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We consider a two-patch SI model of integrated pest management with dispersal of
both susceptible and infective pests between patches. A biological control, consisting
of the periodic release of infective pests and a chemical control, consisting of periodic
and impulsive pesticide spraying, are employed in order to maintain the size of the pest
population below an economically acceptable level. It is assumed that the spread of the
disease which is inflicted on the pest population through the use of the biological control
is characterized by a nonlinear force of infection expressed in an abstract form. A suffi-
cient condition for the local stability of the susceptible pest-eradication periodic solution
is found using Floquet theory for periodic systems of ordinary differential equations, an
analysis of the influence of dispersal between patches being performed for several partic-
ular cases. Our numerical simulations indicate that an increase in the amount but not
in the frequency of pesticide use may not result in control. We also show that patches
which are stable in isolation can be destabilized by dispersal between patches.
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1. Introduction

The environmental and health risks caused by the indiscriminate use or misuse of
pesticides are now well-documented. It has been shown that overexposure to pesti-
cides is associated with chronic health problems1,2 and often human poisoning,3 as
well as a general decrease in the biodiversity of the environment.4 The urgency of
the need for alternatives is further illustrated by the fact that the development of
resistance to even the strongest pesticides, such as DDT,5 can occur.6 Consequently,
Integrated Pest Management (IPM) has emerged as an integrative, sustainable and
environmentally friendly approach which employs a large array of combined tech-
niques in order to control pests while minimizing hazardous effects on non-target
organisms. Here, “pests” refers to any organisms which are detrimental to human
interests, including vertebrate or invertebrate animals, pathogens and weeds, while
“management” refers to a set of decision rules based on ecological as well as on
economical principles.7 One does not usually aim to eradicate pests completely, as
this would not be cost-effective and would unnecessarily damage the ecosystem,
but to reduce the pest population under an economically significant level called
the economic injury level (EIL).8 In this approach, pesticides are used only when
they are deemed as an absolute necessity, as they are sometimes the quickest way
to contain a pest outbreak, the emphasis being put on the use of biological and
mechanical controls, as well as preventive cultural practices.

Biological control of insects involves the use of natural enemies (predators, par-
asitoids or pathogens) or natural pesticides such as Bt9,10 to reduce or maintain
pest populations under EIL.11 Several examples of successful application of biolog-
ical control are the use of the predatory arthropod Orius sauteri to protect egg-
plant crops in greenhouses in Japan against the pest Thrips palmi Karny (melon
thrips),12 the use of the predatory mites Phytoseiulus persimilis and Neoseiulus cal-
ifornicus against the red spider mite Tranychus urticae Koch in strawberry fields
in England13 and the use of granuloviruses against the diamondback moth Plutella
xylostella in cabbage farms in East Africa.14 See Ref. 15 for an overview of how
biocontrol agents act towards the incapacitation of pests.

Among the possible approaches to biological control we mention conservation,
importation and augmentation methods. The goal of the conservation method is
to reduce the factors which interfere with the growth of the natural enemies of
the given pests and to provide resources that natural enemies rely upon,16 while
the purpose of the importation method is to reunite prey, that have become pests
outside their original geographical areas, with their natural predators.17

Augmentation represents the manipulation of natural enemy populations in
order to increase their effectiveness.11 A typical approach to augmentation con-
sists of raising and periodically releasing natural enemies into the environments
where pest suppression is needed. This may take the form of inoculative release,
in which the natural enemy is intended to establish and reproduce in the envi-
ronment, while keeping the pest in control, or the form of inundative release, in



September 6, 2010 18:39 WSPC/S0218-3390 129-JBS 00356

Impulsive Control of an IPM Model with Dispersal Between Patches 537

which large amounts of natural enemies are released for the purpose of overwhelm-
ing the pest, the persistence of the natural enemies in the environment not being
of concern.

A variant of the innoculative method is to periodically release infective pest indi-
viduals, with the purpose of maintaining the endemicity of a disease into the target
pest population, on the grounds that infective pests are less likely to reproduce and
to damage the environment. In this case, the dynamics of the pest population under
consideration may be described using a compartmental model for disease propaga-
tion. The inherent discontinuity of the control activities and the immediate jumps
in the size of the infective pest population after each release can be described using
models involving impulsive perturbations. See Refs. 18–20 for a general overview
of impulsive control theory and of its applications, as well as Refs. 21–23 for other
impulsive models of IPM. An analysis of optimal timing for impulsive IPM mod-
els has been performed by Tang, Tang and Cheke.24 See also Refs. 25 and 26 for
optimal control problems associated with a three-dimensional food chain and to a
Lotka-Volterra model, respectively.

Ultimately, all species live in environments which are patched at one scale or
another. Patchiness may occur since niches, conditions and food resources which
favor survival are unevenly distributed in space and time, facilitating aggregation
of individuals.27 Patchiness may also be a feature of the physical environment itself,
which may consist of separate spaces (islands, mountain tops) surrounded by inhos-
pitable areas. Finally, the patch structure may be an outcome of the activities of
the organisms themselves, through the depletion of local resources.

Consequently, an approach to spatial modelling is to consider spatially hetero-
geneous groups of populations (metapopulations) which are connected by dispersal.
Among factors which favor population migration between patches are mating and
breeding, seasonal or diurnal variability of the environment, avoidance of overcrowd-
ing, inbreeding and kin competition.28 Dispersal rate is sometimes considered a
characteristic trait of a species, as dispersal may occur at a constant per-capita rate,
but might also be condition-dependent, in particular density-dependent. Dispersal
may either increase (positive density-dependent dispersal) or decrease (negative
density-dependent dispersal) as population density increases, both forms of disper-
sal being observed in mites, insects and vertebrates.29

Mathematical models of interacting populations which disperse between patches
have become a subject of growing interest (see, for instance Refs. 30–35). Most
papers focus on discussing the coexistence or extinction of species, or the exis-
tence and stability of the positive steady states. However, the stability results
obtained therein are usually of a local nature, due to the complexity of the global
analysis. The influence of dispersal upon the stability of the equilibria remains
largely unknown, again due to computational difficulties. In this regard, it has
been observed that while dispersal on its own is not stabilizing and can destabilize
local equilibria, its connection with other features such as spatial and temporal
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heterogeneity can promote stability (see the comprehensive survey of Briggs and
Hoopes),36 while it has also been observed that under some particular conditions,
density dependent dispersal can generate limit cycles.37

The purpose of this paper is to construct a two-patch SI model of IPM with
dispersal of both susceptible and infective pests between patches, which is subject
to impulsive and periodic biological and chemical controls, employed with the same
periodicity, but not simultaneously. It is assumed that the biological control consists
of the periodic release of infective pests in a constant amount, while the chemical
control consists of periodic pesticide spraying, which causes the removal of fixed
proportions of susceptible and infective pests. The spread of the disease which is
inflicted on the pest population through the release of infective pests is characterized
by a nonlinear force of infection given in an abstract, unspecified form. Of concern
is the stability of the susceptible pest-eradication periodic solution, a sufficient
condition for local stability being obtained via the use of Floquet theory for periodic
systems of ordinary differential equations. Our results extend those in Ref. 38, where
a single-patch version of our model is discussed, and those in Ref. 39, where only
susceptible pests were allowed to disperse between patches.

The remaining part of this paper is organized as follows: In Sec. 2, our two-
patch model is formulated together with the biological assumptions it relies upon.
Several stability, persistence and bifurcation results which are valid for the single-
patch version of this model are also listed for future reference. In Sec. 3, a few basic
notions regarding Floquet theory for periodic systems of linear differential equa-
tions are introduced together with a discussion of time-dependent matrix exponen-
tials. Section 4 is concerned with proving the existence and global attractivity of a
periodic solution for the reduced (no susceptible pests) system. In Sec. 5, the stabil-
ity properties of the corresponding susceptible pest-eradication state are discussed
under general assumptions. Our results are then specialized for several particular
cases, the influence of dispersal between patches upon the stability of the suscepti-
ble pest-eradication state being then investigated. Several comments regarding the
biological significance of our results are also formulated. In particular, we are able
to show analytically that the dispersal of pests has the potential to destabilize an
otherwise stable system.

In Sec. 6, we provide the results of numerical simulations which illustrate var-
ious properties of our model. By simulation, we are also able to go beyond our
analytical results and show what appear to be period-doubling bifurcations leading
to chaos40 in the one-patch model in its unstable regime. For this model, we are
able to show that an increase in the amount, but not frequency, of application of
pesticides will not always lead to control, a result with obvious biological signifi-
cance. Finally, we present a numerical example of two stable patches being destabi-
lized by pest dispersal, a result, consistent with earlier theoretical findings,41–43 of
some importance for any attempt to understand the application of IPM to patched
landscapes.
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2. The Model

In the following, we shall suppose that the environment consists of two distinct
patches, P1 and P2 and denote by Si and Ii the sizes of the susceptible pest popu-
lation and infective pest population in patch i, respectively (i = 1, 2). The following
assumptions are made to derive our mathematical model:

(A1) All pests are either susceptible or infective. The infective pests may neither
damage the crop, reproduce nor recover.

