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Abstract – PID control is the most widely used controller 
type in industry. Usually, the design engineer must tune PID 
parameters according to specific needs. The ability of 
obtaining a certain stationary and transient regime for the 
closed-loop system imposes a particular choice of the system 
structure and controller parameters, in concordance with 
performance accomplishment. Since a control problem may be 
seen as an optimization constraint problem the solution 
represents optimal values (so called tuning) for the controller 
parameters kR, kI, kD. The control system robustness usually 
should be considered. The objective function is integral 
squared error (ISE) criterion subject to stability and 
robustness constraints. The paper presents two tuning 
strategies: symbolic tuning (ST), H2/H∞ robust genetic tuning 
(RGT) and illustrative simulation results. 
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1. INTRODUCTION 

The increasing complexity of the modern control 
systems has emphasized the idea of applying new 
approaches in order to solve different control 
engineering problems. PID control is the most widely 
used controller type in industry and the usually design 
engineer must tune PID parameters according to specific 
needs [1]-[7], [12]-[21]. 
Three major factors in the PID controller tuning must be 
known: the plant, the controller type and performances 
of the control loop. The ability of obtaining a certain 
stationary and transient regime for the closed-loop 
system imposes a particular choice of the structure and 
controller parameters, in concordance with performance 
accomplishment. The controller tuning means therefore 
in finding optimum for the controller parameters kR, kI, 
kD.[
The first section of this paper deals with the symbolic-
tuning procedure. Symbolic tuning of PID controllers 
assumes that the control system is stable and the 
controller structure is already chosen. It means that the 
controller parameters may vary inside a well define 
domain-the stability domain. However stability is not 
enough from the performance point of view and the 
designer imposes a certain integral type criterion that 
must be minimized. The most common are ISE (integral 
of squared error), IAE (integral of absolute error), ITSE 
(integral of time weighted squared error) etc. In this 

paper ISE criterion ( SE e t dt
∞

= ∫ ) will be 

considered. Mathematica uses symbolic expressions to 
provide a general representation of mathematical and 
other structures. In this order, the generality of symbolic 
expressions allows Mathematica lead to the symbolic 
expression for the eligible controller parameters. An 
illustrative example show the effectiveness of the 
symbolic tuning (ST) approach. 
One step ahead treated in the next section is to consider 
the problem of robustness for the systems under 
parameter perturbations.  
Mixed H2/H∞ control design approaches are useful for 
robust performance for systems under parameter 
perturbation and uncertain disturbances. However, the 
conventional output feedback designs of mixed H2/H∞ 
optimal control are very complicated and not easily 
implemented for practical industrial applications. One 
solution is to consider an intelligent tuning approach  via 
GA (genetic algorithms) so called robust genetic tuning 
(RGT)  
Genetic algorithms are optimization and machine 
learning algorithms initially inspired from the processes 
of natural selection and evolutionary genetics. In this 
section, the proposed algorithm will bridge the gap 
between the theoretical mixed optimal H2/H∞ control and 
classical PID industrial control. The proposed H2/H∞ 

control design consists in finding an internally 
stabilizing PID controller that minimizes an H2 integral 
performance index subject to an inequality constrained 
on the H∞ norm of the closed loop transfer function. That 
means to solve two problems: stability robustness 
constraint and external disturbance attenuation 
constraint. The problem can be interpreted as a problem 
of optimal tracking performance (H2) subject to a robust 
stability constraint (H∞) (or external disturbance 
attenuation constraint). The algorithm of robust genetic 
tuning is detailed and some examples are presented. 
Finally, a brief section of conclusions and future 
directions is presented.  
 
2. SYMBOLIC TUNING 
 
Let consider the PID classical control system .The plant  
to be controlled is G(s) and the PID controller is of the 
classical type C(s), r is reference, e=r-y is error, A(s), 
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B(s)  Hurwitz polynomials with coefficients ai, bj. Then 
the controller transfer function is 
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We have in view to tune the controller parameters – to 
find a global optimum for the triplet kR, kI, kD.
Therefore the error transfer function is: 
 
 
      (2) 
 
 
ISE  criterion may be rewritten using Parseval formula: 
 
 
 
 
       
       
 
 
 
 
From Krasovskii-Pospelov formulae J may be explicited: 
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and Δi are obtained from Δ replacing the column 1+i  
with [ ]Taa 0001 L , 1,0 −= ri . 
 
