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a b s t r a c t

It is conceivable that genetically modified mosquitoes could stop the spread of malaria, by

outcompeting the wild mosquitoes and interfering with their reproductive processes, and ge-

netically inheriting and further transmitting a diminished potential to carry Plasmodium. To

get insight into the possible outcomes, we formulate an ODE model for the interactions be-

tween wild and transgenic mosquito populations, which is subject to state-dependent impul-

sive perturbations. By first investigating the dynamics of the unperturbed system, we deter-

mine certain sufficient conditions for the existence and orbital stability of positive order-1

solution of the model system with state-dependent impulsive perturbations. Their feasibility

is then illustrated by means of numerical simulations. In addition, to adequately control the

wild mosquito population, we use a multi-target approach which, in addition to accounting

for the total costs, keeps track of the total size of the wild mosquito population. To trade off

these objectives, we consider the concept of Pareto efficiency to determine suitable control

strategies which are near-optimal. Finally, we carry out numerical simulations to illustrate the

Pareto frontier and then characterize the detailed Pareto efficient control regime.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Anopheles maculipennis, the species of the genus Anopheles (“not of any benefit”, from the Greek words an, “not” and ophelos,

“benefit”) was first described and classified by the German entomologist J. W. Meigen in 1818. Since R. Ross discovered in 1897

that Anopheles mosquitoes are able to transmit human malaria pathogen, Plasmodium, it has been observed that the transmission

of malaria does not occur through human contact and that the mosquitoes in this genus are actually the sole malaria vectors [1].

Sickening over 200 million people and causing over 1 million deaths annually [2], malaria is, at the global scale, one of the most

troublesome infectious diseases. Much efforts have been spent developing an effective vaccine over the past 30 years, as this

would be an important step toward malaria prevention and control. However, this has been proved to be difficult, and only one

candidate vaccine, RTS, S/AS01 has reached the stage of phase III clinical trials, with the prospect of being submitted for licensure

in 2014 [3]. Unavailability of an effective vaccine has hampered so far the efforts to curtail the disease.
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Alternatively, efforts have been focused on both targeting the evolution of Plasmodium in humans and on interrupting the

transmission of the disease by the vector [1,4,5]. The most powerful and widely used approach to vector control is the use of

insecticides. Four classes of insecticides are used for public health purposes (pyrethroids, organochlorines, organophosphates

and carbamates), usually by means of long-lasting insecticide-treated nets and indoor residual spraying. While insecticides have

been proved very successful in reducing disease incidence, resistance to insecticides among malaria vectors has emerged more

than 25 years ago in America, Africa and Europe [6], frequently due to gene mutations that help the mosquitoes’ nerve cells

withstand insecticide attack, the acetylcholinesterase enzyme losing sensitivity to organophosphates and carbamates. Other

forms of resistance, depending on increased levels of mosquito enzymes that can destroy pyrethroids before they reach their

target, are also possible [7].

Since mosquitoes are the sole vectors for malaria transmission, rendering them incapable of transmitting malaria parasites

could limit the spread of the disease. In vivo studies have led to the identification of a peptide, called SM1 peptide, that binds to

the two epithelia which should be traversed by the parasite and inhibits their crossing [8]. By injecting mosquito embryos with a

synthetic gene containing four SM1 units, four separate lines of transgenic mosquitoes have been obtained, the transgene being

strongly induced in the midgut of the transgenic mosquitoes by a blood meal. The expression of SM1 peptide in the mosquitoes

midgut drastically reduced their vector capability by inhibiting Plasmodium development. In two of three experiments, no trans-

mission has been detected, while in a third one the transmission rate has been reduced to less than one third of its initial value.

Also, the SM1 peptide did not alter mosquito fitness traits such as longevity and egg production.

Inheritable genetic transformations have been achieved for the genome of Anopheles stephensi mosquitoes by means of the

Minos transposable element from Drosophila hydei, with the expectation that this technique can be successfully extended to

the most prominent malaria vector, Anopheles gambiae [9,10]. Recently, the establishment of a stable Wolbachia infection in a

population of Anopheles stephensi has also been reported [11]. The Wolbachia strain wAlbB derived from Aedes albopictus was

observed to form a stable symbiosis with Anopheles stephensi and to have perfect maternal transmission together with high

levels of cytoplasmic incompatibility (enhancing its capability to spread), while conferring resistance to Plasmodium, possibly

by stimulating a mosquito antiparasitic immune response. Further, the wAlbB infection has been able to reach 100% infection

frequency in a naturally uninfected population, under certain release conditions, and to remain fixed in subsequent generations.

This establishes the feasibility of producing transgenic mosquitoes that have diminished potential to carry the parasite and

provides a new and effective weapon against malaria.

Once pathogen refractory transgenic mosquitoes are obtained, the next step is to release them into the environment, with

the goal of replacing the pathogen susceptible wild mosquitoes. However, transgenic mosquitoes can experience reduced fitness,

due to various circumstances: inbreeding depression, random integration of transposable elements altering important genes or

toxicity of a foreign protein expressed in abundance [12]. Also, it is suggested in [13,14] that the released mosquitoes would

need to be nearly 100% refractory in order to have a real impact on malaria transmission. Such a high refractory capability would

need multiple refractory genes, which may come with greater fitness impairment. In practice, it is almost impossible to replace

the wild mosquito population with transgenic mosquitoes in any particular environment. In this regard, the strategic policies

emphasize implementing effective and economical control mechanisms to keep the size of the wild mosquito population as

low as reasonably practicable. Actually, the celebrated work [15] states as early as 1928 that “... in order to counteract malaria

anywhere we need not banish Anopheles there entirely ... we need only to reduce their numbers below a certain figure”.

A question arises about how transgenic mosquitoes should be released in combination with pesticide release in order to

effectively control the abundance of wild mosquitoes. To address this question, which is the aim of this paper, we formulate

a model for the interaction between wild and transgenic mosquito populations based on a two-dimensional ODE system with

state-dependent impulsive perturbations. State-dependent impulsive dynamical systems are a particular case of hybrid systems

in which the impulsive perturbations of a given continuous dynamical system occur whenever a threshold trigger is initiated

[16,17]. In recent years, state-dependent impulsive control strategies have proved their usefulness in the study of dynamics of

prey–predator systems [18,19], management of fisheries [20], integrated pest management [21], pulse vaccination for human

infectious diseases [22], and chemostat models [23,24].

From a practical viewpoint, it is feasible to take a first step toward implementing state-dependent impulsive control strategies

and estimate the sizes of adult and larval mosquito populations via landing rate counts and, respectively, a dipper and then take

data back to the laboratory for an analysis of the catch. However, before releasing transgenic mosquitoes, other particulars of

the target wild mosquito population such as its genetic diversity, mating behavior and heterogeneous biting should be analyzed,

together with locations where the releases should occur. Also, one should have in mind that in malaria transmission the envi-

ronmental ecology is complex in most locations [12], due to the complex life cycle of the parasite and to the fact that breeding

sites are very transient due to uncontrollable external factors such as drying or flooding. Another question that needs further

investigation is how transgenic mosquitoes should be released as a part of a state-dependent control strategy which involves

also pesticide release.

Motivated by the above-mentioned considerations and by the ideas of [25,26], we formulate a model for the interaction

between wild and transgenic mosquito populations based on a two-dimensional ODE system which is subject to state-dependent

impulsive perturbations. Since determining genotype distributions for the offsprings in a variable environment is not simple,

we group all transgenic populations into a single population, without distinguishing for their zygosity [25]. Also, we consider

generation overlapping for both types of mosquitoes.

The paper is structured as follows. We first study our model system without perturbations (Section 3) and then derive suffi-

cient conditions for the existence and orbital stability of positive order-1 solutions of our system with state-dependent impulsive
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perturbations (Section 4). In Section 5, we use a multi-target approach to develop strategies for wild mosquito control which aim

to keep the total cost as low as possible, while simultaneously remaining near optimal in the context of Pareto efficiency in

terms of the total size of the wild mosquito population. We further numerically illustrate the Pareto frontier and the correspond-

ing Pareto efficient controls. Our paper ends with several concluding remarks and a comparison between our results and those

obtained in other works in the same field.

2. Model formulation

To derive our mathematical model, we rely upon the following assumptions regarding the interactions between wild and

transgenic mosquitoes and the effects of insecticides.

A.1 All transgenic mosquitoes are considered as a single population group, without regard for their zygosity.

A.2 Transgenic and wild mosquito populations share the same habitat and have the same saturation-density-dependent death

rate.

A.3 In the absence of one mosquito population, the growth of the other is given by a logistic law.

A.4 Larval and adult mosquito populations may be easily monitored by using dippers and, respectively, mechanical traps.

However, it is difficult for inspectors to distinguish between wild and transgenic mosquitoes on site. Hence, the control

mechanism is triggered when the total density of wild and transgenic mosquitoes reaches a threshold value H∗.

A.5 All mosquitoes with a transgenic mosquito ancestor are unable to transmit malaria.

A.6 Once pesticides are released, the densities of wild and transgenic individuals experience a sharp decrease.

