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This paper deals with an impulsive predator-prey model with Beddington—-DeAngelis
functional response and time delay, in which the evolution of the predators takes them
through two stages, juvenile and mature. It is assumed that only mature predators
are able to hunt for prey and reproduce and the time delay is understood as being
the time spent by the juvenile predators from birth to maturity. It is first seen that
the dynamics of the model can be completely determined through the use of a reduced
system consisting of the equations for prey and mature predators, respectively. Using the
discrete dynamical system determined by the stroboscopic map, one first determines the
mature predator-free periodic solution of the reduced system. By means of comparison
techniques, one then deduces sufficient criteria for the global stability of the mature
predator-free periodic solution and for the permanence of the reduced system, which
yield similar properties for the initial system. As a result, it is observed that time delay
and pulses have a crucial effect upon the dynamics of our model.
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1. Introduction

Generally, predator-prey models take the following very general form, indicated by
Yodzis in [1]

N’ = f(N) — PF(N, P),
P’ = PG(N, P),

where N = N(t) and P = P(t) represent the sizes of the prey population and of the
predator population, respectively, at time ¢. The function f = f(INV) characterizes
the growth rate of the prey population in the absence of predation, the function
F = F(N, P) describes the predator’s functional (behavioral) response, that is, the
dependence of its per capita consumption rate upon the sizes of the prey and preda-
tors classes, respectively, and the function G = G(N, P) describes the predator’s
numerical response, that is, the per capita growth rate of the predator population,
again as a function which depends on the sizes of both population classes.

To elaborate upon the functional and numerical response of the predator, it is
important to characterize the way in which the predators interact with one another.
In some situations, especially at low predator densities, it can safely be assumed
that predators do not interfere and consequently their functional and numerical
responses depend upon the size of the prey population only, that is, F' = F(N),
G = G(N). Following the terminology given in Arditi and Ginzburg in [2] or in
Huisman and DeBoer [3], this sort of model is called prey-dependent.

However, as seen above, prey-dependent functional responses fail to model the
interference among predators or, although less likely, the cooperation which is
sometimes achieved, and have been facing challenges from biologists and physi-
ologists [2-6]. In the general case F' = F'(N, P), G = G(N, P), this sort of model is
called, following again [2,3], predator-dependent, or, in the particular case in which
F and G are functions of the prey-to-predator abundance, that is, F' = F(N/P),
G = G(N/P), ratio-dependent.

There is much significant evidence to suggest that predator dependence in the
functional response occurs quite frequently in laboratory and natural systems (see,
for instance, Jost and Ellner [7] or Skalski and Gilliam [8]) and due to large num-
bers of experiments and observations, the models with predator-dependent func-
tional response stand as reasonable alternatives to the models with prey-dependent
functional response. Arditi and Ginzburg [2] first proposed and investigated the
following ratio-dependent predator-prey model:

cNP
mP + N’
fNP
mP+ N’

N’ = N(a—bN) —

P'=—dP+
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Note that the above model is a result of replacing the Holling type II prey-dependent
functional response N/(m + N) with a ratio-dependent one (N/P)/(m + N/P).

The Beddington-DeAngelis functional response F' = % was originally
introduced by Beddington [9] and DeAngelis [10], independently, and actually for
different reasons. This functional response has some qualitative features of the ratio-
dependent functional responses but keeps away from the “low densities problem”
which has been a source of controversy. Specifically, for P — 0, the attack rate of
ratio-dependent predators tends to oo, that is, such predators become unreasonably
efficient.

As noted by Skalski and Gilliam in [8], predator-dependent functional responses
can provide better descriptions of predator feeding than prey-dependent func-
tional responses over a range of predator-prey abundances, and in some cases the
Beddington—-DeAngelis functional response performed best. An experimental awk-
ward fact is that although the predator-dependent models that they considered fit
those data reasonably well, no single functional response best describes all the data
sets.