Definition Symbolic tuning is the minimization of J with 
respect to controller parameters and stability constraints 
[8]-[10], [12], [15], [16], [21]. 
 
Having in view the iterative form (3) using Mathematica 
facilities one obtains the general symbolic solution for 
the controller parameters, kR, kI, kD.[15], [16]. 
Example Let us consider a second order plant, a PI 
controller. Mathematica lines are the  following: 
 
Gp[s]=1/ (a2 s^2+a1 s+a0) 
Gr[s]=kr (1+1/ (s Ti)) 
e[s]=Together[1/(s (1+Gp[s] Gr[s]))] 
n=CoefficientList[Numerator[e[s]],s] 
n1={0,n[[1]],n[[2]],n[[3]]} 
d1=CoefficientList[Denominator[e[s]],s
] 
c=Cancel[Table[n1[[4]](n1[[i]]/n1[[4]]
-d1[[i]]/d1[[4]]),{i,1,3}]] 
b={(c[[1]])^2,(c[[2]])^2-2 c[[1]] 
c[[3]],(c[[3]])^2} 
delta=Det[{{d1[[1]],-
d1[[3]],0},{0,d1[[2]],-d1[[4]]},{0,-
d1[[1]],d1[[3]]}}] 
delta0=Det[{{d1[[2]],-
d1[[3]],0},{d1[[1]],d1[[2]],-
d1[[4]]},{0,-d1[[1]],d1[[3]]}}] 
delta1=Det[{{d1[[1]],d1[[2]],0},{0,d1[
[1]],-d1[[4]]},{0,0,d1[[3]]}}] 
delta2=Det[{{d1[[1]],-
d1[[3]],d1[[2]]},{0,d1[[2]],d1[[1]]},{
0,-d1[[1]],0}}] 
SYMTUNE=(b[[1]] delta0+b[[2]] 
delta1+b[[3]] delta2- 
 2 c[[1]] n[[2]] delta)/(2 
d1[[1]]^2 delta) 
 
In fact, SYMTUNE is the objective functions supposed 
to be constrained by closed-loop stability conditions. 
What is remarkable in using Mathematica is the fact that 
Mathematica uses symbolic expressions to provide a 
general representation of mathematical and other 
structures. So one can find symbolic solutions for rather 
complicated problems such as differential and integral 
equations or constrained optimization problems. In the 
PI example presented above J=J(kR, kI) is the integral 
criteria ISE (Integral Squared Error Type) subject to the 
stability constraints. After some simple operations with 
Lists of coefficients (in e expression) and some 
determinants (∆), using the clipping procedure the 
optimum point was obtained. In Fig 1 is depicted the 
three dimensional index (we have only two controller 
parameters to be optimized-tuned) and the clipping 
procedure – contour plot for the optimum isolation.  
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Fig.1 - ST approach for a PI controller. 

 
Above, for simplicity  and after the 
numerical simulation the optimum tuning parameters are 
k

2 1 0 1a a a= = =

Ropt=1,172434, kIopt=2,21326. 
 
3.  ROBUST  H2/H∞   CONTROL APPROACH 
 
Mixed H2/H∞  control design approaches are useful for 
robust performance for systems under parameter 
perturbation and uncertain disturbance. However, the 
conventional output feedback designs of mixed H2/H∞  
optimal control are very complicated and not easily 
implemented for practical industrial applications.  
The proposed H2/H∞  control design consists in finding 
an internally stabilizing PID controller that minimizes an 
H2 integral performance index subject to an inequality 
constrained on the H∞  norm of the closed loop transfer 
function. There are two problems to be solved: stability 
robustness and external disturbance attenuation. The 
problem can be interpreted as a problem of optimal 
tracking performance subject to a robust stability 
constraint (or external disturbance attenuation 
constraint). The design procedure proposed for the PID 
robust tuning in order to achieve the mixed H2/H∞  
optimal performance follow the steps: 1.in the first step 
based on Routh-Hurwitz criterion, the stability domain of 
the three PID parameter space, which guarantees the 
stability of the closed loop is specified; 2.in the second 
step, the subset of the stability domain in the PID 