(A2) The incidence rate of infection in patch i is given by g(Ii)Si, i = 1, 2, where
g is the (possibly nonlinear) force of infection, assumed to be the same in each
patch.

(A3) In the absence of infection, the intrinsic growth rate of the susceptible class
Si is given by the logistic-like growth function Sibi(Si), where bi are (possibly
nonlinear) birth functions, i = 1, 2.

(A4) Infective pests are impulsively released in both patches with periodicity T > 0,
in the same amount µ > 0 each time.

(A5) The mortality rate of the infective population Ii is wi > 0, i = 1, 2. The time
scale of the disease propagation is assumed to be fast enough that the natural
mortality of susceptibles need not be considered.

(A6) Pesticides are sprayed with periodicity T and with a fixed efficiency, in the
sense that fixed proportions δ1 and δ2 of the susceptible pest populations S1

and S2, respectively, and a fixed proportion δI of the infective pest populations
I1 and I2, 0 < δ1, δ2, δI < 1, are removed each time the pesticides are applied.

(A7) All pests, susceptible or infective, can disperse between patches.

The birth functions b1, b2 and the force of infection g are assumed to satisfy the
following hypotheses:

(B) bi(0) = ri, bi is decreasing on [0,∞), lim
S→∞

bi(S) < −wi, S �→ Sbi(S) is locally

Lipschitz on (0,∞), i = 1, 2.
(G) g(0) = 0, g is increasing and globally Lipschitz on [0,∞).

Note that hypothesis (B) is satisfied if the growth rates of the susceptible pest
populations Si are given by the Richards growth law (Sib(Si) = rR

1−pSi((Si

K )p − 1),
p �= 1), which generalizes the logistic growth law. Regarding the propagation of
the disease which is spread through the periodic release of infective pests, it has
been observed (see Refs. 44 and 45) that the dependence of the rate of incidence
of infection upon the size of the infective pest population plays a more significant
role than the dependence upon the size of the susceptible pest population, which
justifies the use of incidence rates of infection of type g(Ii)Si. A nonlinear force of
infection g(I) = kI

1+αI has been employed by Capasso and Serio.46 A very general
incidence rate of type g(S) = kIp

1+αIq has been proposed by Liu, Levin and Iwasa;47
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see also Ref. 48. Particular incidence rates of type g(I) = kI2

1+αI2 , g(I) = kI
1+αI2 have

been used in Ruan and Wang,49 respectively in Xiao and Ruan.50

Assumption (A1) demands pure horizontal transmission of the infection, and
this needs to be justified, particularly since purely vertical transmission of insect
viruses is known,51 some parasites alternate between vertical and horizontal trans-
mission as they move from one host to another52 and strategies requiring change
from a vertical to a horizontal transmission mode in response to host stress are
well documented in phage53 and also appear to have been adopted by honey
bee viruses.54 Regarding diseases with very high vertical transmission, Wolbachia
represents a maternally inherited proteobacteria which infects a wide range of
arthropods,55 causing reproductive alterations in their hosts, such as cytoplasmatic
incompatibility, parthenogenesis and feminization, all of which influence the popu-
lation dynamics of Wolbachia as well as their hosts. Wolbachia is able to infect the
reproductive tissues of arthropods and is transmitted to offspring via egg cytoplasm,
which results in a very high transmission probability. Also, vertical transmission of
viruses infectious to the tobacco budworm Heliothis virescens, the nucleopolyhedro-
sis viruses56 Autographa californica and Heliothis zea have been studied by Nordin,
Brown and Jackson,57 being observed that all eggs laid by females indirectly con-
taminated with viruses had some degree of virus contamination, although much
variation in concentration occured.

In other words, in order to understand natural pest control mechanisms fully,
vertical transmission must be considered. We justify our restriction to horizontal
transmission in our model formulation in two ways. First, pest control by disease can
only be achieved by effective pathogenicity (virulence), and it is generally accepted
that vertical transmission is typically associated with benign infection51 whereas
horizontal transmission is associated with increased virulence.58–60 Our second rea-
son for restricting our model to horizontal transmission only is the socioeconomic
importance of damage caused by the diamondback moth Plutella xylostella,6,61

which affects cruciferous vegetable crops, and the potato tuberworm Phthorimaea
operculella.62 It is the larvae of these pests which cause the damage. Our model
is intended to be useful in understanding the control of these serious pests, taking
the associated granuloviruses56,63 PxGV14,64 and PoGV65 as promising biological
control agents. These and other granuloviruses infect primarily larvae, and, among
other things, induce secretion of an enzyme which inactivates a hormone needed
to initiate pupation.66,67 The end effect is that the infected larvae are literally liq-
uefied before they can pupate, and are thus prevented from becoming adults and
reproducing.

Assumption (A6) should not mislead the reader into thinking that pesticides’
effectiveness does not change with time,68 or that our model absolutely requires
this. The assumption is perhaps best understood as referring to a steadily changing
regime of pesticides, since this can approximate, for some limited time, the ideal of
the pesticide for which there could be no resistance.
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Assumption (A7) does not necessarily imply that infective pests are able to
move on their own accord between patches. Baculoviruses liquefy larvae, as already
discussed above, and there is no reason to believe that infected larvae would be able
to move to a new patch on their own. Infected larvae do however have a tendency to
move up their host plant, and it has been suggested that this would in fact promote
interpatch dispersal, since larvae become more visible to predators the higher up
they are,56 and predators can effectively disperse viruses from infected prey.69

As a result, the following impulsively perturbed system is formulated to describe
the dynamics of the model under consideration:




S′
1(t) = S1(t)b1(S1(t)) − g(I1(t))S1(t)

+ d21S2(t) − d12S1(t), t �= (n + l − 1)T, t �= nT ;

S′
2(t) = S2(t)b2(S2(t)) − g(I2(t))S2(t)

+ d12S1(t) − d21S2(t), t �= (n + l − 1)T, t �= nT ;

I ′1(t) = g(I1(t))S1(t) − w1I1(t)

+ D21I2(t) − D12I1(t), t �= (n + l − 1)T, t �= nT ;

I ′2(t) = g(I2(t))S2(t) − w2I2(t)

+ D12I1(t) − D21I2(t), t �= (n + l − 1)T, t �= nT ;

∆S1(t) = −δ1S1(t), t = (n + l − 1)T ;

∆S2(t) = −δ2S2(t), t = (n + l − 1)T ;

∆Ii(t) = −δIIi(t), t = (n + l − 1)T, i = 1, 2;

∆Si(t) = 0, t = nT, i = 1, 2;

∆Ii(t) = µ, t = nT, i = 1, 2.

(2.1)

∆ϕ(t) = ϕ(t+) − ϕ(t) for ϕ ∈ {Si, Ii}, i = 1, 2 represent the instantaneous jumps
in the sizes of the susceptible and infective pest populations, respectively, after the
use of the impulsive controls. Note that these terms may also be used to describe
the effects of selective catching or to conflate other regulatory measures rather than
to describe pesticide spraying and pest release alone. Also, lT , 0 < l < 1, describes
the time lag between the release of infective pests and pesticide spraying. The
nonnegative constants dij and Dij (i, j ∈ {1, 2}, i �= j) represent the dispersal rates
of susceptibles and infectives from patch i to patch j, respectively. Regarding pest
dispersal between patches, a common situation is the one in which d12 = d21 = d

and D12 = D21 = D, i.e., the dispersal of susceptible pests and infective pests
between patches obeys a Fickian law, being proportional to the difference between
the respective population sizes.

This model has also been studied in Ref. 39 for D12 = D21 = 0, i.e., in the
situation in which only the susceptible pests are allowed to disperse, and a sufficient
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condition for the local stability of the susceptible pest-eradication periodic solution
has been found via Floquet theory, the effect of pest dispersal between patches upon
the stability of this solution also being discussed. The impulsive control of a two-
patch Lotka-Volterra model has been considered by Yang and Tang,43 the effects of
population dispersal upon pest persistence also being investigated. A single-patch
version of this model has been considered by Georgescu and Moroşanu38 and by
Georgescu, Zhang and Chen,70 in the following form:



S′(t) = S(t)b(S(t)) − g(I(t))S(t), t �= (n + l − 1)T, t �= nT ;

I ′(t) = g(I(t))S(t) − wI(t), t �= (n + l − 1)T, t �= nT ;

∆S(t) = −δ1S(t), t = (n + l − 1)T ;

∆I(t) = −δII(t), t = (n + l − 1)T ;

∆S(t) = 0, t = nT ;

∆I(t) = µ, t = nT.