The original predator—prey model with Beddington—DeAngelis functional
response has the form:

x’:x(r—g)—iowy
k a+bx+cy’

(1.1)
a+bxr+cy

Motivated by this system, many scholars proposed and studied models consisting of
ordinary or functional differential equations incorporating Beddington—DeAngelis
type functional responses. For instance, in his papers [11,12], Hwang showed that
the interior equilibrium of the above system is globally stable provided that it
is locally asymptotically stable. Further, he obtained sufficient conditions for the
uniqueness of limit cycles of the system. Motivated by the work of Beretta and
Kuang [14], Liu and Yuan [13] considered the situation in which the numerical
response term appearing in the predator equation of (1.1) contains a delay term
7, which can be regarded as a gestation period or reaction time of the preda-
tors. Further, incorporating a stage structure for the predator population, Liu and
Beretta [15] proposed and studied the case in which a time delay 7 appears in the
response term of the immature predator equation as well as in the mature predator
equation. Here, 7, dissimilar to the above delay, represents the time taken from
birth to maturity. The stability of the interior equilibrium, the permanence of the
system and conditions for the delay-induced stability switch were also considered
in [16, 17]. Since biological and environmental parameters are naturally subject
to fluctuation in time. In order to describe the model more accurately, Fan and
Kuang [18] studied the dynamics of a nonautonomous, periodic (almost periodic)
predator-prey system with Beddington—-DeAngelis functional response by using the
coincidence degree theory, as proposed by Gaines and Mawhin [21].
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From the above-mentioned brief literature survey, it may be noted that the
effect caused by the periodic impulsive perturbation of the prey population on the
dynamics of the stage-structured predator-prey model with Beddington-DeAngelis
functional response and time delay has not been modeled and analyzed. The aim of
this paper is to model and explain this phenomenon from a mathematical viewpoint.
More precisely, hunting and harvesting usually occur seasonally or yearly, with
fixed periodicity, and as a result the prey population decreases significantly over a
short period of time. That is, hunting and harvesting can be modeled, up to some
extent, as occurring in periodic pulses. As a result, the dynamics of the system is
considerably affected in a way which is worthy of further study.

The paper is organized in the following manner. In Sec. 2, we propose the model
to be studied and give certain preliminary boundedness and comparison results.
In Sec. 3, we discuss the global attractivity of the predator-free positive periodic
solution. Sufficient conditions for the permanence of the model are obtained in
Sec. 4. In the final section, we present some numerical experiments to illustrate
our results. A brief discussion of the biological significance of our findings is also
provided.

2. Preliminaries

In this paper, we denote by x(t) the size of the prey population. Also, the predator
population is divided into juvenile and mature classes, with the size of each class
given by y;(t) and y(t), respectively. The model we shall study has the form:

¥ (1) = 2(0)9(2(t)) — T
V(0 = L) — () AR
Vi) = rrb i — Pt S — dis (o) |
Ax(t) = —pa(t), t = kT,
with initial conditions
(@(t),y(1), y5(t) = (p1(t), pa(t), ps(t)) € CF
for t € [-7,0],:;(0) >0, i=1,2,3, (2.2)

fO d;0 Bbp1(0)e2(8)
T 1+ Eipi(0) + kapa(0)

©3(0) =
in which,
C; = C([_T’ 0]7 Ri)7

where Ri = {(21722,23) oz >0, 1 = 1,273} and 7,7 > 0. Here, Az(t) =
z(tT) — z(t). The following assumptions are made for deriving the mathematical
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model:

(A1) In the absence of predation, the dynamics of the prey population follows the
logistic law of growth with intrinsic growth rate r and carrying capacity %,
ie. zg(x) = z(r — cx).

(Ag) Juvenile predators are raised by their parents because of their weakness. More-
over, they cannot breed.

(A3) The parameter T represents a constant maturation time which, from a math-

ematical point of view, introduces a delay in our model. The product term
ﬂbefd-fTw(t—T)y(t—T)
1+kiz(t—7)+kay(t—T)
to the mature class.