parameter space corresponding to step 1 is specified so 
that H∞  constraint mentioned above is satisfied; 3.in the 
third step the design problems becomes, in the subset 
domain of the H∞  constraint domain mentioned in step 2, 
how to obtain one point which minimizes the H2 tracking 
performance. This is generally considered to be a highly 
nonlinear minimization problem, in which many local 
minima may exist. A local minimum can be reached via 
genetic algorithms (GA). GA are parallel, global search 
techniques that emulate natural genetic operators. 
Because a GA simultaneously evaluates many points in 
the parameter space, it is more likely to converge to the 
global solution. It does not need to assume that the 
search space is differentiable or continuous, and can also 
iterate several times on each datum received. Global 
optimization can be achieved via a number of genetic 
operators, e.g., reproduction, mutation, and crossover. 
GAs are more suitable to the iterative PID H2/H∞  control 
design for the following reasons: the search space is 
large; the performance surface does not require a 
differentiability assumption with respect to changes in 
PID parameters (therefore, the gradient-based searching 
algorithms that depend on the existence of the 
derivatives is inefficient); the likely fit terms are less 
likely to be destroyed under a genetic operator, thereby 
often leading to faster convergence.  
Let consider the PID control system in Fig.2. The plant 
G(s) to be controlled undergoes perturbation ∆G(s) and 
the PID controller, is of the classical type (1) 
 

( ) I
R D

kC s k k s
s

= + +  

 
where the plant perturbation ∆G(s) is assumed to be 
stable but uncertain. 
 
 
 
 
 

Fig.2 - PID control system with plant perturbation. 
 
Suppose ∆G(s) is bounded according to the relation: 
 

),0[,)()( ∞∈∀≤Δ ωωξω jjG   (5) 

 
where the function ξ(s) is stable and known. 
The robust stability reveals that if a controller C(s) is 
chosen so that nominal closed loop system (free of 
∆G(s)) in Fig.2 is asymptotically stable, and the 
following inequality holds, 

.1
)()(1
)()()(

≤
+ ∞sCsG

ssCsG ξ     (6) 

then the closed loop system in Fig.1 is also 
asymptotically stable under plant perturbation (5), where 
the H∞ norm in (8) is defined as: 
 

ω
ω

jGsG (sup)(
),0[ ∞∈

∞
=    (7) 

yer [ ])(1)( sGsG Δ+C(s) 

_
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i.e., the maximum peak of the spectral density of G(s). 
However, often robust stability alone is not enough in 
control system design. Optimal tracking performance is 
also appealing in much practical control engineering 
applications. Therefore, the mixed H2/H∞ control 
problem is formulated as follows  
 

∫
∞

0
2 )(min dtte     (8) 

 
for the nominal closed loop system in Fig. 1, subject to 
the robust stability constraint (6), where e(t) is the 
tracking error. That means, under the constraint (6), the 
error energy (integral squared error criterion) (8) must 
be as small as possible. From the above analysis the 
control design problem involve how to specify a PID 
controller to achieve the optimal tracking (8) subject to 
the robust stability constraint (6).  
Coming back to (5), for m=1, 2, 3 (usually in practical 
applications the plant maximum order is 3), following 
the methodology explained in previous section, one 
obtains via Mathematica  
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where 3,0,, =iba ii  depend only on the plant and 
controller parameters. 
Then, the robust performance in (6) must be of the 
following form: 
 

),,(min DIRmm kkkJJ =               (10) 
 
From the definition (4), the constraint in (3) can be 
expressed by: 
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where p(ω) and q(ω) are some appropriate polynomials 
of ω.  
The physical meaning of the above relation is that if the 
largest peak of Θ(ω)=p(ω)/q(ω) is less than 1, then the 
system in Fig.2  is stable under plant perturbation.  
Generally speaking, to scan ω∈[0,∞) to find the peaks of 
Θ(ω) is not an easy task. Actually, the peaks of Θ(ω) 

occur at the points which must satisfy the following 
equation: 
 