(2.2)

For the sake of comparison and for further reference we shall indicate here the
controllability results obtained by Georgescu and Moroşanu38 and the bifurcation
results deduced by Georgescu, Zhang and Chen.70

Let us denote by I∗w the periodic solution of the following subsystem of (2.2),
which describes the dynamics of the susceptible pest-free state,


I ′(t) = −wI(t), t �= nT, (n + l − 1)T ;

∆I(t) = −δII(t), t = (n + l − 1)T ;

∆I(t) = µ, t = nT.

(2.3)

It is seen that I∗w is given by

I∗w =




µ

1 − e−wT (1 − δI)
e−w(t−nT ), t ∈ (nT, (n + l)T ]

µ(1 − δI)
1 − e−wT (1 − δI)

e−w(t−nT ), t ∈ ((n + l)T, (n + 1)T ].
(2.4)

Also, it has been proved by Georgescu and Moroşanu38 that the following
dichotomy result holds.

Theorem 2.1. (Georgescu and Moroşanu38)The following statements hold.

(1) The susceptible pest-eradication periodic solution (0, I∗w) of (2.2) is globally
asymptotically stable provided that

∫ T

0

g(I∗w(s))ds − ln(1 − δ1) > rT. (2.5)
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(2) The susceptible pest-eradication periodic solution (0, I∗w) of (2.2) is unstable
provided that ∫ T

0

g(I∗w(s))ds − ln(1 − δ1) < rT. (2.6)

In this case, (2.2) is also permanent (both susceptible and infective populations
survive in the long-term).

In the limit case, i.e., the case in which∫ T

0

g(I∗w(s))ds − ln(1 − δ1) = rT, (2.7)

it is seen that the susceptible pest-eradication periodic solution (0, I∗w) is stable,
but not necessarily asymptotically stable, and a supercritical bifurcation occurs, as
established in the following result obtained by Georgescu, Zhang and Chen.70

Theorem 2.2. (Georgescu, Zhang and Chen70) A supercritical bifurcation occurs
if (2.7) is crossed, in the sense that a stable positive periodic solution bifurcates
from the susceptible pest-eradication periodic solution.

Indeed, numerical experiments (see Fig. 4) indicate that further period-doubling
bifurcations occur beyond this crossing, in the unstable parameter regime.

Note that the conditions (2.5)–(2.7) have an immediate biological significance,
as they represent balance conditions near the susceptible pest-eradication peri-
odic solution (0, I∗w). Specifically, if (S, I) approaches (0, I∗w), then the integral∫ T

0
g(I∗w(t))dt approximate the (normalized, per-susceptible) movement of suscepti-

ble pests to the infective class in a given period, rT approximates the (normalized,
per-susceptible) amount of susceptible pests which are born in a given period, while
ln(1 − δ1) is a correction term which represents the (normalized, per-susceptible)
loss of susceptible pests due to pesticide spraying.

It is also to be seen that the stability of (0, I∗w) cannot be characterized
by a basic reproduction number defined in the classical sense, although RS =R

T
0 g(I∗

w(t))dt−ln(1−δ1)

rT is a threshold parameter for the stability of (2.2), since the
basic reproduction number is usually employed to characterize the dynamics of the
system near the infective-free state, in a system with no impulsive perturbations.
Of concern here is the extinction or nonextinction of susceptible pests, rather than
of infective pests, since due to the periodic release of infective pests, which occurs
at t = nT , the infective pest population never dies out. Consequently, we may not
expect the existence of a basic reproduction number in the classical sense for the
two-patched system. An additional difficulty consists in the fact that the system
approaches a periodic solution, rather than a stationary state. In this regard, the
formula for the basic reproduction number R0 in a constant environment has been
generalized to the case of a periodic environment by Bacaër and Ouifki,71 Bacaër72

and Wang and Zhao;73 however, these models do not account for the effect of
impulsive perturbations.
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It is to be noted that our model can be used to describe some situations which
are apparently not covered by (2.1). In this sense, suppose that the pests in the
first patch grow according to a logistic growth rate with intrinsic birth rate r and
carrying capacity K. The infective pests in the first patch do contribute towards
the carrying capacity of the environment and consequently the first equation in our
model is replaced by,

S′
1(t) = rS1(t)

(
1 − S1(t) + αI1(t)

K

)
− g(I1(t))S1(t) + d21S2(t) − d12S1(t), (2.8)

where α is a constant which characterizes the fact that susceptible and infective
pests have different capabilities to damage the environment. Then (2.8) can be
rearranged as,

S′
1(t) = rS1(t)

(
1 − S1(t)

K

)
−
(

g(I1(t)) +
αrI1(t)

K

)
S1(t) + d21S2(t) − d12S1(t),

which fits our framework for the new function g̃(I1) = g(I1) + αr I1
K , although this

time the limiting size of the infective pest population is also of concern. Specifically,
the global stability of the susceptible pest-eradication periodic solution would not
suffice, another requirement being that the average endemicity level be lower than a
certain value which is determined knowing the value of the EIL. Also, if the infective
pests do reproduce, but with purely vertical transmission (i.e., any offspring of an
infective is an infective) then the third equation of the model is replaced by,

I ′1 = βI1(t) + g(I1(t))S1(t) − w1I1(t) + D12I1(t) − D21I2(t),

where β denotes the (constant) birth rate for the infective compartment, then this
equation can be rearranged as,

I ′1(t) = g(I1(t))S1(t) − (w1 − β)I1(t) + D12I1(t) − D21I2(t),

which again fits our framework provided that β < w1.

3. Preliminaries

As in the single-patch case, the pulsed supply of infective pests which occurs at
t = nT and the periodic pesticide spraying which occurs at t = (n + l − 1)T
should be regarded as periodic forcings which are expected to ensure some stability
properties for a semitrivial (susceptible pest-free) periodic solution E∗, whose exis-
tence is yet to be determined. In the following, we shall introduce several notions
of Floquet theory for linear differential systems with periodic coefficients and of
time-dependent matrix exponentials which are necessary in order to discuss such
stability properties.

Let us consider the homogeneous, first order system of n linear differential equa-
tions with periodic coefficients and periodic impulsive perturbations


x′(t) = A(t)x, t �= τk, t ∈ R;

∆x = Bkx, t = τk, τk < τk+1, k ∈ Z,
(3.1)



September 6, 2010 18:39 WSPC/S0218-3390 129-JBS 00356

Impulsive Control of an IPM Model with Dispersal Between Patches 545

under the following hypotheses:

(H1) A(·) ∈ PC(R, Mn(R)) and there is T > 0 such that A(t + T ) = A(t) for all
t ≥ 0.

(H2) Bk ∈ Mn(R), det(In + Bk) �= 0 for k ∈ Z.
(H3) There is q ∈ N

∗ such that Bk+q = Bk, τk+q = τk + T for k ∈ Z.

In the above hypotheses, PC(R+, R) (PC1(R+, R)) denotes the class of real piece-
wise continuous (real piecewise continuously differentiable) functions defined on
[0,∞).

Now let Φ(t) be a fundamental matrix of (3.1). Then there is a unique nonsin-
gular matrix M ∈ Mn(R) such that Φ(t + T ) = Φ(t)M for all t ≥ 0, which is called
the monodromy matrix of (3.1) associated to Φ. Obviously, the monodromy matrix
M of (3.1) is not uniquely determined, as it depends on Φ, but all monodromy
matrices, being similar, have the same eigenvalues, called the Floquet multipliers
of (3.1). These eigenvalues determine whether Φ(t) “shrinks” or “expands” with
time, in the sense that the following stability result holds:

Lemma 3.1. (Bainov and Simeonov18) Suppose that conditions (H1)–(H3) hold.
Then,

(1) The system (3.1) is stable if and only if all Floquet multipliers λk, 1 ≤ k ≤ n,

satisfy |λk| ≤ 1 and if |λk| = 1, then to λk there corresponds a simple elementary
divisor.

(2) The system (3.1) is asymptotically stable if and only if all Floquet multipliers
λk, 1 ≤ k ≤ n, satisfy |λk| < 1.

(3) The system (3.1) is unstable if there is a Floquet multiplier λk such that
|λk| > 1.

Here, by elementary divisors of a square matrix we understand the characteristic
polynomials of its Jordan blocks. In order to use the above result, one often needs
to compute explicitly a monodromy matrix, which is feasible provided that the
fundamental matrix of the unperturbed system consisting of the first part of (3.1)
is written as a matrix exponential. Several remarks in this direction are given in
Appendix A.