Based on above assumptions and inspired by the ideas in [25,26], our mathematical model, which accounts for the interactions

between wild and transgenic mosquitoes and for the effects of the insecticide coupled with the release of transgenic mosquitoes,

can be stated in the following form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dM(t)

dt
= a1M(t) + b1T(t)

M(t) + T(t)
M(t)

(
1 − M(t) + T(t)

K

)
− δM(t)

.= f1(M, T),

dT(t)

dt
= a2M(t) + b2T(t)

M(t) + T(t)
T(t)

(
1 − M(t) + T(t)

K

)
− δT(t)

.= f2(M, T),

⎫⎪⎪⎬⎪⎪⎭T + M < H∗,

M(t+) = (1 − m1)M(t),

T(t+) = (1 − m2)T(t) + U,

}
T + M = H∗.

(1)

Here, M(t) and T(t) are the densities of the wild mosquito and transgenic mosquito populations at time t, respectively. The con-

stants a1 and b1 denote the recruitment rates of wild mosquitoes through mating with wild and transgenic mosquitoes, respec-

tively. The constants a2 and b2 denote the recruitment rates of transgenic mosquitoes through mating with wild and transgenic

mosquitoes, respectively. We denote by K the total carrying capacity of the environment with respect to both mosquito classes,

while δ denotes the saturation-density dependent death rate, the same for both mosquito classes.

When the total density of wild and transgenic mosquitoes reaches the threshold value H∗, control measures are taken, in the

form of spraying insecticides and releasing transgenic mosquitoes. As a result of spraying insecticides, fixed proportions of the

wild and transgenic populations, denoted by m1 and m2, respectively, are removed instantaneously. We denote by U the constant

amount of transgenic mosquitoes released each time the control measures are implemented.

Remark 2.1. From a biological viewpoint, it makes sense to assume that H∗ < K, that is, the threshold value which, when reached,

triggers the usage of impulsive control mechanisms is lower than the total carrying capacity of the environment. Since the time

instances at which the impulsive control measures are taken are not prescribed a priori, but depend instead on the total density

of the mosquito populations, our control model can be classified as being one with state-dependent perturbations. The concrete

values of m1, m2 and U generally depend upon environmental factors [27].

3. Dynamics of the unperturbed system

To better understand the dynamics of the system (1), we start by investigating the corresponding Kolmogorov-type unper-

turbed system of ordinary differential equations consisting of the first two equations in (1)⎧⎪⎪⎨⎪⎪⎩
dM(t)

dt
= a1M(t) + b1T(t)

M(t) + T(t)
M(t)

(
1 − M(t) + T(t)

K

)
− δM(t),

dT(t)

dt
= a2M(t) + b2T(t)

M(t) + T(t)
T(t)

(
1 − M(t) + T(t)

K

)
− δT(t),

(2)

which characterizes the dynamics of (1) between two “beats”, that is, between two consecutive impulsive perturbations. The

first step toward establishing the well-posedness and relevance of (2) is to obtain a feasible domain, together with sufficient

conditions for the existence and stability of equilibria of system (2).
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3.1. The feasible domain

The standard positivity argument for Kolmogorov systems (see, for instance, [28], Section 2 or [29], Lemma 1) shows that a

solution (M(t), T(t)) of (2) which starts at t = t0 with strictly positive component-wise data (M(t0), T(t0)) remains strictly positive

component-wise for all t ≥ t0. In addition, one remarks that dM
dt

|M+T=K < 0 and dT
dt

|M+T=K < 0 and consequently the bounded

triangle

� = {(x, y)|x > 0, y > 0 and 0 < x + y < K}
is a feasible domain for the system (2).

3.2. Existence of equilibria

It is easy to see that the semi-trivial equilibria of (2) are given by

E1 =
(

0,
K

b2

(b2 − δ)
)
, E2 =

(
K

a1

(a1 − δ), 0

)
,

which exist and are nontrivial if and only if b2 > δ and a1 > δ, respectively. Therefore, both semi-trivial equilibria E1 and E2 exist

if and only if

min{a1, b2} > δ, (3)

which means that the recruitment rates through mating with the same mosquito class should be greater than the saturation-

density dependent death rate for both mosquito populations.

We now find conditions for the existence of a positive equilibrium E∗ = (M∗, T ∗). It is seen from (2) that necessarily

(a1 − a2)M∗ = (b2 − b1)T ∗,

which leads to

M∗ = K(b2 − b1)

a1(b2 − b1) + b1(a1 − a2)
(δ∗ − δ), T ∗ = K(a1 − a2)

a1(b2 − b1) + b1(a1 − a2)
(δ∗ − δ), (4)

with

δ∗ = a1(b2 − b1) + b1(a1 − a2)

(b2 − b1) + (a1 − a2)
.

Hence, there exists a unique positive equilibrium if and only if

(a1 − a2)(b2 − b1) > 0 and δ∗ > δ, (5)

which means that no mosquito class should be able to outcompete the other through having larger respective recruitment rates,

since a1 − a2 and b1 − b2 have opposite signs, and that both classes are able to avoid extinction since the “averaged” reproduction

rate δ∗ is larger than the death rate δ.

We summarize the results of the existence, nonexistence and coexistence of the equilibria of the system (2) in Table 1.

3.3. Local stability of equilibria

We now investigate the stability of the semi-trivial equilibria of the system (2). Linearizing the system (2) near the equilibria

E1 =
(
0, K

b2
(b2 − δ)

)
and E2 =

(
K
a1

(a1 − δ), 0
)
, respectively, yields the Jacobian matrices

J(E1) =
[(

b1

b2
− 1

)
δ 0

∗ −(b2 − δ)

]
and

J(E2) =
[
−(a1 − δ) ∗

0
(

a2

a1
− 1

)
δ

]
,

in which ∗ represents elements of the Jacobian matrices J(E1) and J(E2), respectively, which are not involved in the computation

of the corresponding eigenvalues and consequently do not need to be specified. Then, under the assumption (3), it is seen that E1

is locally asymptotically stable if b1 < b2 and E2 is locally asymptotically stable if a2 < a1, while if the converse inequalities hold,

then the respective equilibria are unstable. We thus have the following theorem.

Theorem 3.1.

(i) The semi-trivial equilibrium E1 exists and is locally asymptotically stable (node) if

b2 > max{b1, δ}. (6)
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Table 1

Summary table of the existence, nonexistence and coexistence of the equilibria with the corresponding necessary

and sufficient conditions.

Case Existing equilibrium Nonexisting equilibrium Necessary and sufficient conditions

1 E1, E2, E∗ δ < min {a1, b2, δ∗}, (a1 − a2)(b2 − b1) > 0

2 E1, E2 E∗
δ∗ < δ < min{a1, b2}, (a1 − a2)(b2 − b1) > 0

or

δ < min{a1, b2}, (a1 − a2)(b2 − b1) < 0

3 E1, E∗ E2 a1 < δ < min {b2, δ∗}, (a1 − a2)(b2 − b1) > 0

4 E2, E∗ E1 b2 < δ < min {a1, δ∗}, (a1 − a2)(b2 − b1) > 0

5 E1 E2, E∗
max{δ∗, a1} < δ < b2, (a1 − a2)(b2 − b1) > 0

or

a1 < δ < b2, (a1 − a2)(b2 − b1) < 0

6 E2 E1, E∗
max{δ∗, b2} < δ < a1, (a1 − a2)(b2 − b1) > 0

or

b2 < δ < a1, (a1 − a2)(b2 − b1) < 0

7 E∗ E1, E2 max{a1, b2} < δ < δ∗, (a1 − a2)(b2 − b1) > 0
(ii) The semi-trivial equilibrium E1 exists but is unstable (saddle point) if

b1 > b2 > δ. (7)

(iii) The semi-trivial equilibrium E2 exists and is locally asymptotically stable (node) if

a1 > max{a2, δ}. (8)

(iv) The semi-trivial equilibrium E2 exists but is unstable (saddle point) if

a2 > a1 > δ. (9)

Remark 3.2. Condition b2 > b1 indicates that the transgenic mosquitoes reproduce better with the same class, producing on av-

erage more offsprings per mating through mating with transgenic mosquitoes than with mating with wild mosquitoes. Condition

a1 > a2 has a similar interpretation with regard to the reproductive abilities of wild mosquitoes.

Remark 3.3. From the analysis of the existence and stability conditions (6)–(9), one deduces that the existence and stability of

E1 are independent of the existence and stability of E2, and vice versa.

To investigate the stability of the unique positive equilibrium E∗ = (M∗, T ∗), we assume that the existence condition (5) holds.

Linearizing the system (2) around the equilibrium E∗ yields the Jacobian matrix

J(E∗) =
[

M∗( T ∗(a1−b1)
(M∗+T ∗)2 − a1

K

)
M∗(M∗(b1−a1)

(M∗+T ∗)2 − b1

K

)
T ∗( T ∗(a2−b2)

(M∗+T ∗)2 − a2

K

)
T ∗(M∗(b2−a2)

(M∗+T ∗)2 − b2

K

)].

We first note that, by (4), the following identities hold

a1M∗ + b1T ∗ = K(δ∗ − δ), M∗ + T ∗ =
(

1 − δ

δ∗

)
K = δ∗ − δ

δ∗ K.

