
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică "Gheorghe Asachi" din Iaşi
Tomul LVII (LXI), Fasc. 1, 2011

Secţia
MATEMATICĂ. MECANICĂ TEORETICĂ. FIZICĂ

ON THE IMPULSIVE CONTROL OF A N-PREY
ONE-PREDATOR FOOD WEB MODEL

BY

PAUL GEORGESCU∗

Abstract. The dynamics of a n-prey one-predator food web model which
is subject to impulsive controls is studied from the viewpoint of finding suffi-
cient conditions for the extinction of prey and for prey and predator perma-
nence. Using the Floquet theory of impulsively perturbed systems of ordinary
differential equations, the local and global stability of the so-called prey-free
periodic solution are obtained in terms of integral conditions with biological
significance. The permanence and partial permanence of the system are also
investigated using similar conditions.
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1. Introduction
Lately, it has been widely documented that the persistent use of pesticides is

prone to having undesirable long-term side effects, due to the accumulation of
residual chemicals in the various links of the human food chain (see, for instance,
A l a v a n j a, H o p p i n and K a m e l [1]). The overexposure to pesticides
often leads to chronical health problems, being also associated with a general
decrease in the biodiversity of the environment, since non-target beneficial or-
ganisms are sometimes less resistant to pesticides than pests are. Also, if pests
have a quick reproductive rate, the overuse of pesticides may lead to a selection
of pesticide-resistant pest varieties. Here, by pest we shall understand any organ-
ism which is detrimental to human health or to crops, for example insects such
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as locusts or spiders, pathogens, weeds or even mammals such as mice or other
rodents.

Integrated pest management (IPM) has consequently emerged as an environ-
mentally friendly approach to pest control, based on the use of a large palette
of alternative techniques (biological, mechanical, and not only) to pest control,
pesticides being used only when they are deemed an absolute necessity. See, for
instance, K o g a n [6] for a survey on the aims and techniques of IPM. One of
the usual approaches to biological pest control is to release natural predators of
the pest to be contained, in the form of an innoculative or inundative release.
Another approach is the release of infective pest individuals, with the purpose of
establishing the endemicity of a pest disease, on the grounds that infected pests
are less likely to reproduce or to damage the environment. Sometimes, different
pests of the same crop or different subspecies of the same pest need to be regulated
simultaneously, their variable traits being in need to be considered.

Our aim is to describe an IPM strategy devised to control the spread of several
competing pest species through the release of their natural predators and through
pesticide use. The immediate jumps in the sizes of the predator species after each
predator release as well the quick action of many modern pesticides motivate the
use of a model with impulsive discontinuities. It is assumed that the amount of
predator individuals which are released each time is constant and that as a result
of pesticide use fixed proportions of pest and predator species are removed from
the environment.

Since our IPM strategy relies on the release of predators, we shall briefly review
several aspects of predator-prey interactions. A rather simple, yet useful, model
framework for the understanding of predator-prey interactions is the following
model

(1)

{
x′(t) = x(t)f(x(t))− y(t)F (x(t), y(t))− dxx(t),

y′(t) = y(t)G(x(t), y(t))− dyy(t).

In the above, x = x(t) denotes the density of the prey population and y =
y(t) denotes the density of the predator population. The function f = f(x)
represents the per capita growth rate of the prey population in the absence of
predation, while F = F (x, y) is the predator’s functional response, that is, the
number of prey individuals consumed per unit area and unit time by a single
predator, or the dependence of the prey consumption rate upon the density of
the prey. The functional response can be expressed as F (x, y) = xF1(x, y), where
F1(x, y) represents the per capita death rate of prey due to predation by a a
single predator. Accordingly, yF1(x, y) represents the per capita death rate of
prey due to predation by all predators. The function G = G(x, y) is the predator’s
numerical response, that is, the per capita growth rate of the predator population.
In many cases, G(x, y) = eF (x, y), where e is a conversion coefficient, as the
growth of the predator class directly depends on the surplus of energy acquired
through prey consumption. The constants dx and dy are the natural mortalities
of the prey and predator, respectively. If the mortality of prey is mostly due to
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predation, then dx can be neglected. Also, at least formally, the natural mortality
term dxx can be absorbed into the growth term xf(x).