4. The Dynamics of the Susceptible Pest-Eradication
Periodic Solution

Here, we shall consider that the following relation between death rates and dispersal
rates of infective pests holds:

w2 − w1 = 2(D12 − D21). (4.1)
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Note that this equality, motivated by the need of constructing the exponential of
a certain time-dependent matrix, the technical reason for which will be detailed
below, is satisfied, for instance, if w1 = w2 = w and D12 = D21 = D (i.e., if the
mortality rate of infective pests is the same in each patch and their dispersal is
proportional to the difference in their respective population sizes). We do provide
a numerical example for which this relation does not hold (Fig. 5).

Let us consider the following subsystem of (2.1), which models the dynamics of
the susceptible pest-eradication state:



I ′1(t) = −(w1 + D12)I1(t) + D21I2(t), t �= (n + l − 1)T, t �= nT ;

I ′2(t) = D12I1(t) − (w2 + D21)I2(t), t �= (n + l − 1)T, t �= nT ;

∆Ii(t) = −δIIi(t), t = (n + l − 1)T, i = 1, 2;

∆Ii(t) = µ, t = nT, i = 1, 2.

Ii(0+) = I0
i i = 1, 2.

(4.2)

The system which consists of the first four equations of (4.2) has a globally attract-
ing periodic solution (I∗, I∗)t, as shown in the following lemma. Here, we shall
denote by (x, y)t the transpose of (x, y).

Lemma 4.1. There is a T -periodic solution (I∗, I∗)t of the first four equations of
(4.2), such that,

lim
t→∞(|I1(t) − I∗(t)| + |I2(t) − I∗(t)|) = 0

for all solutions (I1, I2)t of (4.2).

The proof of Lemma 4.1 is given in Appendix B.

5. The Stability Result

In this section, we shall establish the well-posedness of the system (2.1) in a
mathematical and biological sense and discuss the stability of the susceptible
pest-eradication periodic solution E∗ = (0, 0, I∗, I∗) by using the method of small
amplitude perturbations. First of all, it is easy to see that (2.1) has a unique solu-
tion for all sets of initial data. The proofs of the following lemmas, which establish
the well-posedness of the system (2.1) in a biological sense, are immediate.

Lemma 5.1. The set (0,∞)4 is an invariant region for the system (2.1).

Thus, numbers of both susceptible and infective pests remain non-negative for all
time and no population explosion, in which pest numbers would become infinite,
can occur.
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Lemma 5.2. There is M > 0 such that Si(t) ≤ M, Ii(t) ≤ M for t ≥ 0, i = 1, 2.

We now begin to discuss the stability of E∗ = (0, 0, I∗, I∗). To this purpose, let
us denote 



S1(t) = u1(t);

S2(t) = u2(t);

I1(t) = v1(t) + I∗(t);

I2(t) = v2(t) + I∗(t),

(5.1)

where, ui, vi, i = 1, 2 are understood to be small amplitude perturbations. By
substituting (5.1) into (2.1), one obtains,




u′
1(t) = u1(t)b1(u1(t)) − g(v1(t) + I∗(t))u1(t) + d21u2(t) − d12u1(t);

u′
2(t) = u2(t)b2(u2(t)) − g(v2(t) + I∗(t))u2(t) + d12u1(t) − d21u2(t);

v′1(t) = g(v1(t)) + I∗(t))u1(t) − w1v1(t) − D12v1(t) + D21v2(t);

v′2(t) = g(v2(t)) + I∗(t))u2(t) − w2v2(t) + D12v1(t) − D21v2(t)

. (5.2)

The linearization of (5.2) around (0, 0, 0, 0)t reads as,




u′
1(t) = r1u1(t) − g(I∗(t))u1(t) + d21u2(t) − d12u1(t);

u′
2(t) = r2u2(t) − g(I∗(t))u2(t) + d12u1(t) − d21u2(t);

v′1(t) = g(I∗(t))u1(t) − wv1(t) − D12v1(t) + D21v2(t);

v′2(t) = g(I∗(t))u2(t) − wv2(t) + D12v1(t) − D21v2(t),

(5.3)

while the linearization of the jump conditions at (n + l − 1)T is,




∆u1 = −δ1u1(t), t = (n + l − 1)T ;

∆u2 = −δ2u2(t);

∆v1 = −δIv1(t);

∆v2 = −δIv2(t),

(5.4)

and the linearization of the jump conditions at nT is,

∆u1 = ∆u2 = ∆v1 = ∆v2 = 0, t = nT. (5.5)
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Let us use the following block writing of the (time-dependent) matrix M of (5.3)

M =




(r1 − d12) − g(I∗(t)) d21 0 0

d12 (r2 − d21) − g(I∗(t)) 0 0

g(I∗(t)) 0 −(w1 + d12) d21

0 g(I∗(t)) d12 −(w2 + d21)




=

(
A(t) O2

g(I∗(t))I2 −C

)
.

It is then seen that the following commutation condition holds,

A(t)
(∫ t

0

A(s)ds

)
=
(∫ t

0

A(s)ds

)
A(t), ∀ t ≥ 0.

The proof of this fact is given in Appendix C, together with a motivation for using
the same nonlinear force of infection g and the same proportional loss of infective
pests δI in each patch and also for using condition (4.1).

The fundamental matrix Φ of the linearized system (5.3) is then given by,

Φ(t) =




exp
(∫ t

0

A(s)ds

)
O2

∫ t

0

exp((t − s)C)g(I∗(s)) exp
(∫ s

0

A(τ)dτ

)
ds exp(tC)


,

to which there corresponds the following monodromy matrix:

M =




(
1 − δ1 0

0 1 − δ2

)
exp

(∫ T

0

A(s)ds

)
O2

(1 − δI)
∫ T

0

exp((T − s)C)g(I∗(s)) exp
(∫ s

0

A(τ)dτ

)
ds (1 − δI) exp(CT )


.

Since the eigenvalues of (1 − δI) exp(TC) are (1 − δI)eλ1T , (1 − δI)eλ2T ∈ (0, 1),
it follows that the stability of the susceptible pest-eradication periodic solution is
determined by the eigenvalues of the matrix,

M1 =
(

1 − δ1 0
0 1 − δ2

)
exp

(∫ T

0

A(s)ds

)
,

called in what follows the reduced monodromy matrix. We first prove that these
eigenvalues are actually positive real numbers. To this purpose, we compute
exp(

∫ T

0
A(t)dt). It is seen that,∫ T

0

A(t)dt =
(

α1 d21T

d12T α2

)
,
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where

α1 =
∫ T

0

a1(t)dt = (r1 − d12)T −
∫ T

0

g(I∗(t))dt

α2 =
∫ T

0

a2(t)dt = (r2 − d21)T −
∫ T

0

g(I∗(t))dt.

The eigenvalues of
∫ T

0
A(t)dt are then,

ξ1 =
1
2
(α1 + α2 +

√
(α1 − α2)2 + 4d12d21T 2) (5.7)

ξ2 =
1
2
(α1 + α2 −

√
(α1 − α2)2 + 4d12d21T 2), (5.8)

the two associated eigenvectors being,

v1 =
(

d21T

ξ1 − α1

)
, v2 =

(
d21T

ξ2 − α1

)
.

From (5.7), we have,

ξ1 ≥ max(α1, α2), ξ2 ≤ min(α1, α2).

Consequently, since

∫ T

0

A(s)ds =
(

d21T d21T

ξ1 − α1 ξ2 − α1

)(
ξ1 0
0 ξ2

)(
d21T d21T

ξ1 − α1 ξ2 − α1

)−1

,

it follows that,

exp

(∫ T

0

A(s)ds

)
=
(

d21T d21T

ξ1 − α1 ξ2 − α1

)(
eξ1 0
0 eξ2

)(
d21T d21T

ξ1 − α1 ξ2 − α1

)−1

,

and the reduced monodromy matrix M1 is given by,

M1 =




(1 − δ1)
(ξ1 − α1)eξ2 − (ξ2 − α1)eξ1

ξ1 − ξ2
(1 − δ1)

d21T (eξ1 − eξ2)
ξ1 − ξ2

(1 − δ2)
(ξ1 − α1)(ξ2 − α1)(eξ2 − eξ1)

d21T (ξ1 − ξ2)
(1 − δ2)

(ξ1 − α1)eξ1 − (ξ2 − α1)eξ2

ξ1 − ξ2


.

