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A B S T R A C T

We further pursue an investigation on an abstract model characterizing the dynamics of a general class
of 𝑛-species facultative mutualisms that was initiated in Georgescu et al. (2017), establishing biologically
relevant sufficient conditions for the global asymptotic stability of the coexistence equilibria. These conditions
are given in terms of per-species limits of growth-to-loss ratios computed at higher population densities,
complemented by either monotonicity or sublinearity inequalities, and are observed to hold for 𝑛-species
versions of mutualistic models in current use. The specific modeling details that require either of these
conditions being satisfied are outlined and discussed. As mutualisms can enhance species diversification and
facilitate stable coexistence via a plethora of mechanisms, it is then important to understand the stability of
speciose mutualisms, our results being of potential interest to theoretical ecologists studying the coexistence
of many interacting species and to conservationists aiming for rare species preservation.
1. Introduction

A mutualism is an interaction between two or more species that
is beneficial for all of them, fact often manifested in an increased
ability to survive, grow or reproduce. There is a staggering diversity
of mutualisms such as pollination (Richman et al., 2017), seed disper-
sal (Vander Wall et al., 2017), protection from antagonists or harsh
environmental conditions (Trager et al., 2010), and the exchange of
resources (Kang et al., 2011).

By the degree of dependency, mutualisms can be termed as obligate,
when the mutualistic interactions are essential for species survival, and
facultative, when either of the species can survive in the absence of
others. For instance, a plant that is not able to produce seeds whenever
a single pollinator species is absent engages in an obligate mutualism
with its pollinator, while a plant that can either self-pollinate or can be
pollinated by multiple species is involved in a facultative mutualism.

It is also argued that mutualisms are rarely one-to-one interactions,
each species usually interacting with multiple mutualists that may
also be expected to interact with each other (Richman et al., 2017).
Understanding the dynamics of such multi-species interactions is then
essential for an accurate assessment of coevolution as a means of
reciprocal adaptive change. It has been noted in Cosmo et al. (2023)
that coevolution can buffer against the adverse effects of environmental
changes via facilitating colonization, thereby preventing species extinc-
tion and the collapse of metacommunities. In this regard, mutualisms
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can increase the potential of dispersal, as well as allow species to
expand their niches by increasing environmental suitability. Trait com-
plementarity may then increase the overall survival and reproduction
of mutualistic partners, but may also lead to highly specialized inter-
actions in which the loss of a mutualistic partner increases the risk of
coextinction.

Mutualisms are ubiquitous in nature, representing the very founda-
tion of many ecosystems (corals and zooxanthellae, plants and myc-
orrhizal fungi, plants and pollinators, lichen-forming fungi and algae),
as noted in Asplund and Wardle (2017). Some mutualisms (eukaryotes–
mitochondria, plants–chloroplasts, angiosperms–pollinators, corals,
lichens) were found to span thousands of species and hundreds of
millions of years, the oldest mutualisms being significantly older than
the oldest antagonisms across all organisms and within a wide range
of taxa (Zeng and Wiens, 2021a). This provides strong evidence for
the long-term stability of mutualisms, fact usually associated with
mutualisms having higher overall diversification rates (Zeng and Wiens,
2021b).

In spite of their ubiquity, mutualisms have been somewhat ne-
glected by theoretical ecologists and mathematicians alike. Part of the
reason is probably historical, as the seminal works of Lotka and Volterra
discussed models for competition and predation, but not for mutualism,
although this does not entirely explain the subsequent orthodoxy of
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assuming that competition and predation are the most worthy forms of
interaction for the development of a theoretical apparatus (Vandermeer
and Goldberg, 2003). Also, even for a basic model of mutualism such
as the one in Gause and Witt (1935) the solutions grow unbounded if
the mutualistic inter-species support is strong enough also came in the
way. This helped the onset of the idea that models of mutualism are
shaky grounds, as they easily exhibit biologically unrealistic behavior.
In his celebrated paper (May, 1976), May argued that Lotka–Volterra
models are completely inadequate to represent mutualisms, as ‘‘they
tend to lead to silly solutions in which both populations undergo
unbounded exponential growth, in an orgy of mutual benefaction’’. This
underscores the idea that unboundedness of solutions is something that
looms over many models of mutualism and one of the first steps in
assessing the adequacy of such a model is proving the boundedness of
all solutions.

In Georgescu et al. (2017), a framework for proving boundedness re-
sults for 𝑛-species models of mutualism in terms of threshold quantities
that are computed at large population sizes has been assembled under
fairly general assumptions and illustrated via treating several models
of mutualism in common use. However, no attempt at establishing
stability results has been made in Georgescu et al. (2017), although
results in this direction have been obtained for the 2-dimensional case
and for an earlier version of the framework in Maxin et al. (2017),
further stability results for general 2-species models of mutualism being
obtained in Vargas-De-León (2012) and Georgescu et al. (2016) via the
use of Lyapunov functionals. Note that the approach employed in Maxin
et al. (2017) makes explicit use of Dulac criterion and, as such, is not
immediately extendable to a higher dimensional case. Also, we are not
aware of generic stability results via Lyapunov’s second method for
𝑛-species mutualisms.

