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ON A FIRST ORDER NONLINEAR RECURRENCE
DEFINED USING THE MODULUS FUNCTION
by Paul Georgescu and Gabriel Popa

\

On concern in this note is the limit of the first order nonlinear recur-
rence defined by 2,41 = |z, — @n|, 1 € R, under some hypotheses on the
sequence (@n)n>1, which will be made precise afterwards.

Let (zn)n>1 be the sequence of real numbers defined by:

(R) Tnil = |ZTn —an|, n > 1, 21 €R,
(an)n>1 being a sequence of real numbers which satisfies
(P) a, >0, VneN.

We shall treat the following cases:

I a, = 0 asn — 00; IL (an)n>1 strictly increasing and bounded;

IIL. (@n)n>1, strictly increasing and unbounded.

In the first case, one obtains the following result.

Theorem 1. Let (z,)n>1 e the sequence defined by (R), where (@n)n>1
is a null sequence which satisfies (P). Then (zn)n>1 15 convergent.

Proof. Removing z if necessary, we may suppose that z, >0, VneN~.
Let us denote I; = {n € N*;z, > an} and I, = {n € N*; 2, < an}.

Case 1. If I, is finite, then 3n; € N* such that z, > a,, Vn > nq, so
Tpyl = Tp — Gn, V0 > 1. Then (Tn)n>1 is an ultimately decreasing sequence
of positive numbers and so it is convergent.
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Case 2. If I, is finite, then 3ny € N* such that 0 <z, <a,, Vn>n,
and since (@n)n>; is a null sequence, (Zn)n>1 is also a null sequence.
Case 3. If I and I, are both infinite, let us detail I; as

Il:{:cnl,...,xni,mnz,...,xné,...}

with ng < ni, n} < ngyq and I; contains together with z,, and Ty all the
intermediary terms z;, ng < i < ni. In order to insure the convergence of
(Zn)n>1, our goal is to conveniently majorize z; for i € I;.

Denote Sy = {mnk,...,xn;‘}. Since Tn,tit1 = Tnyti — Any4i, Vi €
€ 0,7k11 — ng — 1, we see that z,, > Tng+1 2 ... > &y for each k. Also,
since Tn, = @p, 1 — Tn,, One has that z, < @n, -1 for each k, so z; < a,,, 1,
Vi € Sk. Together with the definition of I, this obviously yields that (Zr)n>1
is a null sequence. -

Remark 1. It is clear from the above proof that in Cases 2 and 3 one
obtains that nli_)r{.lo Zn = 0, result which does not necessarily hold in the first

1
n(n+ 1)
null sequence). With respect to this, a necessary and sufficient condition for
the finiteness of I is:

oo
(C) 3no € N such that z,, > Z Q.
k=ng
In view of this remark, we may state the following consequence of
Theorem 1.

Corollary 1. Let (Tn)n>1 be the sequence defined by (R), where (An)n>1
o0

case (for instance, if (@n)np1 = ( ) and z; > 1, (Zn)n>1 1s not a
n>1

is a null sequence which satisfies (P) and also for which Z @, = +00. Then

n=1
{(Zn)n>1 18 a null sequence.

We now indicate some applications of this result.
Problem 1 (P.Georgescu, G.Popa). Let (Tn)n>1 be the sequence de-

fined by z,.; = ’xn —bof —0 where (by)n>1 is a sequence such that
0<m< b, <M,VYn > 1, for some m, M eR and f : (0,00) = (0,00) is a
function such that lim M €RY. Then lim z, =0.

T=x04 157 n—+0o

Solution. Here a, = b, f <l> is a null sequence which satisfies (P).
n

(e o] [e.o]
1 . :
Since the series E b, - — is divergent, E an, diverges also and we may apply
n=1 -

n=1

Corollary 1.
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k-1
Proof. One has Zpy4+2k = ZTng + Z(an0+2i+1 — Gng+2i)- Since (Tok)k>1

3=0
and (Z2k+1)k>0 have finite limits /; and I3 and zn41 = an — Tn,V 1 > ng, we
see that I; + I = c. Therefore, a necessary and sufficient condition for the

SRAs c £ <
convergence of (Zy)p>1 18 im Zpo4ok = 5 which finishes the proof.
57 n—oo
Remark 2. The convergence condition in Theorem 2 may be refor-
0o ng—1

mulated as z; + Z (@ng+2i4+1 — Ongt2i) = = + Z a;.
1=0

Theorem 2 may be used in solving the followmg problems.
Problem 3 (P.Georgescu, G.Popa). Prove that the sequence (2.)n>1

defined by 41 =

=]
Ty — (2 -2 n > 1 and z, = 3, is divergent.