Now

µ1 =
TrM1 +

√
(Tr M1)2 − 4 detM1

2
,

µ2 =
TrM1 −

√
(Tr M1)2 − 4 detM1

2
,

(5.9)
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where

Tr M1 = (1 − δ1)
(ξ1 − α1)eξ2 − (ξ2 − α1)eξ1

ξ1 − ξ2

+ (1 − δ2)
(ξ1 − α1)eξ1 − (ξ2 − α1)eξ2

ξ1 − ξ2
, (5.10)

det M1 = (1 − δ1)(1 − δ2)eξ1+ξ2 . (5.11)

Since ξ1 − α1 ≥ 0, ξ2 − α1 ≤ 0, ξ1 − ξ2 ≥ 0, it follows that TrM1 ≥ 0, detM1 ≥ 0.
Consequently

(Tr M1)2 − 4 detM1 =
[
(1 − δ1)

(ξ1 − α1)eξ2 − (ξ2 − α1)eξ1

ξ1 − ξ2

− (1 − δ2)
(ξ1 − α1)eξ1 − (ξ2 − α1)eξ2

ξ1 − ξ2

]2

+ 4
(1 − δ1)(1 − δ2)

(ξ1 − ξ2)2
(−(ξ1 − α1)(ξ2 − α1))(eξ1 − eξ2)2

≥ 0. (5.12)

It then follows from (5.10), (5.11) and (5.12) that 0 < µ2 < µ1 and the susceptible
pest-eradication periodic solution is stable provided that,

TrM1 +
√

(Tr M1)2 − 4 detM1 ≤ 2, (5.13)

or unstable provided that the reverse inequality holds. Since the interpretation of
the stability condition (5.13) is somewhat difficult, we shall concentrate on several
particular cases. Namely, we shall discuss the case in which there is no dispersal of
pests and the case in which the chemical control is equally efficient in both patches,
the last one being further specialized.

5.1. No dispersal (d12 = d21 = D12 = D21 = 0)

In this case, necessarily w1 = w2 = w, due to (4.1), and consequently

M =




r1 − g(I∗(t)) 0 0 0
0 r2 − g(I∗(t)) 0 0

g(I∗(t)) 0 −w 0
0 g(I∗(t)) 0 −w


 ,

which implies that the monodromy matrix is,

M =




(1 − δ1)er1T−R T
0 g(I∗(t))dt 0 0 0

0 (1 − δ2)er2T−R
T
0 g(I∗(t))dt 0 0

m31 0 e−wT 0
0 m42 0 e−wT


 .
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where

m31 = (1 − δI)
∫ T

0

e−w(T−s)g(I∗(s))er1s−R s
0 g(I∗(τ))dτds

m42 = (1 − δI)
∫ T

0

e−w(T−s)g(I∗(s))er2s−R s
0 g(I∗(τ))dτds

In this case, the stability condition becomes

max((1 − δ1)er1T−R
T
0 g(I∗(t))dt, (1 − δ2)er2T−R

T
0 g(I∗(t))dt) ≤ 1,

i.e., E∗ is stable if (0, I∗) is stable in each patch in isolation, as seen from (2.5)–(2.7).

5.2. Equal efficiency of chemical control in both patches

(δ1 = δ2 = δ)

In this case, it is seen from (5.10) that,

TrM1 = (1 − δ)(eξ1 + eξ2), detM1 = (1 − δ)2eξ1+ξ2

and consequently, from (5.9),

µ1 = (1 − δ)max(eξ1 , eξ2) = (1 − δ)eξ1 , µ2 = (1 − δ)min(eξ1 , eξ2) = (1 − δ)eξ2 .

It follows that the sufficient condition for stability is ln(1 − δ) + ξ1 ≤ 0, i.e.,

E(r1, r2, d12, d21, w1, w2, g, T ) ≤ 0,

where

E(r1, r2, d12, d21, w1, w2, g, T )

= 2 ln(1 − δ) + (r1 − d12)T + (r2 − d21)T − 2
∫ T

0

g(I∗(t))dt

+
√

((r1 − d12)T − (r2 − d21)T )2 + 4d12d21T 2. (5.20)

Note that

E(r, r, d12, d21, w1, w2, g, T ) = 2 ln(1 − δ) + 2rT − 2
∫ T

0

g(I∗(t))dt,

so the dispersal of susceptible pests has no influence upon the stability of E∗,
provided that the growth rates r1, r2 are the same in each patch.

We further specialize our results for this situation. We first consider the case of
a linear force of infection g, which allows us to compute the integral term which
appears in (5.20) explicitly.

5.2.1. δ1 = δ2 = δ, g(x) = ax

In this case,
∫ T

0 g(I∗(t))dt = 2aµ
w1+w2

. The stability conditions for each patch are
ln(1 − δ) + r1T − aµ

w1
≤ 0 and ln(1 − δ) + r2T − aµ

w2
≤ 0, respectively.
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Further, for d12 = d21 = 0 (i.e., no dispersion of susceptible pests between
patches), it is seen that

E(r1, r2, 0, 0, w1, w2, a, T ) = 2 ln(1 − δ) + r1T + r2T − 4aµ

w1 + w2
+ |r1T − r2T |.

Now let us consider some special cases:
(a) Both patches are unstable without dispersion.
Then

E(r1, r2, 0, 0, w1, w2, a, T ) = ln(1 − δ) +
(

r1T − aµ

w1

)
+ ln(1 − δ) +

(
r2T − aµ

w2

)

+
(

aµ

w1
+

aµ

w2
− 4aµ

w1 + w2

)
+ |r1T − r2T |,

i.e., E∗ is unstable regardless of the values of the dispersion rates D12 and D21.
(b) Both patches are stable without dispersion.
Then

E(r1, r2, 0, 0, w1, w2, a, T ) = 2 max(ln(1 − δ) + r1T, ln(1 − δ) + r2T )− 4aµ

w1 + w2
.

Suppose max(r1T, r2T ) = r1T . Then

E(r1, r2, 0, 0, w1, w2, a, T ) = 2
(

ln(1 − δ) + r1T − aµ

w1

)
+ 2

aµ(w2 − w1)
w1(w1 + w2)

.

Consequently, the stability of E∗ is uncertain, as E ≤ 0 for w1 ≥ w2, while E

might take both positive and negative values for w1 < w2, depending on the values
of ln(1 − δ) + r1T − aµ

w1
. That is, the dispersion of infective pests has the potential

to destabilize an otherwise stable system. Note that if w1 = w2 (i.e., the system
consists of two identical patches and necessarily D12 = D21 = D), then E ≤ 0 and
E∗ is stable regardless of the value of D.

(c) One patch is stable and one patch is unstable without dispersion. Again, by
the same argument, the stability of E∗ is uncertain.

For r1 = r2 = r (i.e., the birth rates in each patch are equal) it is seen that

E(r, r, 0, 0, w1, w2, a, T ) = 2 ln(1 − δ) + 2rT − 4aµ

w1 + w2

=
(

ln(1 − δ) + rT − aµ

w1

)
+
(

ln(1 − δ) + rT − aµ

w2

)

+
(

aµ

w1
+

aµ

w2
− 4aµ

w1 + w2

)
.

By the same argument, E∗ is unstable if both patches are unstable without disper-
sion, while if both patches are stable without dispersion, then the stability of E∗ is
uncertain. Note again that the dispersal of susceptible pests has no influence upon
the stability of E∗.
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For d12 = d21 = d (i.e., the dispersal rates of susceptible pests between patches
are equal), it is seen that,

E(r1, r2, d, d, w1, w2, a, T )

= 2 ln(1 − δ) + r1T + r2T − 2dT − 4aµ

w1 + w2
+
√

(r1T − r2T )2 + 4d2T 2

=
(

ln(1 − δ) + r1T − aµ

w1

)
+
(

ln(1 − δ) + r2T − aµ

w2

)

+
(

aµ

w1
+

aµ

w2
− 4aµ

w1 + w2

)
+
√

(r1T − r2T )2 + 4d2T 2 − 2dT.

Again, E∗ is unstable if both patches are unstable without dispersion, while if both
patches are stable without dispersion, then the stability of E∗ is uncertain. We
continue our analysis with the case in which the mortality rates are equal in each
patch.

5.2.2. δ1 = δ2 = δ, w1 = w2 = w

In this case, necessarily D12 = D21 = D. Then

E(r1, r2, d12, d21, w1, w2, g, T )

= 2 ln(1 − δ) + (r1 − d12)T + (r2 − d21)T − 2
∫ T

0

g(I∗(s))ds

+
√

[((r1 − d12)T − (r2 − d21)T )]2 + 4d12d21T 2.

Note that in this case (0, I∗) represents the susceptible pest-free periodic solution
for each patch in isolation. It follows that,

E(r1, r2, d12, d21, w, w, g, T )

=

(
ln(1 − δ) + r1T −

∫ T

0

g(I∗(s))ds

)
+

(
ln(1 − δ) + r2T −

∫ T

0

g(I∗(s))ds

)

+
√

[((r1 − d12)T − (r2 − d21)T )]2 + 4d12d21T 2 − (d12T + d21T ).

(a) Both patches are stable without dispersal, i.e.,

ln(1 − δ) + r1T −
∫ T

0

g(I∗(s))ds ≤ 0, ln(1 − δ) + r2T −
∫ T

0

g(I∗(s))ds ≤ 0.