2. The mathematical model and its biological
well-posedness

The previously mentioned biological considerations have lead us to the for-
mulation of the following model which describes a strategy for the control of n
competing prey (pest) species via the periodic release of a common predator and
pesticide spraying

(S)



x′i(t) = xi(t)

ri − n∑
j=1

aijxj(t)

 t 6= (n+ l − 1)T, t 6= nT ;

− xi(t)y(t)ϕi(x(t), y(t)), 1 ≤ i ≤ n

y′(t) =

n∑
i=1

eixi(t)y(t)ϕi(x(t), y(t)) t 6= (n+ l − 1)T, t 6= nT ;

− dy(t),

∆xi(t) = −δixi(t), t = (n+ l − 1)T, 1 ≤ i ≤ n;

∆y(t) = −δy(t), t = (n+ l − 1)T ;

∆xi(t) = 0, t = nT, 1 ≤ i ≤ n;

∆y(t) = µ, t = nT.

In the above model, xi = xi(t) represents the density of the (prey) species i, while
y = y(t) represents the density of the predator species and x = (x1, x2, . . . , xn)
is the vector of all prey densities. Also, (S) is understood to be a competition
model in which the constants aii are used to describe the effects of intraspecific
competition on species i, while aij , i 6= j, describes the effects of interspecific
competition between species i and j on species i. The constant ri is used to denote
the intrinsic birth rates of species i in the absence of predation and competition
and ei represents the conversion efficiency of prey consumed from species i into
newborn predators.

Regarding the effects of the biological and chemical controls, T > 0 is the
periodicity of both impulsive perturbations, while 0 < l < 1 is a parameter
used to describe the time lag lT between predator release and pesticide spraying,
which are not simultaneous. Similarly, ∆ψ(t) = ψ(t+) − ψ(t) for ψ ∈ {xi, y},
1 ≤ i ≤ n and t > 0 represent the instantaneous jumps in the prey and predator
population sizes after the use of controls. Each time the pesticides are applied,
fixed proportions δi of prey species i, 1 ≤ i ≤ n, and δ of predator species,
0 ≤ δi < 1 for all 1 ≤ i ≤ n and 0 ≤ δ < 1, are removed from the environment.
Also, µ is the constant amount of predators which are released each time.

The prey death rates ϕi : [0,∞)n+1 → [0,∞), ϕi ∈ C([0,∞)n+1), 1 ≤ i ≤ n,
are assumed to satisfy the following assumptions.
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(H1) For all 1 ≤ i ≤ n, xj → ϕi(x, y) is decreasing for xk ∈ [0,∞), k 6= j and
y ∈ [0,∞), 1 ≤ j ≤ n, and y → ϕi(x, y) is decreasing for x ∈ [0,∞)n.

(H2) For all 1 ≤ i ≤ n, xj → xjϕi(x, y) is increasing for xk ∈ [0,∞), k 6= j and
y ∈ [0,∞), 1 ≤ j ≤ n, and y → yϕi(x, y) is increasing for x ∈ [0,∞)n.

Hypotheses (H1) and (H2) are satisfied, for instance, if the functional response of
the predators species are all of Beddington-deAngelis type, for which ϕi(x, y) =

bi
1+
∑n

j=1 k
j
ixj+aiy

, or of Ivlev type, for which ϕi(x, y) = ai(1−e−kixi )
xi

, xi 6= 0,

ϕi(0, y) = aiki. In this regard, our results encompass the corresponding find-
ings in B a e k [2], Y u et. al. [9] and G e o r g e s c u [4], where the dynamics of
impulsively perturbed two-prey one-predator is discussed via similar arguments
(although [2] also discusses the effect of seasonal perturbations, our framework
can be adapted to obtain the findings therein). This investigation attempts to
extend the results presented in [4] by means of allowing for an arbitrary number
of predator species and for more general predator functional responses than those
employed in [4]. For further results on IPM strategies relying on the use of im-
pulsive biological and chemical controls, see N u n d l o l l, M a i l l e r e t and
G r o g n a r d [7], W a n g, W a n g and L i n [8].