(A4) The prey population is subject to a perturbation which causes its proportional
reduction, with reduction parameter p (0 < g < 1). This proportional reduc-
tion can be interpreted as hunting (or harvesting) with a constant hunting

denotes the movement of the young predator population

(or harvesting) effort.

(As) The positive constants b and k; represent the effects of capture rate and han-
dling time, respectively, on the feeding rate; § > 0 is the birth rate of the
predator and ks > 0 is a constant describing the magnitude of the inter-
ference among predators. The positive constants d and d; denote the death
rates of the mature predator population and immature predator population,
respectively.

Next, we shall introduce some notations and definitions and state some prelim-
inary results. Let J C R. We introduce the following spaces of functions:

PC(J,R) = {u :J — R : u is continuous at ¢t € J, t # 7%, continuous from the
left at ¢t € J, and has discontinuities of the first kind at the points
wed ke N}, and

PCY(J,R)={u € PC(J,R) : u is continuously differentiable at t € J, t # 7;
u'(7;7) and o/(7;, ) exist, k € N}.

Definition 2.1. A map X: [—7,00) — R™ is said to be a solution of the Cauchy
problem

{X/(t) =f(t,X(t),X(t—71)), t#kT, k€N, 23)

AX(KT) = I (X (KT)), X(0) = X,
if it satisfies the following conditions:

(H1) X(t) is continuous on [0,7] and on each interval (T, (k + 1)T], k € N.
The points {kT'}, k € N, are discontinuities of the first kind for f, f being
continuous at the left of each point.

(H2) X(t) satisfies the former n equations of the system (2.3) on [0,00)\{kT, k €
N} and satisfies the latter equations for every t = kT, k € N.
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Denote f = (f,1fs,...,f,) the map defined by the right-hand side of the first n
equations in the system (2.3). Let V: Ry x R® — R,. Then V € V} if

(i) V is continuous on (tx,tr+1] x R™ and for each X ¢ R}, k € N,

lim  V(t,2) =V(t,X)
(t,2)= (. X)

exists.

(ii) V is locally Lipschitzian in the second variable.

Definition 2.2. If V € V}, then for (¢, X) € (tk, tx+1] x R™, the upper right time
derivative of V(t, X) with respect to the system (2.3) is defined as

DIV (t,X) = lim, sup%[V(t + R X 4 hf(t X)) — V(5 X)),

The proofs of the following comparison and estimation lemmas are obvious.

Lemma 2.3. Suppose that X (t) is a solution of the system (2.1) with initial con-
ditions (2.2). Then X(t) > 0.

Lemma 2.4 [19]. Let V: R, x R" = R} and V € V). Assume that

DTV, X(1) < (2)a(t, V(L X(1)), t# bk,

VIEX(ET) < (2)W(VEXD)),  t=tr keN,

X(0%) = Xo,
where g : Ry x R} — R™ is continuous on (ty,tx+1] X R and for each v €
R?, keN

li t,z) = g(kT™
(t,z>_>1(1}§T+,v>g(’Z) g(kT™,v)

exists and is finite, g(t,U) is quasimonotone nondecreasing in U and ¥y : R} —
R’ are nondecreasing. Let R(t) = R(t,0,Uy) be the maximal solution of the scalar
impulsive differential equation

U'(t) = a(t,U), t # kT,
UtT) = (U(1)), t=kT, (2.4)
U0t) =0y >0,
exzisting on [0,00). Then V (01, Xo) < (>)Uy implies that

V(t,X(t) < (2)R(t), t=>0,
where X(t) is any solution of (2.3) existing on [0, 0).