Then

E(r1, r2, d12, d21, w, w, g, T )

≤
(

ln(1 − δ) + r1T −
∫ T

0

g(I∗(s))ds

)
+

(
ln(1 − δ) + r2T −

∫ T

0

g(I∗(s))ds

)

+|r1T − r2T |
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≤ max

(
ln(1 − δ) + r1T −

∫ T

0

g(I∗(s))ds, ln(1 − δ) + r2T −
∫ T

0

g(I∗(s))ds

)

≤ 0,

i.e., neither the dispersion of susceptible pests nor the dispersion of infective pests
have the potential to destabilize the system.

(b) Both patches are unstable without dispersal, i.e.,

ln(1 − δ) + r1T −
∫ T

0

g(I∗(s))ds > 0, ln(1 − δ) + r2T −
∫ T

0

g(I∗(s))ds > 0.

Then

E(r1, r2, d12, d21, w, w, a, T )

≥
(

ln(1 − δ) + r1T −
∫ T

0

g(I∗(s))ds

)
+

(
ln(1 − δ) + r2T −

∫ T

0

g(I∗(s))ds

)

−|r1T − r2T |

≥ min

(
ln(1 − δ) + r1T −

∫ T

0

g(I∗(s))ds, ln(1 − δ) + r2T −
∫ T

0

g(I∗(s))ds

)

≥ 0,

i.e., if both patches are unstable in isolation, then E∗ is unstable.
(c) One patch is stable and the other is unstable without dispersal. Suppose

that the first patch is stable and the second is unstable, i.e., ln(1 − δ) + r1T −∫ T

0 g(I∗(s))ds ≤ 0, ln(1 − δ) + r2T − ∫ T

0 g(I∗(s))ds > 0.
If one of d12 and d21 is zero, then

E(r1, r2, d12, d21, w, w, a, T )

= 2 max

(
ln(1 − δ) + r1T −

∫ T

0

g(I∗(s))ds, ln(1 − δ) + r2T −
∫ T

0

g(I∗(s))ds

)
.

Consequently, if the dispersal rate of susceptible pests from the unstable patch to
the stable patch is large enough and the dispersal rate of susceptible pests from
the stable patch to the unstable patch is 0, then E∗ is stable, i.e., the dispersal of
susceptible pests from the unstable patch to the stable patch has the potential to
stabilize the system. Also, if the dispersal rate of susceptible pests from the unstable
patch to the stable patch is 0, then E∗ is unstable, i.e., the dispersal of infective
pests cannot stabilize the system.
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If d12 = d21 = d, then

E(r1, r2, d, d, w, w, g, T )

=

(
ln(1 − δ) + r1T −

∫ T

0

g(I∗(s))ds

)
+

(
ln(1 − δ) + r2T −

∫ T

0

g(I∗(s))ds

)

+
(r1 − r2)2T 2√

(r1 − r2)2T 2 + 4d2T 2 + 2dT

and consequently

lim
d→∞

E(r1, r2, d, d, w, w, g, T )

=

(
ln(1 − δ) + r1T −

∫ T

0

g(I∗(s))ds

)
+

(
ln(1 − δ) + r2T −

∫ T

0

g(I∗(s))ds

)
,

i.e., large equal dispersal rates of susceptible pests might stabilize the system pro-
vided that,(

ln(1 − δ) + r1T −
∫ T

0

g(I∗(s))ds

)
+

(
ln(1 − δ) + r2T −

∫ T

0

g(I∗(s))ds

)
< 0,

or fail to stabilize it provided that the opposite inequality holds.

6. Numerical Simulations

Here, all units will be arbitrary.
To illustrate our mathematical findings, we proceed to further investigate the

dynamics of the system (2.1) by using numerical simulations. To discuss the influ-
ence of dispersal upon the stability of the susceptible pest-eradication periodic solu-
tion E∗, let us first choose g(Ii) = kIi

1+αIi
and Sib(Si) = riSi(1 − Si

K )2 for i = 1, 2,
T = 1 and l = 0.5. We let d12 vary over the interval [0, 1], with 20 division points.
The solutions of the impulsively perturbed system (2.1) are integrated over 10 peri-
ods, with 110 time steps in each interval [0, lT ] and [lT, T ], using a fourth-order
Runge-Kutta method, the variation of Si and Ii, i = 1, 2 with respect to t and d12

being illustrated in what follows by means of three-dimensional plots. On the d12

and t axes, the numbers refer to the indices of the division points, rather than to
absolute values. Also, by a stable or unstable patch, respectively, we mean a patch
in which, if considered in isolation, the corresponding susceptible pest-eradication
periodic (0, I∗) for that patch is stable or unstable, respectively.

For d21 = 0.01, D12 = 0.8, D21 = 0.7, δ1 = 0.2, δ2 = 0.4, δI = 0.5, w1 = 0.1,
w2 = 0.3, µ = 0.03, r1 = 0.99, r2 = 0.01, k = 1, K = 8, it is seen that the first
patch is unstable, the second patch is stable and E∗ changes its stability for d12 in
[0, 1], going from unstable to stable at d12 = 0.75. The behavior of the trajectory
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Fig. 1. g(Ii) = kIi
1+αIi

and Sib(Si) = riSi(1 − Si
K

)2 for i = 1, 2, T = 1, l = 0.5, d21 = 0.01,

D12 = 0.8, D21 = 0.7, δ1 = 0.2, δ2 = 0.4, δI = 0.5, w1 = 0.1, w2 = 0.3, µ = 0.03, r1 = 0.99,
r2 = 0.01, k = 1, K = 8. An increase in the dispersal of susceptible pests from an unstable patch
to a stable patch has the potential to contribute to the success of the pest control strategy.

starting with S1(0) = 0.5, S2(0) = 0.8, I1(0) = 0.025, I2(0) = 0.04 is depicted in
Fig. 1. Since the dispersal of the susceptible pests from the second patch (the stable
one) to the first patch (the unstable one) is weak, an increase in the dispersal of
susceptible pests from the unstable patch to the stable patch has the potential to
stabilize E∗ and therefore to contribute to the success of the pest control strategy.
Note that the the gain of stability for E∗ occurs with an outburst in the size of the
susceptible pest class in the stable patch.

For d21 = 0.95, D12 = 0.85, D21 = 0.7, δ1 = 0.4, δ2 = 0.1, δI = 0.5, w1 = 0.1,
w2 = 0.3, µ = 0.03, r1 = 0.95, r2 = 0.9, k = 1, K = 8, it is seen that both patches
are unstable and E∗ is unstable for d12 in [0, 1]. Also, the value of the instability-
causing eigenvalue µ1 is increasing with d12. The behavior of the trajectory starting
with S1(0) = 0.5, S2(0) = 0.8, I1(0) = 0.025, I2(0) = 0.04 is depicted in Fig. 2. It is
then seen that the sizes of the susceptible pest populations in both patches increase
noticeably with the time, i.e., the dispersal of susceptible pest individuals from the
first patch to the second patch has a negative impact upon the success of the pest
control strategy, fact with can be attributed to the increase in the value of µ1.

For d21 = 0.25, D12 = 0.9, D21 = 0.8, δ1 = 0.25, δ2 = 0.2, δI = 0.9, w1 = 0.1,
w2 = 0.3, µ = 0.03, r1 = 0.25, r2 = 0.5, k = 2, K = 8, it is seen that the first patch
is stable, the second patch is unstable and E∗ changes its stability for d12 in [0, 1],
going from stable to unstable at d12 = 0.1. The behavior of the trajectory starting
with S1(0) = 0.5, S2(0) = 0.8, I1(0) = 0.025, I2(0) = 0.04 is depicted in Fig. 3,
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Fig. 2. g(Ii) = kIi
1+αIi

and Sib(Si) = riSi(1 − Si
K

)2 for i = 1, 2, T = 1, l = 0.5, d21 = 0.95,

D12 = 0.85, D21 = 0.7, δ1 = 0.4, δ2 = 0.1, δI = 0.5, w1 = 0.1, w2 = 0.3, µ = 0.03, r1 = 0.95,
r2 = 0.9, k = 1, K = 8. The dispersal of susceptible pest individuals from patch P1 to patch P2

has a negative impact upon the success of the pest control strategy.

Fig. 3. g(Ii) = kIi
1+αIi

and Sib(Si) = riSi(1 − Si
K

)2 for i = 1, 2, T = 1, l = 0.5, d21 = 0.25,

D12 = 0.9, D21 = 0.8, δ1 = 0.25, δ2 = 0.2, δI = 0.9, w1 = 0.1, w2 = 0.3, µ = 0.03, r1 = 0.25,
r2 = 0.5, k = 2, K = 8. An increase in the dispersal of susceptible pests from a stable patch to
an unstable patch has the potential to destabilize the two-patch system.

where one sees that an increase in the dispersal of susceptible pests from the stable
patch to the unstable patch has the potential to destabilize E∗.