We shall now discuss the well-posedness of (S) and state a few auxiliary results
which will be of use in what follows. First, it is possible to prove on the lines of [4,
Lemmas 3.2 and 3.3] that the Cauchy problem with strictly positive initial data
is well-posed for (S), that is, solutions (x, y) of (S) starting with strictly positive
initial data are defined on the whole R+ and are strictly positive and bounded,
with a boundedness constant not depending on the initial data.

We now introduce a few basic results regarding the Floquet theory of impul-
sive and periodic systems of ordinary differential equations which will be used in
the next section to discuss the local stability of the so-called prey-free periodic
solution. Let us consider the impulsive linear system

(2)

{
X ′(t) = A(t)X(t), t 6= τk, t ∈ R;

∆X = BkX, t = τk, τk < τk+1, k ∈ Z.

under the following hypotheses.
(A1) A(·) ∈ PC(R,Mn(R)) and there is T > 0 such that A(t + T ) = A(t) for

all t ≥ 0.
(A2) Bk ∈Mn(R), det(In +Bk) 6= 0 for k ∈ Z.
(A3) There is q ∈ N∗ such that Bk+q = Bk, τk+q = τk + T for k ∈ Z.

Let now Φ(t) be a fundamental matrix of (2). Then there is a unique nonsingular
matrix M ∈ Mn(R) such that Φ(t + T ) = Φ(t)M for all t ∈ R, which is called
the monodromy matrix of (2) corresponding to Φ. All monodromy matrices of
(2) corresponding to different Φ’s, being similar, have the same eigenvalues λ1,
λ2, . . . , λn, which are called the Floquet multipliers of (2). These eigenvalues
determine whether Φ(t) shrinks or expands with the time, as seen in the following
stability result, where by elementary divisors of a square matrix we understand
the characteristic polynomials of its Jordan blocks.
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L e m m a 1. ([3]) Suppose that conditions (A1)-(A3) hold. Then
(i) The system (2) is stable if and only if all Floquet multipliers λk, 1 ≤ k ≤ n

satisfy |λk| ≤ 1 and if |λk| = 1, then to λk there corresponds a simple
elementary divisor.

(ii) The system (2) is asymptotically stable if and only if all Floquet multipli-
ers λk, 1 ≤ k ≤ n satisfy |λk| < 1.

(iii) The system (2) is unstable if there is a Floquet multiplier λk such that
|λk| > 1.

It is easy to see that due to the pulsed supply of predators which occurs with
periodicity T , the predators are never in danger of extinction. Since there is no
such supply of prey (pests), as there is no logical reason to be, since pests need
to be removed, not raised, a possible outcome of the model is the extinction of all
prey species. When all prey species are extinct, the dynamics of the remaining
predator population is given by the solution of the subsystem

(3)


y′(t) = −dy(t), t 6= (n+ l − 1)T, t 6= nT

∆y(t) = −δy(t), t = (n+ l − 1)T ;

∆y(t) = µ, t = nT ;

y(0+) = y0.

It is seen that the system constructed with the first three equations in (3) has
a periodic solution which attracts all solutions of (3) starting with strictly posi-
tive y0, as observed in the following Lemma (Lemma 4.2 of G e o r g e s c u and
M o r o ş a n u [5]).

L e m m a 2. ([5]) The system constructed with the first three equations in
(3) has a T -periodic solution y∗d. With this notation, the following properties are
satisfied.

(i)
∫ T
0
y∗d(t)dt = µ

1−e−dT (1−δ)
[
(1− e−dlT ) + (1− δ)(e−dlT − e−dT )

]
.