To apply Routh–Hurwitz stability conditions, we first see that

tr J(E∗) = M∗T ∗(a1 − a2 + b2 − b1)

(M∗ + T ∗)2
− a1M∗ + b2T ∗

K
(10)

= (b2 − b1)(a1 − a2)

b2 − b1 + a1 − a2

− (δ∗ − δ),

and

det J(E∗) = M∗T ∗
(

1

M∗ + T ∗
1

K
(a2b1 − a1b2) + 1

K2
(a1b2 − a2b1)

)
= M∗T ∗

K
(a2b1 − a1b2)

(
1

M∗ + T ∗ − 1

K

)
= −M∗T ∗

K
(a1(b2 − b1) + b1(a1 − a2))

1

K

δ

δ∗ − δ

= − (b2 − b1)(a1 − a2)

a1(b2 − b1) + b1(a1 − a2)
(δ∗ − δ)δ. (11)
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Using (10) and (11), one obtains that

( tr J(E∗))2 − 4 det J(E∗) (12)

=
(

(b2 − b1)(a1 − a2)

b2 − b1 + a1 − a2

− (δ∗ − δ)

)2

+ 4
(b2 − b1)(a1 − a2)

a1(b2 − b1) + b1(a1 − a2)
(δ∗ − δ)δ. (13)

This implies

( tr J(E∗))2 − 4 det J(E∗) =
(

(b2 − b1)(a1 − a2)

b2 − b1 + a1 − a2

+ (δ∗ − δ)

)2

− 4
(b2 − b1)(a1 − a2)

b2 − b1 + a1 − a2

(δ∗ − δ)

+ 4
(b2 − b1)(a1 − a2)

a1(b2 − b1) + b1(a1 − a2)
(δ∗ − δ)δ

=
(

(b2 − b1)(a1 − a2)

b2 − b1 + a1 − a2

+ (δ∗ − δ)

)2

+ 4
(b2 − b1)(a1 − a2)

a1(b2 − b1) + b1(a1 − a2)
(δ∗ − δ)

(
−a1(b2 − b1) + b1(a1 − a2)

b2 − b1 + a1 − a2

+ δ

)
=
(

(b2 − b1)(a1 − a2)

b2 − b1 + a1 − a2

+ (δ∗ − δ)

)2

− 4
(b2 − b1)(a1 − a2)

a1(b2 − b1) + b1(a1 − a2)
(δ∗ − δ)2. (14)

Assuming that the existence condition (5) holds, which implies in particular that b2 − b1 and a1 − a2 have the same sign, one

obtains from Routh–Hurwitz conditions and (11) that if E∗ is stable, then necessarily b1 > b2 and a2 > a1. In this situation, one

sees using also (10) and (14) that

tr J(E∗) < 0, det J(E∗) > 0, ( tr J(E∗))2 − 4 det J(E∗) > 0.

Note also that if b1 < b2 and a1 > a2, then

det J(E∗) < 0, ( tr J(E∗))2 − 4 det J(E∗) > 0.

Then the following existence and stability results for the unique positive equilibrium hold.

Theorem 3.4.

(i) Suppose that

b1 > b2, a2 > a1, δ∗ > δ.

Then there exists a unique positive equilibrium E∗, which is a stable node.

(ii) Suppose that

b1 < b2, a2 < a1, δ∗ > δ.

Then there exists a unique positive equilibrium E∗, which is a saddle point.

Remark 3.5. The inequalities in Theorem 3.4 can be interpreted in a manner similar to the considerations given in Remark 3.2.

Remark 3.6. Suppose that all three equilibria E1, E2 and E∗ exist. It then follows from Theorems 3.1 and 3.4 that if E∗ is stable on

�, then E1 and E2 are both unstable, and vice versa.

From the above discussion and the Routh–Hurwitz conditions, one then obtains the following result.

Corollary 3.1. Suppose that the condition (5) holds. Then there exists a unique positive equilibrium E∗, which is a saddle point if b1 <

b2 or a2 < a1.

3.4. The nonexistence of periodic solutions

Suppose that

a1 + b2 < b1 + a2,

that is, on average, mosquitoes reproduce better with members of the other species rather than with members of their own. Let

us denote by FM and FT the right-hand sides of the equations composing (2). Then there exists a function

ν : � → R, ν(M, T) = M−1T−1,
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such that

∂

∂M
(νFM) + ∂

∂T
(νFT ) = a1 − b1

(M + T)2
− a1

KT
+ b2 − a2

(M + T)2
− b2

KM

= (a1 + b2) − (b1 + a2)

(M + T)2
− a1

KT
− b2

KM
< 0.

According to the Bendixson–Dulac criterion, the system (2) has no periodic solution remaining entirely within �.

4. Dynamics of the system with state-dependent impulses

In this section, we shall investigate the occurrence of periodic behavior as t → ∞, under a suitable strategy relying on the

administration of pesticides and the release of transgenic mosquitoes. This is of importance from a practical viewpoint, since

understanding behavioral patterns well enough may help devising an optimal control scenario.

We start by introducing certain notations, preliminary definitions and auxiliary results, referring also the reader to the ap-

pendices whenever needed. Let us define the “control line” �H∗ on which the control measures are prompted by

�H∗
.=
{
(M, T)|M > 0, T > 0 and M + T = H∗}.

For any point Pn ∈ �H∗ , suppose that the trajectory O+(Pn, tn) starting from the initial point Pn intersects the control line �H∗
infinitely many times. We then define the Poincaré map of the section �H∗ by

Mn+1 = F(Mn, m1, m2,U, H∗) (or Tn+1 = G(Tn, m1, m2,U, H∗)). (15)

Definition 4.1. A trajectory O+(Pn, tn) of the system (1) is said to be order-k periodic if there exists a positive integer k ≥ 1 such

that k is the smallest integer for Mn+k = Mn (or Tn+k = Tn).

It is then seen that the initial value problem for the system (1) is biologically well-posed, in the sense that the trajectories of

(1) are positivity-preserving.

Lemma 4.1. Assume that (M(t), T(t)) is a solution of the system (1) with the initial condition (M(t0), T(t0)) ∈ �. Then
(
M(t), T(t)

)
∈ R2+

for all t ≥ t0.

Proof. For any initial value (M(t0), T(t0)) ∈ �, we shall discuss the following two possibilities given by the number of possible

contacts between the solution (M(t), T(t)) and the line �H∗ .

(a) In the first case, let us consider that the solution (M(t), T(t)) reaches �H∗ infinitely many times, at time instances tk, k =
1, 2, · · · , tk → ∞ as k → ∞. If the conclusion of Lemma 4.1 is false, we then obtain that there exists a positive integer n and

a t∗ ∈ (tn−1, tn] such that min{M(t∗), T(t∗)} = 0 and M(t) > 0, T(t) > 0 for t0 ≤ t < t∗. The first possibility is that M(t∗) = 0,

T(t∗) > 0. In this regard, it follows from the first and third equations of the system (1) that

M(t∗) > (1 − m1)
n−1M(t0) exp

(
−

∫ t∗

t0

max{a1, b1}
(

T(s) + M(s)

K
+ δ

)
ds

)
> 0,

which contradicts the fact that M(t∗) = 0. The second possibility is that T(t∗) = 0. In this regard, it follows from the second

and fourth equations of the system (1) that

T(t∗)>(1 − m2)
n−1T(t0) exp

(
−

∫ t∗

t0

max{a2, b2}
(

T(s) + M(s)

K
+ δ

)
ds

)
+ U

∑
t0<tk<t∗

exp

(
−

∫ t∗

tk

max{a2, b2}
(

T(s) + M(s)

K
+ δ

)
ds

)
> 0,

which contradicts the fact that T(t∗) = 0.

(b) The second case, in which the solution (M(t), T(t)) reaches �H∗ finitely many times, can be treated in a similar way.

Hence, according to the above discussion, one finds that M(t) > 0 and T(t) > 0 for all t ≥ t0. This completes the proof. �

4.1. Existence of positive order-1 periodic solution

In this subsection, we shall give some sufficient conditions for the existence of positive periodic solutions under certain

additional assumptions.

First of all, let us assume that both the wild and transgenic mosquitoes have the same insecticide-related death rate, that is

m1 ≡ m2.

Let us also observe that after the control measures are employed the total size of the mosquito population becomes

H∗∗ .= (1 − m1)H∗ + U = (1 − m2)H∗ + U.
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We then define the following “retreat line” �H∗∗ , to which the solutions of the system (1) jump immediately after the control

measures are taken, by

�H∗∗
.=
{
(M, T)|M > 0, T > 0 and M + T = H∗∗}.

In order for the control measures to be effective, it is required that H∗∗ < H∗, which means the total size of the mosquito popula-

tion decreases after control measures are employed. This inequality is equivalent to

U < m1H∗ = m2H∗.

For the sake of convenience, let us denote the nullclines for the wild and transgenic mosquitoes, respectively, by

M1
.=
{
(M, T)|M ≥ 0, T ≥ 0 and M

(
a1M + b1T

M + T
(1 − M + T

K
) − δ

)
= 0

}
and

T1
.=
{
(M, T)|M ≥ 0, T ≥ 0 and T

(
a2M + b2T

M + T
(1 − M + T

K
) − δ

)
= 0

}
.