1
Solution. In this case, ng = 3, Tp, = 51 € =
n—1 1 1
Then, z342n = 23 + ;_0 (2 — m—l -2+ 37 22_) and it is seen

that lim z312, = 1n2, so (z,)n>1 is divergent, since for the convergence it
n—oo -

n—o0 n

Problem 4 (P.Georgescu, G.Popa). Prove that the sequence (2,)n>1

1 n

defined by 41 = lwn - (1 + —)
n

and converges for infinitely many ;.

Solution. Let ng > 5 be arbitrary, but fixed. In order to have
no = min{i; z; < @;}, ¢1 should satisfy:

1 1
would be required to have lim z349, = = lim (2 - —) =1
n—0o0 2

, z1 € R, diverges for infinitely many z,

no—l 1 1 ng 1 :
= =1
As seen earlier, for the convergence of (z,),>1 we need also:

no+2i+1 1 no+2: no—1 1 i &
£ = ¥
xﬁz ( n0+2z+1> (1+ n0—|—2i) Z ( ) )+§ 2)

=0

Given ng > 5, it is seen that (1) and (2) are both satisfied for a single
) (which increases as ng increases). To see this, we may use the following
estimates from [1]:

e s e
= 14+— - Vn>3
% 2n+2>( +n) 3] by detkto
to conclude that:
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k-1
Proof. One has 2,42k = 2y, + Z(an0+2i+1 — Gno42i). Since (Tar)r>1
1=0
and (Zak41)k>0 have finite limits /; and I and zp41 = an — 25,V 1 > ng, we
see that I; 4+ I3 = ¢. Therefore, a necessary and sufficient condition for the
5 5 c ! $
convergence of (2,)n>1 is lim Z,,4+2x = =, which finishes the proof.
¥ n—oo

Remark 2. The convergence condition in Theorem 2 may be refor-
no—1

0
mulated as z; + Z (@ng+2i+1 — Gngt2i) = = + Z a;.
=0

Theorem 2 may be used in solving the followmg problems.
Problem 3 (P.Georgescu, G.Popa). Prove that the sequence (z,)n>1

=

1
Solution. In this case, ng = 3, 25, = 30 € =2

defined by T,41 = ,n>1 and 21 = 3, is divergent.

n—1
1 1 A
Then, 2349, = x;;—{—g (2- I 21 -2+ 3-{—22') and it is seen
that li_)m T342n = In2, so (£,)n>1 is divergent, since for the convergence it
n oo =~
1
would be required to have hm T3pon == lim (2—-—] =1.
2 n—co n

Problem 4 (P. George.scu, G.Popa). Prove that the sequence (Z,)n>1
1 n
e
n
and converges for infinitely many ;.

Solution. Let ng > 5 be arbitrary, but fixed. In order to have
no = min{i; z; < a;}, 1 should satisfy:

defined by p41 = , 1 € R, diverges for infinitely many x,

no—1 1 i no 1 1

Z(H'?) §z1<2(1+;). (1)
=1 =1

As seen earlier, for the convergence of (z,)n,>; We need also:

o0 1 no+2i+1 1 ng+2: no—1 1 7 &
A% E st - L 1
xltz—; (1+no+2i+1) (1+ no+2i) Z( v )+5 )

=0

Given ng > 5, it is seen that (1) and (2) are both satisfied for a single
z; (which increases as ng increases). To see this, we may use the following
estimates from [1]:

e LN e '
- = ——, V0 >3,
g 2n+2>(1+n) 5] 2n+1’ kot
to conclude that:
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i e 1 ng+2i+1 ' jas 1 ng+2i . ¢ Be
A ng+2i+1 no + 2t 2(no+1)+1°

so the above sum is majorized by £ for ng > 5. Therefore one of the estimates
in (1) is obtained, the other being obvious.