(ii) lim
t→∞

|y(t)− y∗d(t)| = 0 for all solutions y(t) of (3) starting with strictly
positive y0.

(iii) sup
t≥0

∣∣∣y∗d(t)− y∗
d̃
(t)
∣∣∣ ≤ f2(d, d̃;T, a, δ), with lim

d̃→d
f2(d̃, d;T, a, δ) = 0.

The notation y∗d, which emphasizes the dependence of the solutions of (3) on
d (as opposed to the dependence on δ and µ) has been chosen since systems of
type (3) occur throughout this paper with different d’s but with the same δ and
µ. Also, one may explicitely compute y∗d, in the form

(4) y∗d =

{
µ

1−e−dT (1−δ)e
−d(t−nT ), t ∈ (nT, (n+ l)T ]

µ
1−e−dT (1−δ)e

−d(t−nT )(1− δ), t ∈ ((n+ l)T, (n+ 1)T ].

When all prey species are extinct, the system consisting of the first n + 1
equations of (S) has a periodic solution E∗ = (0, y∗d), which will be called in
what follows the prey-free periodic solution. Here, 0 = (0, 0, . . . , 0) is the null
n-dimensional vector. Although in concrete situations the desired outcome of
an IPM is not necessarily the complete extinction of all pests, as this may be
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unfeasible from a practical point of view, or may damage the ecosystem, but
the stabilization of their total population size under an economically significant
threshold called the economic injury level (EIL), it is not a large stretch of imag-
ination to interpret the success of our IPM strategy in terms of the stability
properties of E∗. That is, if E∗ is globally asymptotically stable, then the pests
can be eradicated irrespective of their initial population sizes, while if E∗ is only
locally asymptotically stable, then the pests can be eradicated only in favorable
circumstances.

3. The local and global stability results
We shall now give sufficient conditions for the local and global stability of E∗.

In what follows, we shall denote r
a = ( r1a11 ,

r2
a22
, . . . , rnann

) and εεε = (ε, ε, . . . , ε), the
latter being also a n-dimensional vector. We shall also denote

Pi(a1, a2, . . . , an, an+1) = an+1ϕi(a1, a2, . . . , an, an+1), 1 ≤ i ≤ n.
T h e o r e m 1. The prey-free periodic solution E∗ is locally asymptotically

stable if ∫ T

0

Pi(0, y
∗
d(t))dt− ln(1− δi) > riT, for all 1 ≤ i ≤ n.(5)

Further, E∗ is globally asymptotically stable if∫ T

0

Pi(
r

a
, y∗d(t))dt− ln(1− δi) > riT, for all 1 ≤ i ≤ n.(6)

P r o o f. To discuss the local stability of E∗, we shall use the method of
small amplitude perturbations. To this purpose, let us denote

xi(t) = ui(t), 1 ≤ i ≤ n, y(t) = v(t) + y∗d(t),

where ui, 1 ≤ i ≤ n, and v are understood to be small amplitude perturbations.
The linearization of (S) is then given by

(7)



u′i(t) = ui(t) [ri − Pi(0, y∗d(t))] , t 6= (n+ l − 1)T, t 6= nT,

1 ≤ i ≤ n;

v′(t) =

n∑
i=1

eiui(t)Pi(0, y
∗
d(t)) t 6= (n+ l − 1)T, t 6= nT ;

− dv(t),

∆ui(t) = −δiui(t), t = (n+ l − 1)T, 1 ≤ i ≤ n;

∆v(t) = −δv(t), t = (n+ l − 1)T ;

∆ui(t) = ∆v(t) = 0, t = nT, 1 ≤ i ≤ n.
We need now study the stability of the null solution of (7). Let ΦL be a funda-
mental matrix of the differential system constructed with the first n+1 equations
of (7). Consequently, ΦL satisfies

dΦL
dt

(t) = A(t)ΦL(t),
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where

A(t) =


r1 − P1(0, y∗d(t)) 0 . . . 0 0

0 r2 − P2(0, y∗d(t)) . . . 0 0
...