Since we cannot compute explicitly the analytic expressions of the positive order-1 periodic solutions due to the nonlinear

structure of the unperturbed system (note at this point that one does not know any relationship between a1, a2, b1, b2 before-

hand) and to the additional layer of complexity represented by the state-dependent nature of the control, we have to resort to a

geometric approach. This approach essentially consists in locating the iterations of the Poincaré map of the retreat line �H∗∗ via

an analysis of the direction field of the unperturbed system. To perform such an analysis and to establish the geometric properties

of the trajectories, one needs to know first and foremost the relative position of the equilibria and of the nullclines with respect

to the control line �H∗ and the retreat line �H∗∗ . Having the trapezium determined by the control line, the retreat line and the

semi-axes completely on one side of a nullcline eases the geometric analysis, while having the trapezium on both sides makes

it more difficult. Also, stable equilibria should be positioned behind the control line in order to make sure that control measures

really occur.

To investigate the existence of positive order-1 periodic solutions, we shall consider in what follows three broad situations

which correspond to all cases in Table 1. In fact, this classification scheme depends only upon the dynamic behavior of the system

(2) because the trajectories of the system (1) between two successive impulses are characterized by the dynamics of the ODE

system (2).

(I) The system (2) does not have a positive equilibrium

We first consider the situation in which the system (2) does not have a positive equilibrium, which corresponds to Case 2,

Case 5 and Case 6 in Table 1. Also, one or both of the equilibria E1 and E2 are assumed to be stable.

We claim that the system (1) has no order-1 periodic solution only if E1 is stable and K(b1 − δ) ≤ b1H∗∗.

Suppose that the system (1) admits only the equilibrium E1 (Case 5 in Table 1), and assume also that E1 is stable and

K(b1 − δ) ≤ b1H∗∗. Suppose further that H∗ < K
b2

(b2 − δ), which indicates that the impulsive control mechanisms are eventu-

ally triggered by all solutions trying to reach E1.

Let P1(ε1p, H∗∗ − ε1p) ∈ �H∗∗ for any ε1p ∈ (0, H∗∗). According to the geometrical structure of the phase field of the system (1),

the trajectory O+(P1, t0) starting from the point P1 will approach E1 and then intersect the section �H∗ at the point F1(S1, H∗ − S1).

At the point F1, the trajectory O+(P1, t0) jumps to the point P2((1 − m1)S1, H∗∗ − (1 − m1)S1) due to the effects of the impulsive

perturbations M(t+) = (1 − m1)M(t) and T(t+) = (1 − m1)T(t) + U, which occurs when M(t) + T(t) = H∗.

Obviously, the condition that K(b1 − δ) ≤ b1H∗∗ includes the following two cases. The first one is b1 < δ, which, together with

condition a1 < δ given in Case 5 of Table 1, implies that

dM

dt
|P1

< ε1p

(
δ
(

1 − H∗∗

K

)
− δ

)
< 0.

The other is b1 > δ, which, together with conditions K(b1 − δ) ≤ b1H∗∗ and a1 < δ, also implies that

dM

dt
|P1

= ε1p

(
−(b1 − a1)ε1p + b1H∗∗

H∗∗

(
1 − H∗∗

K

)
− δ

)
= ε1p

−(b1 − a1)ε1p(K − H∗∗) − (b1H∗∗ − (b1 − δ)K)H∗∗

KH∗∗

< 0.

It is then seen from the above that dM
dt

|P1
< 0 in both cases. In addition, one notes that E1 is a unique equilibrium and is a stable

node. It then follows from the structure of the direction field and of the phase portrait (see Fig. 1) together with Lemma 4.1 that

S1 < ε1p, which indicates that (1 − m1)S1 < ε1p. Hence, the system (1) has no order-1 periodic solution.
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Fig. 1. Dynamical behavior of the system (1). Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.2, a2 = 0.7, b1 = 0.2, b2 = 0.7, δ = 0.48, K = 100 and U = 2. The

red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curve represents the nullcline for transgenic mosquitoes in the first quadrant and

the green curve represents the trajectory O+(P1, t0) starting from the point P1 and then intersecting the section �H∗ at the point F1. At the point F1, the trajectory

O+(P1, t0) jumps to the point P2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Next, we claim that there exists a positive order-1 periodic solution of the system (1) if E1 is stable and K(b1 − δ) > b1H∗∗. In

fact, since b1 > a1 and K > H∗∗, we can find P1(ε1p, H∗∗ − ε1p) ∈ �H∗∗ together with

ε1p <
H∗∗(K(b1 − δ) − b1H∗∗)

(K − H∗∗)(b1 − a1)
,

which implies that dM
dt

|P1
> 0. It is easy to choose a �t > 0 and an m1 such that M(t0 + �t) > ε1p and then (1 − m1)M(t0 + �t) =

ε1p. Additionally, choose a U ∈ (0, H∗∗) such that H∗ = H∗∗−U
1−m1

> H∗∗. Hence, for a given retreat line �H∗∗ , we can determine the

control line such that the point
(
M(t + �t), T(t + �t)

)
coincides with the point F1, which indicates that (1 − m1)S1 = ε1p. On

the other hand, given a control line, we can then determine the corresponding retreat line such that (1 − m1)S1 = ε1p, which

implies that the system (1) has a positive order-1 periodic solution.

Suppose now that there is only one stable equilibrium E2 = ( K
a1

(a1 − δ), 0). Let us also assume that H∗ < K
a1

(a1 − δ), for a

reason similar to the one outlined above.

Also, let P1(ε1p, H∗∗ − ε1p) ∈ �H∗∗ for any ε1p ∈ (0, H∗∗). According to the geometrical structure of the phase field of the

system (1), the trajectory O+(P1, t0) starting from the point P1 will approach E2 and then intersect the section �H∗ at the point

F1(S1, H∗ − S1). At the point F1, the trajectory O+(P1, t0) will jump to the point P2((1 − m1)S1, H∗∗ − (1 − m1)S1), due to the same

impulsive control mechanisms.

Obviously, since E2 is a unique equilibrium and a stable node, it follows from the structure of the direction field and of the

phase portrait (see Fig. 2) that if H∗∗ − (1 − m1)S1 < H∗∗ − ε1p or H∗∗ − (1 − m1)S1 > H∗∗ − ε1p, then the system (1) has no order-

1 periodic solution. Otherwise, if (1 − m1)S1 = ε1p, then the system (1) admits a positive order-1 periodic solution (see Fig. 3).

Finally, if assume that there are bistable semi-trivial equilibria, according to the discussion above, we then conclude that the

system (1) also admits at least one order-1 periodic solution near the stable equilibrium E2 if H∗∗ − (1 − m1)S1 = H∗∗ − ε1p as

shown in Fig. 4.

(II) System (2) has a unique unstable positive equilibrium

We now assume that there is a unique unstable positive equilibrium of the system (2), which corresponds to certain parts

of Case 1, Case 3 and Case 4 in Table 1. It follows from the above-mentioned analysis and Table 1 that if there exists a stable
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Fig. 2. Dynamical behavior of the system (1). Here, H∗ = 20, H∗∗ = 12, a1 = 0.7, a2 = 0.2, b1 = 0.7, b2 = 0.5, δ = 0.48 and K = 100. The red line represents the

set �H∗ , the blue line represents the set �H∗∗ , the black curve represents the nullcline for wild mosquitoes in the first quadrant and the green curve represents

the trajectory O+(P1, t0) starting from the point P1 and then intersecting the section �H∗ at the point F1. At the point F1, the trajectory O+(P1, t0) jumps to the

point P2. It is easily to find suitable m1, m2 and U such that H∗∗ − (1 − m1)S1 < H∗∗ − ε1p (or H∗∗ − (1 − m1)S1 > H∗∗ − ε1p), which implies the point P2 is on the

right of P1 (or on the left of P1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.7, a2 = 0.2, b1 = 0.7, b2 = 0.5, δ = 0.48,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curve represents the nullcline for wild mosquitoes in the

first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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Fig. 4. The system (1) has a (purple) positive order-1 periodic solution near the stable equilibrium E2. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.7, a2 = 0.2,

b1 = 0.2, b2 = 0.7, δ = 0.5, K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines

for wild and transgenic mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)
semi-trivial equilibrium E1 and K(b1 − δ) > b1H∗∗, or if there exists the stable equilibrium E2, then the system (1) admits at least

one positive order-1 periodic solution as shown in Figs. 5 and 6.

(III) System (2) has a unique stable positive equilibrium

We now assume that the system (2) has a unique positive equilibrium (M∗, T∗), which is an asymptotically stable node. In

addition, it is also assumed that M∗ + T ∗ > H∗, which means that the impulsive control mechanisms are eventually triggered. In

the following, we consider four possibilities for the existence of the positive periodic solutions in the first quadrant.

(i) Assume that the intersection of �H∗∗ and M1 is the empty set and the intersection of �H∗∗ and T1 is also the empty set.