Note that if we have sufficient smoothness conditions on g to guarantee the
existence and uniqueness of solutions for (2.4), then R(t) is the unique solution
of (2.4).
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Lemma 2.5 [20]. Let the function u € PC*(R4,R) satisfy the inequalities
u'(t) < (Z)p()ult) +£(t), t# 7k, >0,
u(ry) < (>)dgu(y) + by, 7 >0,
u(rg") = u(0%) < uo,

where p, £ € PC(R4,R) and di, > 0, hy, and ug are constants. Then, fort > 0,

o II dkeXp(/ p(s )d>

0<7'k<t

/ 11 dkexp</p dT)

s<TR<t

+ > II diexp (/ p(T)dT) hi.

0<Tp<t \Tp<7; <t
Under these circumstances, it can be shown that the positive solutions of (2.1)

are bounded, the fact which is accomplished in the following lemma.

Lemma 2.6. There ezists a constant M > 0 such that x(t) < M,y;(t) < M and
y(t) < M for each positive solution (x(t),y(t),y;(t)) of the system (2.1) and t large
enough.

Proof. Let N(t) = x(t) + %(yj (t)+y(t)). Since N € Vp, by a simple computation,
we have

%(djyj(t) +dy(t)), te kT, (k+1)T).

Obviously, from (Aq), it is easy to see that there exists a constant A > 0 such that

D+N|(2.1) = zg(z) —

D+N\(2_1) + 0N <\, t € (kT,(k+1)T], for k large enough,
where 0 = min{d,d;}. When ¢t = kT, we get
N(kTt) < N(KT).

According to Lemma 2.5, applied for 7, = kT, we obtain

_ t _
N(t) < N(0)e™® —|—/ e 009 g
0

— = ast — oo.

Let M = max{’\ A A} Therefore, by the definition of N(t), we derive that each
positive solution of system (1.1) is uniformly ultimately bounded with ultimate
boundedness constant M. This completes the proof. O
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A very important notion, with immediate biological significance, is that of uni-
form persistence (permanence), defined as follows.

Definition 2.7. The system (2.1) is said to be uniformly persistent (permanent)
if there are constants m; > 0 (¢ = 1,2,3) and a finite time Ty depending on
my, ma, mg, but not on the initial data, such that every positive solution z(t) =
(z(t),y(t),y;(t)) € RY of this system with initial conditions (2.2), satisfies

z(t) > ma, y(t) > me, y;(t) >mg forall ¢t > Ty.
Due to the boundedness lemma proved above, this definition is equivalent to

the following.

Definition 2.8. The system (2.1) is said to be uniformly persistent (permanent) if
there exists a compact region D C intR:o’i_ such that every solution of system (2.1)
with initial conditions (2.2) will eventually enter and remain in the region D.

Finally, we indicate an exponential estimation which shall be used in the fol-
lowing for proving asymptotic stability results.

Lemma 2.9 [22]. Let ty be a real number and 19 be a nonnegative number. If
m : [to — 70, 00) — [0,00) satisfies

m(t) < —pmf(t) + g[ sup m(s)} for t >y,
t—T10<s<t

and if p > p > 0, then there exist positive numbers v and k such that
m(t) < e ) for t > .
Before going into any detail, we need to simplify the model (2.1). Since
b (h) = / e n Jf lf((f))i(? @
t—7 1 2Y

i.e. y;(t) is completely determined by x(¢), y(¢), we may restrict ourselves to the
following reduced model:

_ bx(t)y(t
z'(t) = x(t)g(a:(t)) - ma t kT

_ Bbe T z(t—T1)y(t—7) ’
y,(t) - 1+k1x(t—7')+k2yy(t—7') o dy(t)’ (25)
x(tT) = (1 — pwa(t), t=kT.

3. Mature Predator-Free Periodic Solution
3.1. Existence
Consider the following case in which y(¢) = 0 in (2.5):
{ 2/ (t) = z(t)(r —cx(t)), t+#kT,

(3.1)
Ax(t) = —px(t), t=kT
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After a few computations, we then derive the following lemma;:

Lemma 3.1. Assume that p < p* =1—e~"1. Then the system (3.1) has a unique
positive periodic solution x*(t) which is globally asymptotically stable, expressed as

tl-p—eT)

IL’ (t) = 1— - e—rT + 'ue—r(t—(n—l)T)’

te((n—1)T,nT], n e N*.