... . . .
...

...
0 0 . . . rn − Pn(0, y∗d(t)) 0

e1P1(0, y∗d(t)) e2P2(0, y∗d(t)) . . . enPn(0, y∗d(t)) −d

 .

Here and in what follows we have used the notations

Pi(a1, a2, . . . , an, an+1) = an+1ϕi(a1, a2, . . . , an), 1 ≤ i ≤ n.

A fundamental matrix ΦL of (7) which satisfies ΦL(0) = In+1 is a lower triangular
matrix with

(ΦL(t))i,i = e
∫ t
0
ri−Pi(0,y

∗
d(s))ds, 1 ≤ i ≤ n,

(ΦL(t))n+1,n+1 = e−dt.

Since
ui(t+) = (1− δi)ui(t), v(t+) = (1− δ)v(t),

for t = (n+ l − 1)T+, and

ui(t+) = ui(t), v(t+) = v(t),

for t = nT , the monodromy matrix

M = diag[1− δ1, 1− δ2, . . . , 1− δn, 1− δ]ΦL(T )(8)

is also lower diagonal. Its eigenvalues, found on the main diagonal, are

λi = (1− δi)e
∫ T
0
ri−Pi(0,y

∗
d(t))dt > 0; 1 ≤ i ≤ n

λn+1 = (1− δ)e−dT .

As λn+1 ∈ (0, 1) and λi > 0, 1 ≤ i ≤ n, it follws that E∗ is locally asymptotically
stable provided that (5) holds.

We shall now prove that E∗ is globally asymptotically stable provided that (6)
holds. To this purpose, let us choose ε > 0 such that

ξi = (1− δi)e
∫ T
0
ri−Pi( r

a+εεε,y
∗
d(t)−ε)dt < 1 for all 1 ≤ i ≤ n.

Since y′(t) ≥ −dy(t), it follows from the comparison lemma for systems of impul-
sively perturbed ordinary differential inequalities (see [3]) that y(t) ≥ y1(t) for all
t ≥ 0, where y1 satisfies

(9)


y′1(t) = −dy1(t), t 6= nT, t 6= (n+ l − 1)T ;

∆y1(t) = −δy1(t), t = (n+ l − 1)T ;

∆y1(t) = µ, t = nT ;

y1(0+) = y(0+).

It then follows from the properties of y∗d listed in the Lemma above that y(t) ≥
y∗d(t)− ε for t large enough; for the sake of simplicity, let us suppose that y(t) ≥
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y∗d(t) − ε for all t ≥ 0. Let now 1 ≤ i ≤ n. Similarly, since x′i(t) ≤ xi(t)(ri −
aiixi(t)), it follows that xi(t) ≤ x1i(t) for all t ≥ 0, where x1i satisfies

(10)


x′1i(t) = x1i(t)(ri − aiix1i(t)), t 6= (n+ l − 1)T ;

∆x1i(t) = −δix1i(t), t = (n+ l − 1)T ;

x1i(0+) = xi(0+).

Since lim sup
t→∞

x1i(t) ≤ ri
aii

, it then follows that xi(t) ≤ ri
aii

+ε for t large enough;

for the sake of simplicity, let us suppose that xi(t) ≤ ri
aii

+ ε for all t > 0. By the
monotonicity assumptions on ϕi, it is seen that{

x′i(t) ≤ xi(t)
[
ri − Pi

( r
a

+ εεε, y∗d(t)− ε
)]
, t 6= (n+ l − 1)T ;

xi(t+) = (1− δi)xi(t) t = (n+ l − 1)T.

By integrating the above inequality on ((n+ l − 1)T, (n+ l)T ], it is seen that

xi((n+ l)T ) ≤ xi((n+ l − 1)T )(1− δi)e
∫ T
0
ri−Pi( r

a+εεε,y
∗
d(t)−ε)dt,

that is, xi((n + l)T ) ≤ xi((n + l − 1)T )ξi. Then xi((n + l)T ) ≤ xi(lT )ξni and
consequently

(11) xi((n+ l)T )→ 0 for n→∞.