Let us denote the domains

I
.= {(M, T)|M′ > 0 and T ′ > 0}

and

IH∗
.= {(M, T)|M > 0, T > 0 and M + T ≤ H∗}.

Let P1(ε1p, H∗∗ − ε1p) ∈ �H∗∗ , for an arbitrarily small positive ε1p. According to the geometrical structure of the phase field

of the system (1), the trajectory O+(P1, t0) starting from the point P1 will remain within the domain I�{(M, T)|M′ > 0 and T′
> 0} and then intersect the line �H∗ at the point F1(S1, H∗ − S1). At the point F1, the trajectory O+(P1, t0) jumps to the point

P2((1 − m1)S1, H∗∗ − (1 − m1)S1) due to the effects of the impulsive perturbations M(t+) = (1 − m1)M(t) and T(t+) =
(1 − m2)T(t) + U, when M(t) + T(t) = H∗, and subsequently reaches the point F2(S2, H∗ − S2). If there exists an m∗ such

that (1 − m∗)S1 = ε1p, then P1 coincides with P2, which indicates that F1 also coincides with F2. Otherwise, Lemma 4.1

and the choice of a small positive ε1p guarantees that, for any U > 0, there exists an m∗ such that (1 − m∗)S1 > ε1p and

then (1 − m∗)(H∗ − S1) + U < H∗∗ − ε1p since the reason that IH∗ ⊂ I implies that S1 > ε1p and H∗ − S1 > H∗∗ − ε1p, which

indicates that P1 is on the left of P2. One then notes that F2 is on the right of F1. Otherwise, the trajectory P1F1 and the

trajectory P2F2 can intersect at some point, which contradicts the uniqueness of solutions for the system (2) without

impulsive effects. Therefore, it follows from (15) that S2 = F(S1, m1, m2,U, H∗) and

F(S1, m1, m2,U, H∗) − S1 = S2 − S1 > 0. (16)

On the other hand, let A1(H∗∗ − ε1p, ε1p) ∈ �H∗∗ for arbitrarily small positive ε1p. Then the trajectory O+(A1, t0) starting

from the point A will remain within the domain I and then intersect the segment � ∗ at the point B (S , H∗ − S ). At
1 H 1 1 1
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Fig. 5. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.7, a2 = 0.3, b1 = 0.2, b2 = 0.4, δ = 0.3,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 6. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.7, a2 = 0.6, b1 = 0.4, b2 = 0.5, δ = 0.52,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 7. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 30, H∗∗ = 17, m1 = m2 = 0.5, a1 = 0.4, a2 = 0.5, b1 = 0.7, b2 = 0.6, δ = 0.25,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
the point B1, the trajectory O+(A1, t0) jumps to the point A2((1 − m1)S1, H∗∗ − (1 − m1)S1) due to the effects of impulsive

control mechanisms and then intersects the segment �H∗ again at the point B2(S2, H∗ − S2).

If there exists an m∗∗ such that (1 − m∗∗)S1 = H∗∗ − ε1p, then A1 coincides with A2, which indicates that B1 coincides with

B2. Otherwise, since IH∗ ⊂ I, Lemma 4.1 and arbitrarily small positive ε1p guarantees that, for the above-mentioned m∗,

there exists a U > 0 such that (1 − m∗)(H∗ − S1) + U > ε1p implies that H∗∗ − ε1p > (1 − m∗)S1, which indicates that A1 is

on the right of A2. Subsequently, one notes that B2 is on the left of B1. Otherwise, the trajectory A1B1 and the trajectory A2B2

can intersect at some point, which contradicts the uniqueness of solutions for the system (2) without impulsive effects.

Therefore, it follows from (15) that S2 = F(S1, m1, m2,U, H∗) and

F(S1, m1, m2,U, H∗) − S1 = S2 − S1 < 0. (17)

To sum it up, it follows from the above discussion that when S1 = S2, the system (1) has a positive order-1 periodic solution.

Also, by (16) and (17), the Poincaré map (15) has a fixed point [30], which means the system (1) also has a positive order-1

periodic solution as shown in Fig. 7.

(ii) Assume that the intersection of �H∗∗ and the curve M1 is not the empty set, while, however, the intersection of �H∗∗ and

the curve T1 is the empty set.

Let P1(ε1p, H∗∗ − ε1p) ∈ �H∗∗ for arbitrarily small ε1p. According to the geometrical structure and the phase field of the

system (1), the trajectory O+(P1, t0) starting from the point P1 remains within the domain I�{(M, T)|M′ > 0 and T′ > 0} and

then intersects the segment �H∗ at the point F1(S1, H∗ − S1). At the point F1, the trajectory O+(P1, t0) jumps to the point

P2((1 − m1)S1, H∗∗ − (1 − m1)S1) due to the effects of the impulsive perturbations M(t+) = (1 − m1)M(t) and T(t+) =
(1 − m2)T(t) + U, which occur when M(t) + T(t) = H∗ and subsequently reaches the point F2(S2, H∗ − S2).

If there exists an m∗ such that (1 − m∗)S1 = ε1p, then P1 coincides with P2, which indicates that F1 also coincides with F2.

Otherwise, for any U > 0, there exists an m∗ such that (1 − m∗)S1 > ε1p and (1 − m∗)(H∗ − S1) + U < H∗∗ − ε1p because S1

> ε1p and then H∗ − S1 > H∗∗ − ε1p, which indicates that P1 is on the left of P2. Also, one then notes that F2 is on the right

of F1. Therefore, it follows from (15) that S2 = F(S1, m1, m2,U, H∗) and

F(S1, m1, m2,U, H∗) − S1 = S2 − S1 > 0. (18)

On the other hand, one notes that the point of intersection between �H∗∗ and M1 is P∗
M =

(
M∗∗, H∗∗ − M∗∗), where M∗∗ =

KH∗∗(δ−b1)+b1H∗∗2

(K−H∗∗)(a1−b1)
.

Let us consider two cases, in which one is that A1(M∗∗ − ε1p, H∗∗ − M∗∗ + ε1p) ∈ �H∗∗ for arbitrarily small positive ε1p (see

Fig. 8) and the other is that A1(M∗∗ + ε1p, H∗∗ − M∗∗ − ε1p) ∈ �H∗∗ for arbitrarily small positive ε1p (see Fig. 9).

First, if A1 belongs to the domain I, then the trajectory O+(A1, t0) starting from the point A1 remains within the domain

I and then intersects the segment � ∗ at the point B (S , H∗ − S ). After reaching the point B , the trajectory O+(A , t )
H 1 1 1 1 1 0
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Fig. 8. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.1, a2 = 0.5, b1 = 0.7, b2 = 0.5, δ = 0.2,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 9. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.1, a2 = 0.5, b1 = 0.7, b2 = 0.5, δ = 0.2,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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jumps to the point A2((1 − m1)S1, H∗∗ − (1 − m1)S1) due to the effects of the impulsive control measures and then inter-

sects the segment �H∗ again at the point B2(S2, H∗ − S2).

If there exists an m∗∗ such that (1 − m∗∗)S1 = H∗∗ − ε1p, then A1 coincides with A2, which indicates that B1 coincides with

B2. If A1 and A2 do not coincide, we claim that, for the above-mentioned m∗, there exists a U > 0 such that A1 is on the

right of A2. In fact, for the above-mentioned m∗, there exists a U > 0 such that (1 − m∗)(H∗ − S1) + U > H∗∗ − M∗∗ + ε1p

and then (1 − m∗)S1 < M∗∗ − ε1p imply that the trajectory O+(A1, t0) jumps to the point A2, which is on the left of A1, then

A2 should remain in the domain I.

Second, if A1 belongs to the domain II�{(M, T)|M′ < 0 and T′ > 0}, then according to the phase field of the system (2) the

trajectory O+(A1, t0) moves across the boundary of the domain II and enters the domain I, which implies that the trajectory

O+(A1, t0) should intersect the segment �H∗ at B1 ∈ I. After reaching the point B1, the trajectory O+(A1, t0) jumps to the

point A2 due to the effects of the impulsive control measures and then intersects the segment �H∗ again at the point

B2(S2, H∗ − S2). Similarly, we claim that for the above-mentioned m∗ there exists a U > 0 such that A1 is on the right of A2.

One then notes that

F(S1, m1, m2,U, H∗) − S1 = S2 − S1 < 0. (19)

To sum it up, it follows from the above discussion that when S1 = S2, the system (1) has a positive order-1 periodic solution.

Also, by (18) and (19), the Poincaré map (15) has a fixed point, which means the system (1) has a positive order-1 periodic

solution, as shown in Figs. 8 and 9.

(iii) Assume that the intersection of �H∗∗ and the curve M1 is an empty set, while, however, the intersection of �H∗∗ and the

curve T1 is not an empty set.