The proof of Lemma 3.1 is trivial and may be done by solving the first equation of
the system (2.5) between pulses and using the discrete dynamical system determined
by the stroboscopic map. We then omit it.

Consequently, the system (2.5) has a mature predator-free periodic solution

(z*(1),0).

3.2. Global attractivity
From (2.5), one notes that
2'(t) <az(t)(r —cx(t)), t#kT,
Ax(t) = —px(t), t=kT.

Then, by using Lemma 3.1, we obtain that for each arbitrary small positive constant
e, there exists a positive integer ny such that for all ¢ > n, T,

x(t) <z (t) +e.
As a consequence, for all t > niT + 7, we have

L (1 ol e’TT)
zt—7)<z*(t—7)+e<-E

[
Further, in view of (3.2) and the second equation of (2.5), we have that for all
t Z TL1T -+ T,

+e=n+e. (3.2)

Bbe= 7 (n + e)y(t — 1)
1+ki(n+e)

y'(t) < — dy(t). (3.3)

According to the above analysis, the following result is easily derived.

Theorem 3.2. Assume that p < p* =1—e "1 If

Bbe=%Tn

R, —
! 1+ kin

<d,
then the mature predator-free periodic solution (x*(t),0) is globally attractive.

Proof. Let ¢ > 0 be such that

Bbe~ LT (n+ ¢)

<d.
1+k1(7]+€)
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Consider the comparison equation

Bbe~ LT (n+¢€) z(t —7)
14+ Kk (77 + 6)

2 (t) = —dz(t).
According to the conditions of Theorem 3.2 and with the help of Lemma 2.9, one
obtains that

lim z(¢) = 0.

t—o0o

Since y(s) = z(s) = @a(s) > 0 for all s € [1,0], by a comparison argument,
we have
limsup y(¢) < limsup z(¢) = 0.
t—o0 t—o0

Using the positivity of y(t), we then obtain that lim;_, ., y(t) = 0.

Therefore, for any sufficiently small €;(0 < €1 < 7), there exists an integer
ng > ny such that y(t) < e for all ¢ > noT > nyT + 7.

From the first equation of the system (2.5), we obtain

(1) (7” - #k;q - cx(t)) <z'(t) <z(t)g(z(t)), t#KkT.

From Lemmas 2.4 and 3.1, there exists a n3(> ng) such that z1(t) < x(t) < x2(t)
as t > ngT and z1(t) — z(t) — 0, 22(t) — 2*(t) — 0 as ¢ — oo, where x;(t) and
xo(t) are, respectively, the solutions of

@ (t) = 21 (t) (r - % - cxl(t)> . tA£KT,
Ay (t) = —pas (0), t= kT,
21(0%) = x9
and
(t) Ba(O)g(wa(t)), ¢ KT,
za(t) = —uwz( ), t=KkT,
( )=
while

r— 1+bl:;el (1 _ ,LL _ 6—(7‘—%)7—')
=) = BT
l—p—e TFh2er )t 4 e Thkoer

t—(n—1)T)’

(n=1)T <t<nT, n>ns.

Therefore, for any 1 > 0 we have Z(t) — 1 < z(t) < 2*(t) + &1 for ¢t large enough.
For e; — 0, we get Z(t) — x*(t). Hence z(t) — x*(t) as t — oo. This completes the
proof. O
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From the above, one may easily obtain the following result

Corollary 3.3. The mature predator-free periodic solution (x*(t),0) of the sys-
tem (2.5) is globally attractive provided that one of the following conditions
holds:

(I) Ry <d, where Ry = ﬁbki

(II) Ry >d and £ < O(1 —e™"™), where © = m.

1-0¢)(1—e "7
(III) Ry >d,% > O(1 — e and p > ., where p, = (1_@%)&—_6_ﬁ)).