Since

0 < xi(t) < xi((n+ l − 1)T )eriT for t ∈ ((n+ l − 1)T, (n+ l)T ]

it follows from (11) that xi(t)→ 0 for t→∞.
We now prove that y(t)− y∗d(t)→ 0 as t→∞. To this purpose, let us denote

dε′ = d−
n∑
i=1

eiε
′ϕi(0, . . . , ε

′, . . . , 0, 0)

and let us choose ε′ such that dε′ > 0. Since xi(t)→ 0 for t→∞, it follows that
there is T̃ > 0 such that 0 < xi(t) < ε′ for t ≥ T̃ and 1 ≤ i ≤ n; without loss of
generality, we may suppose that

0 < xi(t) < ε′ for t ≥ 0 and 1 ≤ i ≤ n.

One then has

−dy(t) ≤ y′(t) ≤ −dε′y(t)

for t 6= (n+ l − 1)T , t 6= nT . Let us denote

ỹ∗ = y∗dε′ .

Using a comparison argument, it follows that y1(t) ≤ y(t) ≤ y2(t) and y1(t) −
y∗d(t) → 0, y2(t) − ỹ∗(t) → 0 as t → ∞, where y1 is as defined in (9) and y2 is
defined through a system similar to (9) with d replaced by dε′ .

Let now ε1 > 0. It follows that

y∗(t)− ε1 ≤ y(t) ≤ ỹ∗(t) + ε1
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for t large enough. Since sup
t∈[0,T ]

|y∗d(t)− ỹ∗(t)| → 0 for ε′ → 0 and ε1 is arbitrary,

it follows that y(t) − y∗d(t) → 0 as t → ∞, which ends the proof of the global
stability result. �

4. The permanence of the system

We shall now study the permanence of (S). To this purpose, we introduce the
following definition.

D e f i n i t i o n 1. The system (S) is said to be permanent (uniformly
persistent) if there are m, M > 0 such that for each solution of (S) with strictly
positive initial data x(0), y(0), z(0), it follows that there is T0 > 0 such that
m ≤ x(t), y(t), z(t) ≤ M for all t ≥ T0. Here, T0 may depend upon the initial
data, but m and M do not.

In biological terms, if (S) is permanent, then the pests and the predator will
coexist forever without facing extinction or growing indefinitely. Obviously, the
permanence of (S) excludes any kind of stability of the prey-free periodic solution
and it is associated with a failure of our IPM strategy

T h e o r e m 2. The system (S) is permanent provided that

d >
∑
j 6=i

ej
rj
ajj

ϕj(0, . . . ,
rj
ajj

, . . . , 0, 0), for all 1 ≤ i ≤ n.(12)

and ∫ T

0

Pi(0, y
∗
d(t))dt− ln(1− δi) <

ri −∑
j 6=i

aij
rj
ajj

T, for all 1 ≤ i ≤ n.(13)

P r o o f. Suppose that (x(·), y(·)) is a solution of (S) which starts with
strictly positive initial data x(0), y(0). As previously noted, there is a constant
M > 0 not depending on the initial data such that xi(t) ≤M , y(t) ≤M for t ≥ 0
and all 1 ≤ i ≤ n. Also, as done above, we note that y(t) > y∗(t)− ε′ for t large
enough, for all ε′ ∈ (0, µe−dT (1−δ)

1−e−dT (1−δ) ). Consequently, y(t) ≥ my for t large enough,
where

my =
µe−dT (1− δ)

1− e−dT (1− δ)
− ε′

and ε′ is fixed as indicated above.
We then only need to find m1,m2, . . . ,mn > 0 such that xi(t) ≥ mi for t large

enough and all 1 ≤ i ≤ n. First, let us choosem1,m2, . . . ,mn and ε small enough,
so that

mi <
ri
aii

+ ε,(14)

d > eimiϕi(0, . . . ,mi, . . . , 0, 0)(15)