( )
1

( ) 0

( ) ( )( ) ( ) 0

0
n

i
i

d
d

dq dpp q
d d

ω
ω

ω ωω ω
ω ω

ω α
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Therefore, only the real roots αi of the above equation 
need to be found. So, the robust stability constraint in (6) 
is equivalent with: 
 

1
)(
)(

max ≤
i

i

q
p

i α
α

α
                (12) 

The design procedure is, therefore, a minimization 
problem (8) under the inequality constraint (12). The 
algorithm follows the steps: 
Step 1: Given a plant G(s), PID controller and the 
enveloping function ξ(s) of the plant perturbation. 
Step 2: Specify the parameter domain Δ of (kR, kI, kD) to 
guarantee the stability of the nominal closed loop system 
via the Routh-Hurwitz criterion, where: 

}),,{(: 3Rkkk DIR ⊂=Δ                (13) 
Step 3: Compute a set of parameters in Δ from GA and 
compute αi, i=1,n from (11). 
Step 4: Check if the relation (12) is fulfilled. 
Step 5: Compute Jm (10) in order to obtain robust 
performance. Then repeat the procedure Step3 to Step 5 
until a suitable parameter set is obtained. 
Definition.  The above algorithm described by Step1-
Step5 is called robust genetic tuning (RGT). 
Genetic Algorithms are parameter optimization methods 
following the examples of the natural behavior of living 
species. A number of points in the search space are 
considered as a population of living creatures inside an 
artificial world. Basic Darwinistic propagation in such 
world enables the fittest to survive. Although some 
random effects play an important role, the behavior is 
not pure coincidental, since the historical information 
inside the individuals are being conserved as much as 
possible in view of the common goal, i.e. survival of the 
fittest. GA have been developed by John Holland during 
the late 60’s but the 1989 David Goldberg’s book 
“Genetic Algorithms in Search, Optimization and 
Machine Learning” bring the GAs into the spotlight and 
make them as one of the more promising emergent 
architectures for optimization in an overwhelming 
number of application fields. Important aspects of GAs 
are universality and robustness, because species are to be 
believed to survive in many different and hostile 
environments. As David Goldberg states “…where 
robust performance is desired (and where is it not) 
nature does it better; the secrets of adaptation and 
survival are best learned from a careful study of a 
biological example. Yet we do not accept the genetic 
algorithm method by appeal to this beauty-of-nature 
argument alone. Genetic Algorithms are theoretically 
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and empirically proven to provide robust search in 
complex spaces[11].GAs are powerful search algorithms 
based on the mechanics of natural selection and natural 
genetics. The algorithms work with a population of 
strings, searching many peaks in parallel as opposed to a 
single point; use probabilistic transition rules instead of 
deterministic rules; use objective function information 
instead of derivatives or other auxiliary knowledge. GAs 
are inherently parallel, because they simultaneously 
evaluate many points in the search space. Considering 
many points in the search space they have a reduced 
chance of converging to the local optimum and would be 
more likely to converge to the global optimum. GAs 
require only information concerning the quality of the 
solution produced by each parameter set (objective 
function evaluation). This differs from many 
optimization approaches, which require derivatives 
information, or, worse yet, complete knowledge of the 
problem structure and parameters. Since genetic 
algorithms do not require such problem specific 
information, they are more flexible than more search 
methods. A genetic algorithm is an iterative procedure, 
which maintains a constant size population of candidate 
solutions. During each iteration step, or generation, three 
genetic operators (reproduction, crossover and 
mutation) are performing to generate new populations 
(offsprings), and the chromosomes of these new 
populations are evaluated via the value of fitness which 
is related to some cost functions. On the basis of these 
genetic operators and evaluation, the better new 
populations of candidate solution are formed. It is shown 
in the SCHEMA THEOREM, that the genetic search 
algorithm will converge from the viewpoint of schema. 
With the above descriptions, the procedure of a simple 
genetic algorithm is given as follows: 
1. Generate randomly a population of binary strings. 
2. Calculate the fitness for each string in the population. 
3. Create offspring strings by simple GA operators. 
4. Evaluate the new strings and calculate the fitness for 
each string. 
5. If the search goal is achieved, or an allowable 
generation is attained, stop and return. 
GA are working with a population of binary strings, not 
with the parameters themselves. For example, with the 
binary coding method, The PID parameters set would be 
coded as binary strings, of 0’s and 1’s with different 
length. The designer in the search space specifies the 
choice of a certain length. In the binary coding, the bit 
length BBi and the corresponding resolution the relation 
relates Ri: 