Remark 3.4. Considering the pulses-free case in the system (2.5), one notes from

[15] that if R = %25 < d holds, then limy . ((t), (1)) = (£,0). After adding
the periodic impulsive perturbations of the prey population, we first consider for
the new system the dynamics of the boundary periodic solution (z*(t),0) which
corresponds to the trivial equilibrium (Z,0) of the pulses-free system. It is easy to
see that for 4 — 0 one has that n — £, so 1 — R and we obtain the persistence
result given in [15] from Theorem 3.2. Obviously, a similarity among R, p* and
R;(i = 0,1) is that these critical values are independent of the effect of kg, which

introduces a self-limiting term into the predator equation.

Remark 3.5. The fraction ; f’;’l’%l approximates the mature predator’s numeri-
cal response when (x(t),y(t)) is near the mature predator-free periodic solution
(x*(t),0), while e~%7 is a correction term incorporating the “degree of stage struc-
ture” d;7, named as such by Liu et al. [23], meant to describe the loss of juve-
nile predators due to through-stage mortality. In this regard, Theorem 3.2 can be
interpreted as if few predators introduced into an environment stabilized at the
periodic mature predator-free solution cannot reproduce fast enough, compensat-
ing through-stage mortality, as described by the degree of stage structure, then the

mature predator-free periodic solution is globally asymptotically stable.

Remark 3.6. It is interesting to note that, as far as the effect of the delay 7 is
concerned, a large delay 7 may always stabilize the predator-free equilibrium by
bringing Ry below d, as seen from (I) of Corollary 3.3. Also, from (II) of Corol-
lary 3.3, it is seen that the systems with low resources (£ < ©(1 —e~"")) are more
likely to be stabilized to the mature predator-free periodic solution. Having also in
view (III) of Corollary 3.3, it is seen that increasing the carrying capacity of the
system may destabilize an otherwise stable mature predator-free periodic solution,
which is certainly conceivable from a purely biological point of view.

Remark 3.7. Clearly, one notes that the global attractivity of juvenile and mature
predator-free periodic solution (z*(t),0,0) of the system (2.1) is equivalent to the
global attractivity of mature predator-free periodic solution (x*(t),0) of the system
(2.5). Its biological implication is that under the determinable carrying capacity of
the prey population and suitable periodic harvesting or hunting rate, the predator
population vanishes in time.
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4. Permanence

Uniform persistence (or permanence) is an important property of systems arising in
ecology, epidemics, population dynamics and not only. It is actually a concept which
is important in itself, addressing the long-term survival of some or all components
of a system. In this section, we focus our attention on the permanence of the
system (2.5).

In the following, we first consider the single species model with delay described

below:
, ayv(t — v)
t) = ——F—"— — t 4.1
) = e ) (1)
where a;(i = 1,2,3,4) and v are positive constants. Obviously, v(t) is strictly
positive if
v(t) = ¢(t) > 0 for ¢t € [—v,0]. (4.2)

The following lemma is an application of [17, Chap. 4, Theorem 9.1].

Lemma 4.1. Equation (4.1) has a unique positive equilibrium v* = %, which
s absolutely globally asymptotically stable provided that a; > asay.

Here, the absolute global asymptotic stability of v* means that v* is globally
asymptotically stable for all v > 0. We now start investigating the permanence
of the system (2.5). Let € > 0 be an arbitrary positive constant. Recalling (3.2),
together with the second equation of (2.5), one notes that there exists a ngy > ng
such that for ¢ > n,T,

Bbe” 7 (n + e)y(t — 1)

V(0 < P s — dt). (43)

Hence from the above lemma, combined with a comparison argument, one obtains

that for an arbitrary small positive constant €, there exists a ns > n4 such that if