Let A1(H∗∗ − ε1p, ε1p) ∈ �H∗∗ for arbitrarily small positive ε1p. According to the geometrical structure and the phase field

of the system (1), the trajectory O+(P1, t0) starting from the point A1 will remain within the domain I and then intersect the

segment �H∗ at the point B1(S1, H∗ − S1). At the point B1, the trajectory O+(A1, t0) jumps to the point A2((1 − m1)S1, H∗∗ −
(1 − m1)S1) due to the effects of the impulsive control measures and subsequently reaches the point B2(S2, H∗ − S2). It

is obvious that S1 > H∗∗ − ε1p and H∗ − S1 > ε1p. So if there exists an m∗∗ such that (1 − m∗∗)S1 = H∗∗ − ε1p, then A1

coincides with A2, which indicates that B1 also coincides with B2. Otherwise, for any m∗ ∈ (0, 1), there exists a U > 0 such

that (1 − m∗)(H∗ − S1) + U > ε1p implies that H∗∗ − ε1p > (1 − m∗)S1, which indicates that A1 is on the right of A2. One

notes that B2 is on the left of B1. Otherwise, the trajectory A1B1 and the trajectory A2B2 can intersect at some point, which

contradicts the uniqueness of solutions for the system (2). Therefore, it follows from (15) that S2 = F(S1, m1, m2,U, H∗)
and

F(S1, m1, m2,U, H∗) − S1 = S2 − S1 < 0. (20)

On the other hand, one notes that the intersection point between �H∗∗ and T1 is T ∗
M

=
(
H∗∗ − T ∗∗, T ∗∗), where T ∗∗ =

KH∗∗(δ−a2)+a2H∗∗2

(K−H∗∗)(b2−a2)
. In what follows we consider two cases, in which one is that P1(H∗∗ − T ∗∗ + ε1p, T ∗∗ − ε1p) ∈ �H∗∗ for

arbitrarily small positive ε1p (see Fig. 10) and the other is P1(H∗∗ − T ∗∗ − ε1p, T ∗∗ + ε1p) ∈ �H∗∗ for arbitrarily small posi-

tive ε1p (see Fig. 11).

First, if P1 belongs to the domain I, then the trajectory O+(P1, t0) starting from the point P1 will remain within the domain I

and then intersect the segment �H∗ at the point F1(S1, H∗ − S1). At the point F1, the trajectory O+(P1, t0) jumps to the point

P2((1 − m1)S1, H∗∗ − (1 − m1)S1) due to the effects of the impulsive control mechanisms and then intersects the section

�H∗ again at the point F2(S2, H∗ − S2). It is obvious that S1 > H∗∗ − T ∗∗ + ε1p and H∗ − S1 > T ∗∗ − ε1p. If there exists an m∗∗

such that (1 − m∗∗)S1 = H∗∗ − T ∗∗ + ε1p, then P1 coincides with P2, which indicates that F1 coincides with F2. Otherwise,

if P1 does not coincide with P2, we claim that, for the above-mentioned U, there exists an m∗ ∈ (0, 1) such that P1 is on the

left of P2. In fact, for the above-mentioned U, there exists an m∗ ∈ (0, 1) such that (1 − m∗)(H∗ − S1) + U < T ∗∗ − ε1p and

then H∗∗ − T ∗∗ + ε1p < (1 − m∗)S1, which indicate that the point P2 is on the right of P1. Therefore, it follows from (15)

that S2 = F(S1, m1, m2,U, H∗) and

F(S1, m1, m2,U, H∗) − S1 = S2 − S1 > 0. (21)

Second, if P1 belongs to the domain III�{(M, T)|M′ > 0 and T′ < 0}, we may then obtain the same result by applying the

similar analysis. To sum it up, it follows from the above discussion that when S1 = S2, the system (1) has a positive order-1

periodic solution. Also, by (20) and (21), the Poincaré map (15) has a fixed point, which means that the system (1) has a

positive order-1 periodic solution, as shown in Figs. 10 and 11.

(iv) Assume that the intersection of �H∗∗ and the curve M1 is not the empty set and, similarly, the intersection of �H∗∗ and the

curve T1 is not the empty set. We hereby consider four cases: A1 ∈ I, P1 ∈ I; A1 ∈ I, P1 ∈ III; A1 ∈ II, P1 ∈ I; A1 ∈ II, P1 ∈ III.

According to the arguments employed for Cases i–iii, it is seen that the system (1) has a positive order-1 periodic solution,

as shown in Figs. 12 and 13.

Subsequently, assume that insecticide toxicity to wild mosquitoes is different from the insecticide toxicity to transgenic

mosquitoes. Without loss of generality, we assume that m1 > m2, which means insecticide toxicity to wild mosquitoes is stronger

than insecticide toxicity to transgenic mosquitoes. We then define the line �H∗∗ by

�H∗∗
.=
{
(M, T)|M > 0, T > 0 and M + 1 − m1

1 − m2

T = (1 − m1)H∗ + 1 − m1

1 − m2

U

}
.
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Fig. 10. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.4, a2 = 0.7, b1 = 0.7, b2 = 0.2, δ = 0.3,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 11. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.4, a2 = 0.7, b1 = 0.7, b2 = 0.2, δ = 0.3,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
Obviously, one notes that U < m2H∗ implies that the line: M + T = H∗ lies above the line: M + 1−m1
1−m2

T = (1 − m1)H∗ + 1−m1
1−m2

U in

the first quadrant. If this does not happen, then the second line might be unreachable.

In the following, we should consider three broad cases for the existence of positive periodic solutions. The proofs are

similar to the one given above for the existence of positive periodic solutions in the case in which m = m . On the other
1 2
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Fig. 12. The system (1) has a (purple) positive order-1 periodic solution. Here, H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.1, a2 = 0.7, b1 = 0.7, b2 = 0.1, δ = 0.2,

K = 100 and U = 2. The red line represents the set �H∗ , the blue line represents the set �H∗∗ , the black curves represent the nullclines for wild and transgenic

mosquitoes in the first quadrant and the purple curve represents a positive order-1 periodic solution. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
hand, assuming that m1 < m2, one then notes that U <
(1−m2)m1

1−m1
H∗ implies that the line M + T = H∗ lies above the line

T + 1−m2
1−m1

M = (1 − m2)H∗ + U in the first quadrant. As a consequence, we obtain the following result.

Theorem 4.1. For any m1, m2 ∈ (0, 1) such that U < min{m2,
(1−m2)m1

1−m1
}H∗ and, in addition, if one of the following conditions holds:

(i) E1 is stable with K(b1 − δ) > b1

(
max{1 − m1, 1 − m2}H∗ + U

)
and above the line �H∗ (that is, H∗ < K

b2
(b2 − δ));

(ii) E2 is stable and above the line �H∗ for the system (2) (that is, H∗ < K
a1

(a1 − δ));

(iii) E∗ is stable and above the line �H∗ for the system (2) (that is, H∗ < M∗ + T ∗),

then the system (1) admits a positive order-1 periodic solution.

4.2. Orbital asymptotic stability of positive order-1 periodic solutions

In this subsection, we shall consider the orbital asymptotic stability of positive order-1 periodic solutions of the system (1). To

this purpose, let (μ∗, ν∗) be a positive order-1 periodic solution of the system (1) with period T̃ , which intersects the segments

�H∗∗ and �H∗ at the points E+((1 − m1)μ
∗(T̃), (1 − m2)(H∗ − μ∗(T̃)) + U

)
and E

(
μ∗(T̃), H∗ − μ∗(T̃)

)
, respectively.

Theorem 4.2. If

μ = κ exp

{∫ T̃

0

ψ(t)dt

}
with

κ = A

B
, (22)

in which

ψ(t) = (a1 + a2)(μ
∗(t))2 + 2(a1 + b2)μ

∗(t)ν∗(t) + (b1 + b2)(ν
∗(t))2

(μ∗(t) + ν∗(t))2

− (2a1 + a2)μ∗(t) + (b1 + 2b2)ν∗(t) − 2δ,

K



100 H. Zhang et al. / Commun Nonlinear Sci Numer Simulat 31 (2016) 83–107

Wild mosquito

T
ra

ns
ge

ni
c 

m
os

qu
ito

0 10 20 30 40 50 60
0

10

20

30

40

50

60

E*

B1

B2

A1

A2

P1
F2

F
1

P2

Fig. 13. The system (1) has a positive order-1 periodic solution (purple). Here H∗ = 20, H∗∗ = 12, m1 = m2 = 0.5, a1 = 0.1, a2 = 0.7, b1 = 0.7, b2 = 0.1, δ = 0.2,

K = 100 and U = 2. The red segment represents the set �H∗ and the blue segment represents the set �H∗∗ . (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
A = [(1 − m2)a1(1 − m1)
2μ∗(T̃)2 + (1 − m1)b2((1 − m2)(H∗ − μ∗(T̃)) + U)2

+ (a2(1 − m1) + b1(1 − m2))((1 − m1)μ
∗(T̃)((1 − m2)(H∗ − μ∗(T̃)) + U))]

·
(

1

(m2 − m1)μ∗(T̃) + H∗(1 − m2) + U
− 1

K

)
− δ(1 − m1)((1 − m2)H∗ + U)

and

B = (a1(μ
∗(T̃))2 + b2(H∗ − μ∗(T̃))2 + (a2 + b1)μ

∗(T̃)(H∗ − μ∗(T̃)))
(

1

H∗ − 1

K

)
− δH∗,

then (μ∗, ν∗) is orbitally asymptotically stable.