In an attempt to understand the nature of the bifurcation of solutions of
the single-patch model system (2.2) described by Theorem 2.1, we performed a
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large number of simulations using g(I) = 200 I/(40 + I) and b(S) = r − S/1000,
T = 5, l = 0.5, δ1 = 0.8 δI/0.99, w = 10, µ = 0.03, r = 3, a choice made to
have some qualitative similarity to the case of the diamondback moth (high mor-
tality rates for a highly contagious infection, high fecundity for the pest). Note
that the period of release of infective pests and of insecticide spraying (T ) is kept
constant. This reflects the fact that climate or life-cycle rhythms, as well as economic
considerations, do not allow for complete freedom in the choice of this period in
the field. It would not make sense to spray pesticides every five minutes, for exam-
ple. The susceptible pest-eradication periodic solution was first allowed to establish
itself from initial conditions S(0) = 0 and I(0) = µ, and then perturbed at t = 400T

by adding a fixed number of susceptible pests (setting S(400T ) = 0.0001 in arbi-
trary units). The solutions were then followed for another 1000T . Convergence
was checked using the highly conservative approach of comparing the values of
S(1400T ) and I(1400T ) computed using two different step sizes, differing by a fac-
tor of two. If the absolute difference was less than a specified tolerance (0.000001),
the simulation was considered to have converged, otherwise the number of steps
was increased until reaching a fixed limit. Each colored circle in Fig. 4 is the result
of a simulation which passed this convergence check. From these data sets, values
at times nT + (after addition of infective pests according to ∆I(nT ) = µ) were

Fig. 4. An illustration of Theorem 2.1 using g(I) = 200 I/(40+I) and b(S) = r−S/1000, T = 5,
l = 0.5, δ1 = 0.8 δI/0.99, w = 10, µ = 0.03, r = 3. Each point corresponds to one simulation run
with initial conditions S(0) = 0 and I(0) = µ, perturbed at t = 400 T by assigning S(400 T ) =
0.0001. The green points indicate stability of the susceptible pest-eradication periodic solution.
The black curve is the limit case defined by (2.7). The remaining points are coloured according
to the periods of the corresponding solutions. White regions indicate failure of convergence of the
numerical method, presumably due to the solutions being chaotic.



September 6, 2010 18:39 WSPC/S0218-3390 129-JBS 00356

Impulsive Control of an IPM Model with Dispersal Between Patches 559

recorded. The final 41 such SI pairs (i.e. S(1360T +), S(1361T +), . . . , S(1400T +)
and I(1360T +), I(1361T +), . . . , I(1400T +)) were then analysed for periodicity.
According to the period detected, a color was chosen for the corresponding col-
ored circle. What one sees is that the susceptible pest-eradication periodic solu-
tion is indeed globally asymptotically stable (the green region of Fig. 4) if (2.5) is
satisfied, confirming Theorem 2.1 (this is a test of the dedicated numerical software
we wrote). Once the limit case (2.7) is passed, we see the predicted bifurcation to a
stable positive period solution, confirming Theorem 2.2. What the theorems cannot
explain is the remaining structure of the region of instability. Numerically, it seems
that period-doubling bifurcations leading to chaos are characteristic of this regime.
From a biological point of view, what is interesting to note is that increasing the
number of infective pests released (µ) will, if all other parameters are fixed to the
values given above, always lead to control. On the other hand, simply increasing
the efficiency of the periodic pesticide spraying (increasing δ1 and δI , perhaps by
simply spraying more pesticide each time) does not typically lead to control.

In a large-scale numerical study, we used the dedicated software written for
the bifurcation study above to try to find parameter sets for which the individ-
ual patches would be stable (S1(700T +) + S2(700T +) < 0.00003), but the two-
patch system not. One sample parameter set found by this automated search was
defined by δ1 = 18/25, δ2 = 18/25, δI = 891/1000, µ = 45.0, r1 = 2.781782,
r2 = 6.245837, d12 = 0.077159, d21 = 0.306883, D12 = D21 = 0.1, w1 = 10.0,
w2 = 4.951027, T = 5, l = 1/2, g(I) = I/(30 + I/1000), b1(S) = r1 − S/1000
and b2(S) = r2 −S/1000. Note that this parameter set does not satisfy the relation
between death rates and dispersal rates of pests (4.1) we have otherwise enforced for
technical reasons. The dispersal rates of susceptibles are asymmetric. Such asymme-
try could occur in the wild as the result of prevailing winds or altitude gradients and

Fig. 5. Instability of the susceptible pest-eradication periodic solution for the two-patch model,
in a case in which each patch is stable in isolation. The loss of control is due to dispersion of pests.
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directed water flow, for example. Since the parameter set was found by a numerical
simulation performed to hardware precision only (C double precision, correspond-
ing to about 17 significant decimal digits), we also ran high-precision simulations
using Maple74 computing with 400 decimal digit software floating-point numbers
and a seventh-eighth order Runge-Kutta method. These high-precision calculations
strongly support the initial calculations, leading us to believe that this parameter
set does indeed represent a case in which dispersal between otherwise stable patches
can lead to a loss of control for the two-patch system (see Fig. 5). The two-patch
solution, once control is lost, appears to be chaotic.

7. Concluding Remarks

The focus of this paper is on investigating the behavior of a two-patch integrated
pest management model which is subject to a biological control, consisting of the
periodic release of infective pests and to a chemical control, consisting of pesticide
spraying, which are applied in a periodic fashion, with the same periodicity, but
not simultaneously. An abstract, unspecified force of infection, which is possibly
nonlinear, is used to describe the spread of the disease which is propagated through
the release of infective pests, assuming that both susceptible and infective pests can
travel between patches.

Since it is assumed that the infective pests neither damage crops nor reproduce,
a measure for the success of the impulsive control strategy is represented by the
stability properties of the susceptible pest-eradication periodic solution, which we
discussed using Floquet theory for periodic and impulsive systems of ordinary dif-
ferential equations. In order for our approach to be consistent, a relation between
the death rates and the dispersal rates of infective pests has been assumed to hold.
Note that, although it has been observed that the case in which infective pests
can reproduce with totally successful vertical transmission (i.e., any offspring of an
infective pest is an infective pest) can be reformulated to fit our framework, the
case of a imperfect vertical transmission (the offspring of infective pests can be both
susceptible pests or infective pests) is not treatable using our approach.

The local stability of the susceptible pest-eradication periodic solution is
obtained in terms of a condition which is significantly more complicated than its
single-patch counterpart in Georgescu and Moroşanu.38 This gives formal support
to the intuitive notion that the patch structure induces a nontrivial layer of com-
plexity which is worth investigating.

A comparison with the corresponding results in Ref. 39 also reveals the fact that
the dispersal of infective pests bears, in some sense, a more prominent role than the
dispersal of susceptible pests. Supposing that only the susceptible pests are able to
disperse between patches, it has been seen39 that the stability or instability of both
patches in isolation is transmitted to the system at large regardless of the values of
the dispersal rates, in sense that if both patches are stable or unstable in isolation,
then the same can be said about the two-patch system. Note that, these findings
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agree with those of Takeuchi,32 who observed that, considering a patchy system
occupied by a single species, if the species is able to survive at a globally stable
equilibrium point when patches are isolated, it will continue to do so at a different
equilibrium in the presence of dispersal. However, it has been observed in our setting
that the dispersal of infective pests has the potential to destabilize an otherwise
stable system, although it cannot do so, given certain technical assumptions, if the
death rates of infective pests are the same in each patch. Also, if both patches are
unstable in isolation, then the system at large will remain unstable regardless of
the values of the dispersal rates of infective pests.

In a system with one stable and one unstable patch, it has been seen numerically
that an increase in the dispersal rate of the susceptible pest individuals from the
unstable patch to the stable patch has the potential to stabilize the susceptible
pest-eradication periodic solution E∗ and to contribute to the success of the pest
control strategy, while an increase in the dispersal rate from the stable patch to
the unstable patch has the potential to destabilize E∗ and to be detrimental to the
success of the pest control strategy. Also, in a system with two unstable patches,
an increase in the dispersal rate of susceptible pest individuals from one patch to
another can have a significant negative impact upon the success of the pest control
strategy.

Numerical experiments have revealed complex bifurcation structure in the
unstable regime of a single patch, and show that a simple increase in the amount
of pesticide applied does not guarantee control of a pest. In a system with two
patches, both stable in the absence of dispersion, it has been seen that loss of con-
trol in both patches can occur due to dispersal of pests. This was demonstrated in
our model both analytically, in the case of equal efficiency of chemical control in
both patches, and also in a numerical simulation involving asymmetric dispersion
between patches.
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Appendix: The Exponential Representation Formula

To write the fundamental matrix Φ(t) of (2.1) as a matrix exponential, we first
state several considerations regarding the exponential representation formula for
the solutions of a n-dimensional time-dependent homogeneous linear differential
system.