Bbe=%T(n +¢)
(I1+ki(n+e))d ’

then
e Bbe=%7 (1 + €) d_kil +ki(n+e))d L E= (e (4.4)
for t > nsT. Consequently, we obtain that for ¢ > nsT and t # kT,
2 (0) 2 al0)g(ot) - e at) (45)
Next let r(e,€) = r — 1+k1(nlfgf?c24(s,é) > 0. In view of Lemmas 2.4 and 3.1, it

follows that there exists a ng > ns such that for p < 1 — e 7T and t > ngT
r(fcag) (1 — - e—r(a,é’)T)

x(t) >

> e =R (4.6)
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In the following, we define
t
W(t) =y(t) + b *dﬂ/ 2()y(s)
= v B | T Ta(s) + kay(9)

Then the derivative of W(t) with respect to the solutions of the system (2.5) is
given by

aw,| Bbe % (t)
W‘(z.s) N <1 + kix(t) + kay(t) d> (0

Bbe~ T (e, €)
- <1 + ki9(c,8) + kay(t) d) y(t)-

If

Bbe~%TY(¢, 8)

1+ k19(e, €)

we can choose sufficiently small y* such that

Bbe=diTY(e, 5

14+ k19(g, &) + kay*

We claim that for any ¢y > 0, it is impossible that y(¢) < y* for all t > to. Suppose
that the claim is not valid. Then there is a t; > 0 such that y(¢) < y* for all
t > max{tog,ngT}. From (4.7), one notes there exists a t; > max{ty + 7,n6T + 7}
such that for ¢ > tq,

dw Bbe=LTY(g, §)
—_ > —d t). 4.10
dt ‘(2.5) - (1 + k19(g, ) + koy* y(®) (4.10)

—d>0, (4.8)

—d>0. (4.9)

Set

y = (t)-

= min y
tEty,t1+7]
We will show that y(t) > y; for all ¢ > ¢; > t;. Otherwise, there exists a Tp > 0
such that y(t) >y, for t; <t <t; + 7+ Ty, and y(t1 + 7 + To) = y;- Hence, from

the second equation of (2.5), we derive

7dj7’
Yyt +71+Tp) > ( pbe BTH(e,E)  _ d) i

1+ k19(e, €) + kay*
and so y'(t1 + 7 + Tp) > 0. Consequently, y is locally increasing near ¢ + 7 + Tj
and cannot fall below y;. Thus

y(t) = w (4.11)
for all ¢ > ¢;. As a consequence, (4.10) and (4.11) lead to

aw
dt 1(2.5)

which implies that W (t) — oo as ¢ — oo. This contradicts the boundedness of
W (t). The claim that y(¢) > y; is then proved.

5 for some5>0andt2t1,
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By the above claim, we need to consider two cases. First, y(t) > y* for all large ¢,
which yields the uniform persistence of the mature predator. Combined with (4.6),
this means that our system (2.5) is uniformly persistent. Second, y(t) oscillates
about y* for all large t. Let us define

¢ = min {y—, y*e_dT}.
2
We want to show that y(t) > ¢ for all large ¢, which, as done above, will yield the
uniform persistence of the system (2.5). Let ¢* > 0 and v > 0 satisfy

y(t*) =yt +v) =y*
and
y(t) <y*, te(t",t"+).
It is seen that y(t) is uniformly equicontinuous since the positive solutions of (2.5)

are ultirgately bounged and y(¢) is not affected by impulses. Thus, there exists a
T (0 <T < 7,and T is independent of the choice of ¢t*) such that

y(t) > 5

for t* <t<t*+T.1fv < T, there is nothing to prove. Let us consider the case
T >v>T. It follows that for t* +T <t < t* + 1,

y'(t) = —dy(t).
Hence

y(t) > y*e ™"
for t*+T <t < t*+7 < t*+7, since y(t*) = y*. If v > 7, it is obvious that y(t) > ¢
for t € [t*,t* 4+ 7]. Then, proceeding exactly as the for the derivation of (4.11), we
see that y(t) > ¢ for t € [t* + 7,¢* + V. Since this interval [¢*,¢* + 7] is chosen in
an arbitrary way (we only need t* to be large), we conclude that y(t) > ¢ for all
large t. Due to the above-mentioned analysis, we obtain the following result.
Theorem 4.2. The system (2.5) is permanent provided that
Bbe=%79(0,0)

1+ k19(0,0)

Thus, after further computations, it is easy to deduce the following result.

r(0,0) >0, pu<l—e7OOT R >q —d>0.