Remark 4.3. If m1 = m2, then

κ = (1 − m1)
A1

B1

,

in which

((μ∗(T̃ +), ν∗(T̃+)) = ((1 − m1)μ
∗(T̃), (1 − m1)H∗ + U − (1 − m1)μ

∗(T̃))

A1 = (a1(μ
∗(T̃ +))2 + b2(ν

∗(T̃ +))2 + (a2 + b1)μ
∗(T̃ +)ν∗(T̃+))

· K − (1 − m1)H∗ − U

K((1 − m1)H∗ + U)
− δ((1 − m1)H∗ + U)

B1 = (a1(μ
∗(T̃))2 + b2(ν

∗(T̃))2 + (a2 + b1)μ
∗(T̃)ν∗(T̃))

K − H∗

KH∗ − δH∗.

Without loss of generality, we here consider only the situation described in Case 1 of Table 1. Assume that a1 = 0.7, a2 = 0.3,

b1 = 0.3, b2 = 0.4, m1 = 0.5, m2 = 0.3, δ = 0.1, K = 100, H∗ = 60 and U = 1. The graphs of the time series display periodic

oscillations in the wild and transgenic mosquito populations with period T̃ ≈ 2.945, 252, 167, 573 (see Figs. 14 and 15). Also,

according to the numerical simulations shown in Fig. 15, one notes that an approximate parametric equation of the positive

order-1 periodic solution (μ̂∗, ν̂∗) over a period is given by{
μ̂∗(t) = 8.7751x − 4321.9, t ∈ [495.41, 548, 058, 498.36, 073, 275).
ν̂∗(t) = −0.10653x2 + 106.43, 089x2 − 26, 574,

(23)
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Fig. 14. Time series graphs of wild and transgenic mosquito populations. Here, a1 = 0.7, a2 = 0.3, b1 = 0.3, b2 = 0.4, m1 = 0.5, m2 = 0.3, δ = 0.1, K = 100,

H∗ = 60 and U = 1. The initial conditions are (M(0), T(0)) = (30, 0.01).
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Fig. 15. (a) A time series graph of wild mosquito population over a period. (b) A time series graph of transgenic mosquito population over a period. (c) A phase

diagram of positive order-1 periodic solution (μ̂∗, ν̂∗). Here a1 = 0.7, a2 = 0.3, b1 = 0.3, b2 = 0.4, m1 = 0.5, m2 = 0.3, δ = 0.1, K = 100, H∗ = 60 and U = 1. The

initial conditions are (M(0), T(0)) = (30, 0.01). The period T̃ ≈ 2.945, 252, 167, 573. Here, t ∈ (495.415, 480, 583, 759, 498.360, 732, 751, 333].
At time t = 498.36, 073, 275, the periodic solution intersects the section �H∗ at the point E(51.18, 8.82). The trajectory jumps

then to the point E∗(25.59, 7.174), due to the impulsive perturbations M(t+) = 0.5M(t) and T(t+) = 0.7T(t) + 1, which occur

when M(t) + T(t) = 60. Following the notations in Appendix B and the calculations in Appendix C, one obtains that

κ = 0.7286
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Fig. 16. The orbital asymptotic stability of the (magenta) positive order-1 periodic solution (μ̂∗, ν̂∗). Here, a1 = 0.7, a2 = 0.3, b1 = 0.3, b2 = 0.4, m1 = 0.5,

m2 = 0.3, δ = 0.1, K = 100, H∗ = 60 and U = 1. The blue curve represents the solution with initial conditions (M(0), T(0)) = (10, 0.01). The red curve indicates

the solution with initial conditions (M(0), T(0)) = (30, 2). The black curve represents the solution with initial conditions (M(0), T(0)) = (20, 4). The yellow

curve indicates the solution with initial conditions (M(0), T(0)) = (8, 2). The cyan curve indicates the solution with initial conditions (M(0), T(0)) = (15, 5).

The green curve represents the solution with initial conditions (M(0), T(0)) = (10, 10). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
and ∫ T̃

0

[(
a1 + a2

)
(μ̂∗(t))2 + 2(a1 + b2)μ̂∗(t)ν̂∗(t) +

(
b1 + b2

)
(ν̂∗(t))2(

μ̂∗(t) + ν̂∗(t)
)2

−
(
2a1 + a2

)
μ̂∗(t) +

(
b1 + 2b2

)
ν̂∗(t)

K
− 2δ

]
dt ≈ −8.5e + 05.

which indicates that

μ < 1.

Hence, the positive order-1 periodic solution (μ̂∗, ν̂∗) is orbitally asymptotically stable as shown in Fig. 16.

5. Pareto efficient control of the wild mosquitoes

The pesticide-induced mortalities of wild and transgenic mosquitoes, expressed as percentages of the respective populations,

are not actually constant, but rather variable, due to a variety of factors which include weather conditions such as wind direction

and speed, temperature and relative humidity. However, for the sake of simplicity, we assume that the specified percentile

mortalities induced by a pesticide dose u are

mi = di
1

(
1 − exp

(
− di

2u
))

, (i = 1, 2)

where di
1

∈ (0, 1) is the maximal mortality rate and di
2

> 0 is a dependence parameter.

Since it is usually impossible to eliminate the entire wild mosquito population, the next obvious choice is to keep its size as

low as possible on a given interval [T0, T̂ ], while simultaneously keeping the control strategy near-optimal as far as the total cost

is concerned. In this regard, it is useful to remember that wild and transgenic mosquitoes compete for the same blood meals and

occupy the same habitat, which make the combined size of the mosquito populations restricted by the carrying capacity K.

In what follows, we recall the concept of Pareto efficiency in the context of the objectives∫ T̂

T0

M(t)dt︸ ︷︷ ︸
Total amount of the wild mosquito population
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Fig. 17. The Pareto front with illustrative points marked. (For interpretation of the references to colour in the text, the reader is referred to the web version of

this article.)

Table 2

Detailed information of the recommended impulsive control

strategy.

No. of Time Amount of Amount of transgenic

impulse instance pesticides mosquitoes

i τ i ui Ui

1 10.46 118 57

2 14.21 115 57

3 18.18 115 57

4 22.21 125 57

5 26.31 130 57
and

N(T̂)∑
i=1

(c1ui + c2Ui)︸ ︷︷ ︸
Total cost

.

Here, ui and Ui are the two control variables that represent the released amount of pesticides and, respectively, of transgenic

mosquitoes when the phase point (M(t), T(t)) reaches the line �H∗ and N(T̂) is the number of the roots of the equation M(t) +
T(t) = H∗, which equals the number of impulses. Also, c1 is the unit price of pesticides and c2 is the unit price of transgenic

mosquitoes, which need to be raised in a lab. A control strategy is then said to be Pareto efficient if any change in the control

strategy would make either the total cost higher or the total amount of the wild mosquitoes larger [31]. Here, we may always

restrict our choices of control strategies to the Pareto front, which represents the set of all Pareto efficient strategies, without

losing the best strategies due to this restriction.

In order to determine the Pareto frontier, we consider all admissible controls

{(u,U)} = {(u1,U1), (u2,U2), · · · , (uN(T̂),UN(T̂))}
that transfer the system (1) from a state (M(T0), T(T0)) into a state (M(T̂), T(T̂)) over a time interval [T0, T̂ ]. Also, assume that

τ i, i = 1, 2, · · · , N(T̂) are the instances at which the phase point (M(t), T(t)) reaches the line �H∗ . Note that T̂ is not fixed, but

rather given by the condition that the phase point (M(t), T(t)) reaches the point
(
M(T̂), T(T̂)

)
, T0 < τ 1 and τN(T̂) < T̂ . We choose

the following values of parameters: a1 = 0.1, a2 = 0.8, b1 = 0.8, b2 = 0.1, K = 1000, δ = 0.2, H∗ = 300, d1
1

= 0.6, d1
2

= 0.03,

d2
1 = 0.7, d2

2 = 0.015, c0 = 1, c1 = 0.08, c2 = 0.66, T0 = 0, T̂ = 30 and the initial conditions
(
M(0), T(0)) = (50, 10). For the sake

of simplicity, we set (u, U) ∈ {110, 111, ���, 130, } × {50, 51, ���, 60}. Fig. 17 shows the Pareto frontier (green curve).

Consequently, the recommended strategy is the one described in Table 2, which leads to the dynamics of the wild

mosquito population depicted in Fig. 18, with N(30) = 5 and the corresponding actuating effect given by {(u,U)} =
{(118, 57), (115, 57), (115, 57), (125, 57), (130, 57)}. The trajectory of the wild mosquito population M(t), 0 ≤ t ≤ 30 shown

in Fig. 18 appears to be a better objective than other different combinations since it remains near optimal in terms of

the total size of the wild mosquito population over a time interval [T0, T̂ ] and is simultaneously not sensitive to the total

cost.
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Fig. 18. The trajectory of the wild mosquito population corresponding to the recommended impulsive control strategy. Here N(30) = 5 and the actuating effect

{(u,U)} = {(118, 57), (115, 57), (115, 57), (125, 57), (130, 57)}.
6. Concluding remarks

The present paper attempts to formulate and study a two-dimensional ODE model for the interaction between two wild and

transgenic mosquito populations, which is subject to two control mechanisms employed simultaneously. It is assumed that the

control measures occur in pulses and are triggered when the total density of the mosquito populations reaches a threshold value,

which makes them impulsive and state-dependent.