Let us consider the differential system with continuous coefficients

x′(t) = B(t)x(t), t ≥ 0. (A.1)

The fundamental matrix of (A.1) which satisfies Φ(0) = In can be expressed as a
Peano-Baker series of the form,

Φ(t) = In +
∫ t

0

B(s1)ds1 +
∫ t

0

B(s1)
∫ s1

0

B(s2)ds2ds1 (A.2)

+
∫ t

0

B(s1)
∫ s1

0

B(s2)
∫ s2

0

B(s3)ds3ds2ds1 + · · · .

To compute a monodromy matrix, a closed form representation of Φ would be
significantly more useful. If B commutes with its integral, i.e.,

B(t)
(∫ t

0

B(s)ds

)
=
(∫ t

0

B(s)ds

)
B(t) for t ≥ 0, (A.3)
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then the fundamental matrix Φ can be expressed as the exponential of a time-
dependent matrix, in the form,

Φ(t) = exp
(∫ t

0

B(s)ds

)
,

where, given N ∈ Mn(R), exp(N) is defined as,

exp(N) =
∞∑

k=0

1
k!

Nk.

Note that, in general, the fundamental matrix Φ given by (A.2) may be different
from exp(

∫ t

0 B(s)ds) if B does not satisfy (A.3). Also, it is easy to see that (A.3)
holds if B(t) commutes with B(s) for all t, s ≥ 0, i.e.,

B(t)B(s) = B(s)B(t) for t, s ≥ 0. (A.6)

In this regard, note that the applicability of the results in Yang and Tang43 should
be somewhat restricted, as no commutation condition is verified therein.

Appendix B: The Proof of Lemma 4.1

Proof. Let C =
(
−(w1 + D12) D21

D12 −(w2 + D21)

)
and let us also denote by (I∗1 , I∗2 )t the

desired periodic solution of (4.2). Obviously, one should have

(
I∗1 (t)
I∗2 (t)

)
=




exp(tC)

(
I∗1 (0+)

I∗2 (0+)

)
, t ∈ (0, lT ]

(1 − δI) exp(tC)

(
I∗1 (0+)

I∗2 (0+)

)
, t ∈ (lT, T ].

By the T -periodicity requirement, it is seen that the initial data should satisfy

(1 − δI)eTC

(
I∗1 (0+)
I∗2 (0+)

)
+
(

µ

µ

)
=
(

I∗1 (0+)
I∗2 (0+)

)
. (B.2)

Let

λ1,2 =
−[(w1 + D12) + (w2 + D21)] ±

√
[(w1 + D12) − (w2 + D21)]2 + 4D12D21

2
be the (real) eigenvalues of C. Since


λ1 + λ2 = −(w1 + D12) − (w2 + D21) < 0

λ1 · λ2 = (w1 + D12)(w2 + D21) − D12D21 > 0,

it follows that λ1, λ2 < 0. Consequently, the eigenvalues of exp(TC) are eλ1T ,
eλ2T ∈ (0, 1), which implies that I2 − (1 − δI) exp(TC) is invertible, and(

I∗1 (0+)
I∗2 (0+)

)
= (I2 − (1 − δI) exp(TC))−1

(
µ

µ

)
.
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Now, it is seen that I∗1 − I∗2 verifies




(I∗1 − I∗2 )′(t) = −(w1 + 2D12)(I∗1 − I∗2 )(t), t �= (n + l − 1)T, t �= nT ;

∆(I∗1 − I∗2 )(t) = −δI(I∗1 − I∗2 )(t), t = (n + l − 1)T ;

∆(I∗1 − I∗2 )(t) = 0, t = nT,

which implies that lim
t→∞(I∗1 (t) − I∗2 (t)) = 0 and, since I∗1 , I∗2 are T -periodic, I∗1 ≡

I∗2 ≡ I∗. Now, I∗ verifies




I∗ = −w1 + w2

2
I∗, t �= (n + l − 1)T, t �= nT ;

∆I∗ = −δII
∗, t = (n + l − 1)T ;

∆I∗ = µ, t = nT

and the periodicity condition (B.2) translates as,

(1 − δI)e−
w1+w2

2 T I∗(0+) + µ = I∗(0+),

which implies that

I∗(0+) =
µ

1 − (1 − δI)e−
w1+w2

2 T
.

Consequently, I∗ is given by,

I∗(t) =




µ

1 − (1 − δI)e−
w1+w2

2 T
e−

w1+w2
2 (t−(n−1)T ), t ∈ ((n − 1)T, (n + l − 1)T ]

µ(1 − δI)

1 − (1 − δI)e−
w1+w2

2 T
e−

w1+w2
2 (t−(n−1)T ), t ∈ ((n + l − 1)T, nT ]

,

and the susceptible pest-eradication periodic solution E∗ of (2.1) is given by,

E∗ = (0, 0, I∗, I∗).

Now let (I1, I2)t be a solution of (4.2). As (I1 − I∗, I2 − I∗)t satisfies the system


(
I1 − I∗

I2 − I∗

)′

(t) = C

(
I1 − I∗

I2 − I∗

)
(t), t �= (n + l − 1)T, t �= nT ;

∆

(
I1 − I∗

I2 − I∗

)
(t) = (1 − δI)

(
I1 − I∗

I2 − I∗

)
(t), t = (n + l − 1)T ;

∆

(
I1 − I∗

I2 − I∗

)
(t) = 0, t = nT

,
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it is seen that,

(
I1 − I∗

I2 − I∗

)
(t) =




(1 − δI)n−1 exp (tC)

(
I0
1 − I∗(0+)

I0
2 − I∗(0+)

)
, t ∈ ((n − 1)T, (n + l − 1)T ]

(1 − δI)n exp (tC)

(
I0
1 − I∗(0+)

I0
2 − I∗(0+)

)
, t ∈ ((n + l − 1)T, nT ].

Since the eigenvalues of exp (TC) are eλ1T , eλ2T ∈ (0, 1) and exp ((t − (n − 1)T )C)
is bounded for t ∈ ((n − 1)T, nT ], it is seen that,

lim
n→∞‖(1 − δI)n−1 exp ((n − 1)TC)‖ = 0

for any matrix norm ‖ · ‖, from which the conclusion follows.

Appendix C: The Proof of the Commutation Condition

It is seen that

A(t)
(∫ t

0

A(s)ds

)
=


a1(t)

∫ t

0 a1(s)ds + d12d21t d21

(
ta1(t) +

∫ t

0 a2(s)ds
)

d12

(
ta2(t) +

∫ t

0
a1(s)ds

)
a2(t)

∫ t

0
a2(s)ds + d12d21t


 ,

(∫ t

0

A(s)ds

)
A(t) =


a1(t)

∫ t

0
a1(s)ds + d12d21t d12

(
ta2(t) +

∫ t

0
a1(s)ds

)
d21

(
ta1(t) +

∫ t

0 a2(s)ds
)

a2(t)
∫ t

0 a2(s)ds + d12d21t




with

a1(t) = (r1 − d12) − g(I∗(t))

a2(t) = (r2 − d21) − g(I∗(t)).

Also,

ta2(t) +
∫ t

0

a1(s)ds = t(r1 − d12 + r2 − d21) − tg(I∗(t)) −
∫ t

0

g(I∗(s))ds

= ta1(t) +
∫ t

0

a2(s)ds,

from which we deduce that

A(t)
(∫ t

0

A(s)ds

)
=
(∫ t

0

A(s)ds

)
A(t), ∀ t ≥ 0.

This commutation condition represents the motivation for using the same nonlinear
force of infection g and the same proportional loss of infective pests δI in each patch
and also for using condition (4.1), meant to ensure that the limiting susceptible
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pest-eradication periodic solution has identical components in each patch. In this
regard, if different nonlinear forces of infection g1 and g2 were used in each patch
and the susceptible pest-eradication periodic solution had distinct components I∗1
and I∗2 for each patch, then the desired equality

t(g1(I∗1 (t)) − g2(I∗2 (t))) =
∫ t

0

(g1(I∗1 (s)) − g2(I∗2 (s)))ds ∀ t ≥ 0

would not necessarily hold, as this would imply that t �→ g1(I∗1 (t)) − g2(I∗2 (t)) is a
constant function. Now, for g1 = g2 = g and I∗1 = I∗2 = I∗, it is seen from (4.2)
that I∗ satisfies


(I∗)′(t) = (−w1 + D21 − D12)I∗(t) t �= (n + l − 1)T, t �= nT

(I∗)′(t) = (−w2 + D12 − D21)I∗(t)
,

from which we deduce that −w1 + D21 −D12 = −w2 + D12 −D21, i.e. (4.1) holds.