12 −
−

=
iB

ii
i

mMR                  (14) 

where Mi and mi are the upper and the lower of the 
parameter ki. As a direct result, the PID parameter set 
(kR, kI, kD), can be transformed into binary string 
(chromosome), with the length: 

∑= i iBL                  (15) 

The decoding procedure is the reverse procedure of 
coding. 
In this paper, the fitness and cost function is obviously 
defined with the relation: 

),,(),,( DIRmDIR kkkJkkkE =             (16) 
where the triplet (kR, kI, kD)∈Δ. The fitness value is a 
reward based on the performance of the possible solution 
represented by the string, or it can be thought of as how 
well a PID controller can be tuned according to the 
string to actually minimize the tracking error. The better 
the solution encoded by a string (chromosome), the 
higher the fitness. To minimize the quality index in (16) 
is equivalent to getting a maximum fitness value in the 
genetic searching algorithm. A chromosome that has 
lower quadratic index should be assigning a larger 
fitness value. Then the genetic algorithm tries to 
generate better offsprings to improve the fitness. 
Therefore, a better PID controller could be obtained via 
better fitness in genetic algorithms. There are quite a 
number of approaches to perform this mapping known as 
fitness techniques. In this paper is proposed the 
technique so-called windowing. Now, let us shortly 
describe the operation with the three basic operators. 
Reproduction. Reproduction is based on the principle of 
survival of the better fitness. The fitness of the ith string 
Fi is assign to each individual string in the population 
where higher Fi means as shown better fitness. These 
strings with large fitness would have a large number of 
copies in the new generation. 
Crossover. By the second operator, the strings exchange 
information via probabilistic decisions. Crossover 
provides a mechanism for strings to mix and match their 
desirable qualities through a random process.  
Mutation. The third operator, mutation, enhances an 
ability of genetic algorithms to find a near-optimal 
solution. Mutation is the occasional alternation of a 
value at a particular string position. In the case of binary 
coding, the mutation operator simply flips the state of a 
bit from 0 to 1 and vice versa. Mutation should be used 
sparingly because it is a random search operator. As said 
above the convergence of a genetic search algorithm is 
discussed from the viewpoint of schema. 
 
Example. Let us consider the control system shown in 
Fig. 2., a PD controller would be given to achieve the 
mixed H2/H∞ optimal tracking under the bounded plant 
perturbation. 
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The linear relation gives the relation between fitness 
function and cost function. The robust stability 
constraint lead to the relation (11) with appropriate 
polynomials for Θ(ω). The genetic algorithm begins by 
randomly generating a population of 1.000 
chromosomes. After 10 generation, proper controller 
parameter can be obtained. Thus, the obtained values 
for controller parameters are kR=100 and kD=30. 
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4. CONCLUSIONS 
 
This paper presents  non-conventional PID intelligent 
control methodologies so called symbolic tuning (ST) 
and robust genetic tuning (RGT). The common 
denominator is ISE criterion and the main goal is the 
robustness of the control loop. Examples show clearly 
the effectiveness of the proposed robust approaches. GA 
are more suitable to the iterative PID H2/H∞ control 
design for the following reasons: the search space is 
large; the performance surface does not require a 
differentiability assumption with respect to changes in 
PID parameters. Therefore, the gradient-based searching 
algorithms that depend on the existence of the 
derivatives are inefficient. The likely fit terms are less 
likely to be destroyed under a genetic operator, thereby 
often leading to faster convergence. The algorithm 
proposed has a methodological advantage over the 
traditional PID tuning methods. The design becomes 
fully systematic, saving design time, reducing the need 
for non-explicit knowledge.  
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