+
∑
j 6=i

ej
rj
ajj

ϕj(0, . . . ,
rj
ajj

+ ε, . . . , 0, 0),
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for all 1 ≤ i ≤ n and

θi = (1− δi)e
∫ T
0
ri−aiimi−

∑
j 6=i aij

(
rj
ajj

+ε
)
−Pi(0,y

∗
1i(t))dt > 1

for all 1 ≤ i ≤ n, where

y∗1i = y∗
d−eimiϕi(0,...,mi,...,0)−

∑
j 6=i ej

rj
ajj

ϕj(0,...,
rj
ajj

+ε,...,0)
.

We first prove that there are t1, t2, . . . , tn > 0 such that xi(ti) ≥ mi for 1 ≤
i ≤ n. We shall argue by contradiction. Suppose that x1(t) ≤ m1 for all t > 0.

Let us choose η1 > 0 such that

θ′1 = (1− δ1)e
∫ T
0
r1−a11m1−

∑
j 6=1 a1j

(
rj
ajj

+ε
)
−Pi(0,y

∗
11(t)+η1)dt > 1.

One then has

y′(t) ≤ −y(t)

d− eimiϕi(0, . . . ,mi, . . . , 0, 0)

+
∑
j 6=i

ej
rj
ajj

ϕj(0, . . . ,
rj
ajj

+ ε, . . . , 0, 0)


for t 6= (n+ l − 1)T , t 6= nT , while

y(t+) = (1− δ)y(t) for t = (n+ l − 1)T, y(t+) = y(t) + µ for t = nT.

Consequently, there is n1 ∈ N such that y(t) ≤ y∗1 +η1 for t ≥ n1T . One then has

x′1(t) ≥ x1(t)

r1 − a11m1 −
∑
j 6=1

a1j

(
rj
ajj

+ ε

)
− Pi(0, y∗11(t) + η1)


for t 6= (n+ l)T , t ≥ n1T , while

x1(t+) = (1− δ1)x1(t) for t = (n+ l − 1)T.

By integrating the above on ((n+ l − 1)T, (n+ l)T ], n ≥ n1 + 1, one sees that

x1((n+ l)T ) ≥ x1((n+ l − 1)T )θ′1.(16)

Consequently, x1((n + k + l)T ) ≥ θ′1
k
x((n + l)T ) → ∞ as k → ∞, which is a

contradiction, since x1(t) ≤ m1 for all t ≥ 0. As a result, there is t1 > 0 such
that x1(t1) > m1. The same argument can be used to establish the existence of
t2, . . . , tn.

If x1(t) ≥ m1 for all t ≥ t1, there is nothing left to prove. Otherwise, x1(t) <
m1 for some t > t1. Let us denote s1 = inf {t > t1;x1(t) < m1}. If s1 6= (n+ l −
1)T , then x1(s1) = m1. If s1 = (n + l − 1)T , then not necessarily x1(s1) = m1,
but x1(s1) ∈

[
m1,

m1

1−δ1

]
. Note that it is not possible that x1(s) < m1 for all

s > s1, so necessary x1(t) ≥ m1 for some t ≥ s1. By a similar argument, one may
construct a sequence (sn)n≥2 such that

(1) x1(s2k+1) ∈ [m1,
m1

1−δ1 ], x1(s2k) = m1.
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(2) x1(s) ≤ m1 for s ∈ (s2k+1, s2k+2).
(3) x1(s) > m1 for s ∈ (s2k, s2k+1),

showcasing the fact that x1 oscillates about m1.
We now show that T = sup {s2k − s2k−1; k ∈ N∗} < ∞. Suppose that this is

not the case. Then there is (kj)j≥1 such that s2kj − s2kj−1 > jT . Consequently,
in a way similar to the derivation of (16), it follows that