To completely characterize the evolution of the system, we start by investigating its dynamics in the absence of pertur-

bations. In this regard, we determine sufficient conditions for the existence and stability of the semi-trivial equilibria E1 and

E2 in terms of the recruitment rates a1, a2, b1, b2 and of the death rate δ, finding in the process that the existence and sta-

bility of E1 bear no relationship to the similar properties of E2. Then, the existence and stability of the positive equilibria

are characterized in terms of the same parameters. A certain exclusion property is observed to hold, in the sense that, if

all three equilibria exist and the unique positive equilibrium is stable, then the semi-trivial equilibria are both unstable, and

vice versa.

We then derive sufficient conditions for the existence and orbital stability of the positive order-1 periodic solutions, comple-

menting our theoretical investigations by means of numerical simulations. It is observed that allowing the resetting set (the set

which, when reached, triggers the control measures) to depend on several variables, as it is the case with our example, leads to

a significantly richer dynamics of the system, compared to the situation in which the resetting set depends on a single variable

[22,32].

To trade-off between multiple objectives, namely the total cost and the total size of the wild mosquito population, we employ

the concept of Pareto efficiency to determine near-optimal controls. The Pareto frontier method presented here opens a new

window for reconciling economic issues in pest management and can be easily extended to more complex scenarios. We expect

the results obtained herein to be of use for minimizing the expenditure on the deployment of effective and sustainable pest

control methods by concerned bodies, since the use of state-dependent controls leads to a reduction in the total mosquito size

and to a more predictable growth pattern of the wild mosquito population.

The dynamics of a related predator–pest model subject to state-dependent feedback controls in which the resetting set de-

pends upon a single variable, namely upon the density of the pest, has been discussed in [33], sufficient conditions for the

existence and stability of semitrivial periodic solutions and of positive periodic solutions being established via a similar ap-

proach. Also, it has been shown in [33] that no positive order-q periodic solutions, q ≥ 3, exist under a certain sufficient condi-

tion, amounting to the fact that the critical prey density at which the control measures are triggered is large enough. Further, it

has been observed that if a certain threshold condition is reached, then a positive order-1 periodic solution emerges from the

semitrivial periodic solution via a fold bifurcation. Potentially, the existence of positive order-q periodic solutions, q ≥ 2, can be

investigated for our model via a similar approach, although establishing ordering properties for the successive iterations of the

Poincaré map of the control line or of the retreat line seems to be a difficult undertaking.

Another predator–pest model with logistic growth rates for both the pest and its predator and with Holling type I functional

response for the predator has been considered in [34], the state-dependent controls being again employed when the size of the

pest class reaches a certain critical value. The existence of order-1 and order-2 periodic solutions for a SIR epidemic model with

state-dependent pulse vaccination has been discussed in [32], on condition that the vaccination occurs if the size of the infective

class reaches a threshold value and, in the meantime, the size of the susceptible class is not less than the S-component of the

positive equilibrium of the unperturbed system. Apart from considering a structurally different model and finding near-optimal
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controls, we hereby consider a resetting set which is not parallel to a semi-axis, which echoes in a somewhat more complicated

geometric analysis.
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Appendix A. Orbital asymptotic stability

Let us define the distance between a point P and a set A in R2 by

d(P, A) = inf{dE(P, Q); Q ∈ A},
where by dE we denote the usual Euclidean distance between points in R2. The trajectory O+((M(t0), T(t0)

)
, t0)

)
starting at time

t0 in (M(t0), T(t0)) is said to be orbitally stable if for any given ε > 0, there exists a constant δ = δ(ε) > 0 such that for any other

solution
(
M̃, T̃

)
of the system (1),

d((M̃(t), T̃(t)), O+((M(t0), T(t0)), t0))) < ε

for all t > t0 whenever

d((M̃(t0), T̃(t0)), O+((M(t0), T(t0)), t0))) < δ.

The trajectory O+((M(t0), T(t0)
)
, t0)

)
is said to be orbitally asymptotically stable if it is orbitally stable, and there exists a constant

ζ > 0 such that for any other solution (M̃, T̃) of the system (1),

d((M̃(t), T̃(t)), O+((M(t0), T(t0)), t0))) → 0

as t → ∞ whenever

d((M̃(t0), T̃(t0)), O+((M(t0), T(t0)), t0))) < ζ .

Appendix B. Analogue of Poincaré criterion [17]

We consider the following autonomous system with state-dependent impulsive perturbations{
dx
dt

= f (x, y), dy
dt

= g(x, y), if ϕ(x, y) �= 0,

�x = ξ(x, y), �y = η(x, y), if ϕ(x, y) = 0,
(24)

in which f and g are continuous and differentiable functions defined on R2, ϕ is a sufficiently smooth function with ∇ϕ �= 0, and

�x(t) = x(t + ) − x(t), �y(t) = y(t + ) − y(t).

Let (μ, ν) be a positive T̃-periodic solution of the above system. The following result establishes a sufficient condition for its

orbital asymptotic stability.

Lemma 6.1. If the Floquet multiplier μ satisfies |μ| < 1, where

μ =
n∏

j=1

κ j exp

{∫ T̃

0

[
∂ f (μ(t), ν(t))

∂x
+ ∂g(μ(t), ν(t))

∂y

]
dt

}
with

κ j =
(

∂η
∂y

∂ϕ
∂x

− ∂η
∂x

∂ϕ
∂y

+ ∂ϕ
∂x

)
f+ +

(
∂ξ
∂x

∂ϕ
∂y

− ∂ξ
∂y

∂ϕ
∂x

+ ∂ϕ
∂y

)
g+

∂ϕ
∂x

f + ∂ϕ
∂y

g

and f, g, ∂ξ
∂x

,
∂ξ
∂y

,
∂η
∂x

,
∂η
∂y

,
∂ϕ
∂x

, and ∂ϕ
∂y

have been calculated at the point (μ(τ j), ν(τ j)), f+ = f
(
μ(τ+

j
), ν(τ+

j
)
)
, g+ = g

(
μ(τ+

j
), ν(τ+

j
)
)
,

and τ j( j ∈ N) is the time of the jth jump, 1 ≤ j ≤ n, n being the total number of impulsive perturbations in [0, T̃ ], then (μ, ν) is orbitally

asymptotically stable.

http://dx.doi.org/10.13039/501100001809
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Appendix C. Calculating κ and
∫ T̃

0

[ ∂ f (μ∗(t),ν∗(t))
∂x

+ ∂g(μ∗(t),ν∗(t))
∂y

]
dt

Following the notations in Appendix B, one determines that

f (x, y) =
[

a1x + b1y

x + y

(
1 − x + y

K

)
− δ

]
x,

g(x, y) =
[

a2x + b2y

x + y

(
1 − x + y

K

)
− δ

]
y,

ξ (x, y) = −m1x,

η(x, y) = −m2y + U,

ϕ(x, y) = x + y − H∗

(μ∗(T̃), ν∗(T̃)) = (μ∗(T̃), H∗ − μ∗(T̃)),

((μ∗(T̃ +), ν∗(T̃+)) = ((1 − m1)μ
∗(T̃), (1 − m2)(H∗ − μ∗(T̃)) + U))

Consequently,

f (x, y) + g(x, y) = (a1x2 + b2y2 + (a2 + b1)xy)
(

1

x + y
− 1

K

)
− δ(x + y)

(1 − m2) f (x, y) + (1 − m1)g(x, y) = ((1 − m2)a1x2 + (1 − m1)b2y2 + (a2(1 − m1) + b1(1 − m2))xy)

·
(

1

x + y
− 1

K

)
− δ((1 − m2)x + (1 − m1)y)

∂ f (x, y)

∂x
= a1x2 + 2b1xy + b1y2

(x + y)2
− 2a1x + b1y

K
− δ

∂g(x, y)

∂y
= a2x2 + 2b2xy + b2y2

(x + y)2
− a2x + 2b2y

K
− δ

∂ξ

∂x
= −m1; ∂ξ

∂y
= 0;

∂η

∂x
= 0; ∂η

∂y
= −m2

∂ϕ

∂x
= 1; ∂ϕ

∂y
= 1.

It then follows that

κ =
(1 − m2) f

(
(μ∗(T̃+), ν∗(T̃ +)

)
+ (1 − m1)g

(
(μ∗(T̃ +), ν∗(T̃+)

)
f
(
(μ∗(T̃), ν∗(T̃)

)
+ g

(
(μ∗(T̃), ν∗(T̃)

)
and ∫ T̃

0

[
∂ f (μ∗(t), ν∗(t))

∂x
+ ∂g(μ∗(t), ν∗(t))

∂y

]
dt =

∫ 495.41548058+T̃

495.41548058

[
∂ f (μ∗(t), ν∗(t))

∂x
+ ∂g(μ∗(t), ν∗(t))

∂y

]
dt.
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