ = 40,
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Fig. 2 The dynamical behaviors of the ignorant, conformable spreader and obstinate spreader populations,
respectively, for Λ = 40, β1 = 0.0002, β2 = 0.0001, β3 = 0.5, μ = 0.1, ε = 0.0022, ψ = 10, e = 0.5,
θ = 0.2, ρ = 0.5 and for several distinct initial conditions
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Fig. 3 A backward bifurcation. The solid blue curve and solid blue line segment depict the stable equilibria,
while the dotted red curve and the dotted line segment depict the unstable equilibria. Here, Λ = 400, β1 =
0.0002, β2 = 0.5, β3 ∈ (0.00049, 0.00053), μ = 0.1, ε = 0.0022, the other parameters having the values
given in the caption of Fig. 2
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Fig. 4 The dynamical behaviors of ignorant, conformable, and obstinate spreader populations, respectively.
The blue curve and the red curve denote solutions tending to the stable equilibria (one is the rumor-prevailing
equilibrium and the other is the rumor-free equilibrium), respectively. Here,Λ = 400, β1 = 0.0002, β2 = 0.5,
β3 = 0.00049654, μ = 0.1, and ε = 0.0022, the other parameters having the values given in the caption of
Fig. 2
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Fig. 5 Superimposed continuous (blue) and discrete (red) dynamical behaviors of the ignorant population for
Λ = 400, β1 = 0.001, β2 = 0.002, β3 = 0.0005, μ = 0.1, ε = 0.0022, ψ = 10, e = 0.5, θ = 0.2, ρ = 0.5,
h = 0.1, and the initial conditions (100, 3700, 10) (color figure online)
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Fig. 6 The superimposed continuous (blue) and discrete (red) dynamical behaviors of the conformable spreader
population and of the obstinate spreader population, respectively. The parameter values and initial conditions
have the values given in the caption of Fig. 5 (color figure online)
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The weakest control regime
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Fig. 7 The discrete dynamical behavior of the obstinate spreader population for Λ = 400, β1 = 0.001,
β2 = 0.002, β3 = 0.0005, μ = 0.1, ε = 0.0022, e = 0.5, θ̄ = 0.8, γ = 0.09, δ = 0.98, ρ = 0.5, h = 0.01,
and the initial conditions (100, 3700, 10). (a) ψn ≡ 1 and in ≡ 1; (b) ψn ≡ 20 and in ≡ 10

β1 = 0.0002, β2 = 0.0001, β3 = 0.5, μ = 0.1, ε = 0.0022, ψ = 10, e = 0.5, θ = 0.2,
ρ = 0.5, and f (P) = 6

1+2e−P . It is then seen that R01 = 0.8 < 1, which implies that the
ignorant-only equilibrium E01 = (400, 0, 0) is stable and the rumor dies out, as shown in
Fig. 2.

To depict a bifurcation curve, we choose Λ = 400, β1 = 0.0002, β2 = 0.5, β3 ∈
(0.00049, 0.00053), μ = 0.1, ε = 0.0022, ψ = 10, e = 0.5, θ = 0.2, ρ = 0.5 and
f (P) = 800

1+2e−P , and see that R∗
02 ≈ 0.8827. As shown in Fig. 3, a backward bifurcation

occurs.
Furthermore, for β3 = 0.00049654, which implies thatR∗

02 ≈ 0.8828, there exist a stable
rumor-prevailing equilibrium and a stable rumor-free equilibrium in system (2), as shown in
Fig. 4.

To illustrate the claim that our discretemodel (9) is dynamically consistentwith the original
continuous-time model (2), we fix Λ = 400, β1 = 0.001, β2 = 0.0022, β3 = 0.0005,
μ = 0.1, ε = 0.002, ψ = 10, e = 0.5, θ = 0.2, ρ = 0.5, h = 0.01, and the initial condition
(100, 3700, 10), the (superimposed) results being shown in Figs. 5–6.
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The optimal control regime
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Optimal control (fixed n=1 for all n)
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Fig. 8 Behavior of the spreader population in three scenarios: the optimal combined control regime (with
ψn ∈ [1, 20] and in ∈ [1, 10] as control sets), the optimal single control regime (ψn ∈ [1, 20], in ≡ 1),
another optimal single control regime (ψn ≡ 1, in ∈ [1, 10]). Here, Λ = 400, β1 = 0.001, β2 = 0.002,
β3 = 0.0005, μ = 0.1, ε = 0.0022, e = 0.5, θ̄ = 0.8, γ = 0.09, δ = 0.98, ρ = 0.5, h = 0.01, and the initial
conditions are (100, 3700, 10)
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Fig. 9 Impact of varying the release rate of inhibiting mechanisms (ψn ∈ [1, 20]) and the self-adjusting
mechanisms (in ∈ [1, 10]), respectively, upon the optimal combined control regime. The parameter values
and initial conditions have the values given in the caption of Fig. 8. e = 0.5,

To describe results attained via distinct fixed horizon control regimes of the system (9),
we choose Λ = 400, β1 = 0.001, β2 = 0.002, β3 = 0.0005, μ = 0.1, ε = 0.0022,
ψn ∈ [1, 20], e = 0.5, θ̄ = 0.5, γ = 0.1, δ = 0.01, in ∈ [1, 10], ρ = 0.5, h = 0.01,
cψ = 0.0015, and ci = 0.001, the numerical particulars under different combinations of ψn

and in , n = 0, 1, · · · , N − 1, being given in Figs. 7–9.
Figure 7 illustrates the weakest and strongest control regimes, respectively. Two control

variables (ψ and i) are employed to optimize the objective function νN , as shown in Figs. 8–9.
In addition, the numerical results shown in Fig. 9 show that the low i and “medium” ψ

determine the optimal outcomes.
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6 Concluding remarks

The present paper attempts to formulate and analyze a rumor spreadingmodelwhich is subject
to two control mechanisms, namely to budgeting input and to an attitude adjustment function.
The existence of the semi-trivial equilibria and of the positive (rumor-prevailing) equilibrium
is completely characterized in termsof two threshold parameters,which describe the influence
of conformable and obstinate spreaders, respectively, and are closely related to the basic
reproduction number and to the invasion reproduction number ofmathematical epidemiology,
respectively. However, although our model draws from mathematical epidemiology, it is not
functionally equivalent to a disease propagation model, as it involves a variable which is
unrelated to rumor spreading status (or to disease status, in an epidemiological context).

A backward bifurcation analysis is performed, which leads to characterizing the stability
of the rumor-prevailing equilibrium as a byproduct. To preserve the positivity of the approx-
imating solutions and to keep consistency with the continuous model, a nonstandard finite
difference scheme is employed. The existence of optimal controls is investigated, necessary
conditions being obtained. It is observed that a combination of both controls has the most sig-
nificant impact upon the size of the spreader population and that a combination of “medium”
budgeting and low self-adjustment leads to optimal results.
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