Corollary 4.3. The system (2.5) is permanent provided that one of the following
conditions holds:

(1) d < Ry,r > k—z+c@,u<ﬁ’{, where

i = (oo (12 ).

7(0,0)
b bd
T(0,0) = (T kj2> + R1k2.
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(II) d < Ry <d*,r < % + O, u < [y, where

. bd
o b+k2€®—7’k’2.

dir
Bbe 7 % > d holds, then the cor-

Remark 4.4. From [15], we note that if R = TR
responding pluses-free system is permanent. After adding periodic impulsive per-
turbations of the prey population, in order to keep the permanence of the new
system (2.5) we have to fulfill a related condition, although there is still room for

improvement in the estimations given in Corollary 4.3.

5. Numerical Analysis and Discussion

To facilitate the interpretation of our mathematical results and to further establish
the importance of the proportional impulsive part and of the delay term, we proceed
to investigate further by using numerical simulations. A first example is indicated in
Table 1, which illustrates the loss of permanence due to the effects of the impulsive
perturbation. Let us also choose a set of parameters given as follows:

er=18¢=0208=10b=01,d;, =001, T =03, 7=1,d=0.15 k = 0.5,
ky = 0.1, p=0.1.

After a few computations, one gets that

e 7(0,0) ~ 1.756 > 0, 1 — e 7007 = 0409 > pu, Ry —d = 0.006 > 0,

Bbe™%79(0,0) -

Hence, by applying Theorem 4.2, it is shown that the system (2.1) with the above
coefficients is permanent. However, when p = 0.2 and the other coefficients remain
fixed, it follows that R; = 0.147 < d and the corresponding impulsive system is
not permanent, the mature predator-free periodic solution being globally asymp-
totically stable from Theorem 3.2. Similarly, when 7 = 6 and the other coeffi-
cients remain fixed, it follows that R; = 0.149 and the corresponding impulsive
system loses again its permanence. As a consequence, from Table 1 and the above-
mentioned example, it is easy to see that the impulsive perturbation and the time
delay play an important role in the dynamics of the system.

Table 1. Comparing the impulsive system with the corresponding pulses-free system.

Pulses-free r, 3, k1 c b d ko d; T Permanence
system [15] 1 5/8 15 0.5 0.1 001 0.8 Yes
Impulsive r, B, k1 c b d ko dj T Ry
system 1 5/8 1.5 0.5 0.1 0.01 0.8 =~0251<d
o T Lok w* n Ro m Permanence

~ 0.506 1 ~0.540 =~0.6321 =~<0.203 ~1.488 0.6 No
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Obviously, from Corollary 4.3, we see that when the prey has a large intrinsic
growth rate, the proportional reduction p is small and the predators can breed
quickly, then the prey population and predator population can coexist forever. The
same happens if the carrying capacity is lower, provided that the breeding rate of
the mature predators remains also lower than a certain value.

In this paper, we have studied a delayed predator-prey model with stage-
structure, Beddington—-DeAngelis functional response and impulsive perturbations
of the prey population. The novel aspect of the system is the incorporation of peri-
odic human exploiting behavior due to seasonal periodic hunting or harvesting, on
the basis of the model in [15]. As far as the the impulsive control for the prey
population is concerned, we have shown that the system tends to a state of “total
extinction of the predator” if conditions in Theorem 3.2 were satisfied. However,
from the point of view of protecting the predator population and subsistence hunt-
ing or harvesting, the aim is to keep two species at an acceptable level. In this
regard, sufficient conditions guaranteeing the permanence of the system were found
in Theorem 4.2.
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