x1(s2k) ≥ x1(s2k−1)θ′1
j+2

e−2r1T ,

which is a contradiction, as θ′1
j+2 → ∞ for j → ∞ and x1(s2k) = m1. It then

follows that

x′1(t) ≥ x1(t)

r1 − a11m1 −
∑
j 6=1

a1j

(
rj
ajj

+ ε

)
− Pi(0,M)


for t ∈ (s2k+1, s2k+2), and consequently

x(s) ≥ m̃1 for s ∈ (s2k+1, s2k+2),

where

m̃1 = m1e

[
r1−a11m1−

∑
j 6=1 a1j

(
rj
ajj

+ε
)
−Pi(0,M)

]
T
.

Putting m1 = min (m̃1,m1), it follows that x1(t) ≥ m1 for t large enough, so
the x1-population is permanent. By a similar argument, one may prove that the
other prey populations are permanent, which ends the proof of the permanence
result. �

From the proofs of Theorems 1 and 2, it can also be seen that the following
partial permanence result holds.

C o r o l l a r y 1. Let (x(·), y(·)) be a solution of (S) starting with strictly
positive initial data and let I be a subset of {1, 2, . . . , n}. Then the predator and
all prey species i for which i ∈ I are permanent, while the other prey species tend
to extinction provided that

d >
∑
j 6=i

ej
rj
ajj

ϕj(0, . . . ,
rj
ajj

, . . . , 0, 0), i ∈ I.

and ∫ T

0

Pi(0, y
∗
d(t))dt− ln(1− δi) <

ri −∑
j 6=i

aij
rj
ajj

T, i ∈ I,

∫ T

0

Pi(
r

a
, y∗d(t))dt− ln(1− δi) > riT, i 6∈ I.
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5. Biological significance and concluding remarks
Let us rewrite the equation describing the dynamics of the i-th pest species as

x′i(t) = xi(t)

ri − n∑
j=1

aijxj(t)− y(t)ϕi(x(t), y(t))

 .
It is seen that the integral

∫ T
0
Pi(0, y

∗
d(t))dt, equal to

∫ T
0
y∗dϕi(0, y

∗
d(t))dt, approx-

imates the per capita loss of pest species i in a period T due to predation when
this species approaches extinction and riT approximates the per capita growth
of the same species in the same conditions. The term − ln(1− δi) represents the
per capita loss of pest species i due to pesticide spraying.

Consequently, when all prey populations approach extinction and the local
stability condition (5) holds, their size losses in a period exceeds their growths in
the same amount of time and they cannot escape extinction. The significance of
(6) is similar, but this time, in order to be able to drive to extinction the pest
species under any circumstances, the predation should be larger even at higher
pest densities, where saturation occurs.

As far as the significance of the permanence condition is concerned, condition
(12) expresses the fact that the death rate of the predator class is large enough,
so that the size of the predator class does not grow too large to impair upon
the survival of the prey species. Also, condition (13) asserts that predation on
species i is weak even in unfavorable circumstances, when the other prey species,
competing with species i, reach the carrying capacity of the environment.
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ASUPRA CONTROLULUI IMPULSIV AL UNUI LANŢ TROFIC
CU N SPECII DE PRADĂ ŞI O SPECIE DE RĂPITOR

(Rezumat)

Lucrarea de faţă studiază dinamica unui lanţ trofic cu n specii de pradă şi
o specie de răpitor , care este supus la metode de control de tip impulsiv, din
punct de vedere al găsirii unor condiţii suficiente pentru extincţia prăzii şi pentru
permanenţa prăzii şi a răpitorului. Cu ajutorul teoriei Floquet a sistemelor de
ecuaţii diferenţiale ordinare perturbate impulsiv, stabilitatea locală şi globală a
aşa-numitei soluţii periodice libere de pradă sunt obţinute în termenii unor condiţii
integrale cu semnificaţie biologică. Permanenţa totală şi parţială a sistemului sunt
de asemenea investigate folosind condiţii similare.