One, therefore, has infinitely many z; for which (Tn)n>1 is convergent
(a countable subset of R) and also infinitely many z; for which (Tn)n>1is
divergent (the complementary set of the above).

We now study the case in which (a,),>; is strictly increasing and un-
bounded (that is, Case III). e

As seen in Lemma 1, the subsequences (xzk)k>1 and ($2k+1}k>0 have

limits, finite or not. However since lim a, = 400, if (z,)n>1 has a limit,
n—oo P

this can be only 4oc0.

n
Let us denote Tnzz:(—l)kak. It is obvious that Tor > 0 and Tor11 <0
k=1
and an easy computation yields that:

Bngtk = (= 1P Ty = (=)™ (Tog + (=1)™20,); + (3)

where ng = min{i, z; < a,}.
We now obtain the following result.
Theorem 3. Let (z,)n>1 be the sequence defined by (R), with (a.)n>:

satisfying (P) and being strictly increasing and unbounded. Then, h_)m Ba =
n

: o
=+o0 if and only if nh_)ngo (=1)"T,, =400 and, in this case, nli)n;o (_—W
The proof is straight forward and it is based on (3).
We may use this result to solve the following problem:
Problem 5 ([1], Problem 295, p.105, modified). Let zo > 0. Find the

limit of the sequence (zyn)n>0 which verifies t,11 = |z, — n|, Vn € N, and

é

x
prove that lim — =

n—oco 7 _2— <
5 == 2]Q
Solution. Here (-1)"T, = { ;80 (-1)*T, = oo
S SN i
(and therefore z,, — oo as well), and nli_)ngo m =1, which immediately
. 3 ; LTn 1
implies that nl;rrolo B,

T 1 -
Remark 3. One does not necessarily obtain that lim —& = = for all

n—00 Qp 4
(@n)n>1; this quotient may not have a limit in some cases. This may be seen
Z 1 Ton+1 3
if (@n)n>1 = (n?)n>1, for which lim 220 Zand lim 2L o 2
= n—00 gy, 4 n—00 Q4] 4
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The above considerations may be extended to systems of recurrences.
We hereby indicate an example.

Problem 6 (P.Georgescu, G.Popa). Let (Tn)n>1 and (Yn)n>1 be the

1

Tpiylr = == ‘==
n+ Yn #

sequences defined by sy 21, z1,y; € R. Prove that

Yn+1 = |Tp — sin -5

n
lim z, = lim y, = 0.
n—oo n—oo
) 1 ; 1
Solution. We see that Untz. = = ;z-’ — sin CEEE = |yn — ¢,
A o g £ L ;
: = Mt Yn > —
with ¢, = 712 (n _’i 1) 7{

= —sin ——— if N
o 51n(n+1)2,1 y,,<n

[ o] o0
It is seen that nll’rgo ¢n =0 and kz:czk = kZCQk+1 = 00, so Corollary 1
=1 £ =0 .
implies that (y2k+1)k20 and (yzk)kzl are null sequences, so (Yn)n>1 is a null

¢ 1 P
sequence. Since zn1; = |y, — - for n > 1, we deduce that (-77n)n21 is also a

null sequence.
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EXAMENE SI CONCURSURI

CONCURSUL DE MATEMATICA ,FLORICA T.CAMPAN¢
FAZA INTERJUDETEANA, 25 MAI 2002, TASI

prezentare de Dan Branzei

O proiectare de competitie reprezinti un vis, dar poate fi fapt pozitiv
dacd gidndeste s§ misoare profund calitdti si deveniri si si completeze demer-
suri didactice. Prima intrupare a competitiei aratd ce a fost bun in proiect si
ce se mai poate imbundtiti. A doua intrupare, dacd este reusit, se instituie
in sdgeatd spre viitor. A doua intrupare a fazei interjudetene a concursului
Florica T. Cdmpan a fost o reugitd: subiecte corecte, uneori ghiduse, cerand

339