A comprehensive review of historical models of pairwise mutu-
alism has been performed in Hale and Valdovinos (2021) with the
purpose of finding stability patterns that are robust across assump-
tions, models and biosystems. It has been observed that mutualisms
tend to exhibit stable coexistence at high population densities when
benefits saturate and that mutualisms with at least one obligate partner
exhibit destabilizing thresholds at low densities, diverse and well-
characterized ecological mechanisms that amount to minimal real-
ism in terms of limited benefits, accumulating costs, or accelerating
intraspecific competition and permit stable coexistence being delin-
eated. In fact, under alternative (biological, essentially amounting to
resilience) definitions of stability involving persistence of populations
or return time to equilibrium, mutualisms can be even more stable than
predation and competition (Wolin and Lawlor, 1984).

In what follows, we shall continue investigating the framework
introduced in Georgescu et al. (2017) under augmented assumptions,
making use of its mutualistic character (that leads to a cooperative
dynamical system) in order to obtain stability results. We are then
concerned with the 𝑛-species Kolmogorov model

𝑥′𝑖 = 𝑥𝑖[𝑎𝑖(𝑥𝑖) − 𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑛)], 1 ≤ 𝑖 ≤ 𝑛, (1)

in which 𝑎𝑖 and 𝑓𝑖, 𝑖 ∈ {1, 2,… , 𝑛}, are presumed to be 𝐶1 functions,
the latter being also positive. Throughout this paper, the following
assumptions will be presumed to hold true.

(L) For each 𝑖 ∈ {1, 2,… , 𝑛}, there is 𝐾𝑖 > 0 such that 𝑎𝑖(𝐾𝑖) −
𝑓𝑖(0,… , 0, 𝐾𝑖, 0,… , 0) = 0 and

(𝑥𝑖 −𝐾𝑖)
(

𝑎𝑖(𝑥𝑖) − 𝑓𝑖(0,… , 0, 𝑥𝑖, 0,… , 0)
)

< 0 for 𝑥𝑖 ≠ 𝐾𝑖.

M) For each 𝑖 ∈ {1, 2,… , 𝑛}, 𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥) ≤ 0 for 𝑥 ∈ R𝑛+ and 𝑗 ≠ 𝑖.

(NV) For each 𝑖 ∈ {1, 2,… , 𝑛}, lim inf
‖𝑥‖→∞ 𝑓𝑖(𝑥) > 0.

(C1) For each 𝑖 ∈ {1, 2,… , 𝑛}, 𝜕𝑓𝑖 (𝑥) ≥ 0 for 𝑥 ∈ R𝑛 .
𝜕𝑥𝑖 +

2 
(C2) For each 𝑖 ∈ {1, 2,… , 𝑛} and any arbitrary real constants
𝑠1, 𝑠2,… , 𝑠𝑛 > 0,

𝑑
𝑑𝑥

(

𝑎𝑖(𝑠𝑖𝑥)
𝑓𝑖(𝑠1𝑥,… , 𝑠𝑛𝑥)

)

< 0 for 𝑥 > 𝑀𝑖

where 𝑀𝑖 =𝑀𝑖(𝑠1𝑥,… , 𝑠𝑛𝑥), 𝑀𝑖 > 0.

While the 𝑎𝑖’s represent growth rates for species 𝑖, 1 ≤ 𝑖 ≤ 𝑛, the 𝑓𝑖’s
represent its removal rates and consequently the model (1) describes a
situation in which the mutualistic support leads to a reduction of the
removal rates (for instance, via establishing successful group defense
behavior). It should be noted, though, that certain models in which
the mutualistic support leads to an increase in the growth rates such
as the 𝑛-species versions of Graves et al.’s model (Graves et al., 2006)
and Wright’s model (Wright and simple, 1989) can be recasted in the
form (1) too, as it shall be illustrated below. However, this should
be regarded as a particular property of those models, as Gause–Witt
mutualisms (for instance) cannot be recasted in a similar form. Further,
for a given model, 𝑎𝑖 and 𝑓𝑖 are defined up to a function of 𝑥𝑖 only.

The logistic assumption (L) states that any species is subject to
self-limiting dynamics if all other species are absent and that the
mutualistic interactions are of a facultative type, rather than obligate,
as the extinction of any species is off the table. Consequently, the
trivial equilibrium is unstable as a direct outcome of (L) and will be
of no further concern. Assumption (C1) further clarifies the specifics
of the self-limiting dynamics, stating that if everything else is kept
constant, the removal rate of the species 𝑖, 1 ≤ 𝑖 ≤ 𝑛, is increasingly
dependent on the density of that species. The mutualistic assumption
(M) asserts the effects of mutualism, namely the fact that increasing the
population size of species 𝑗 has a positive effect on species 𝑖, 1 ≤ 𝑖, 𝑗 ≤ 𝑛,
𝑖 ≠ 𝑗. The non-vanishing removal assumption (NV) asserts the fact
that no amount of mutualistic support can completely overcome natural
removal tendencies.

As argued in Holland et al. (2002), net effects to mutualists are
likely monotonically saturating or unimodal functions of the density
of their partners. For instance, in pollination mutualisms the amount
of flowers pollinated increases with pollinator abundance, but as the
fraction of flowers pollinated approaches unity, the additional contribu-
tion of new pollinators decreases. In assumption (C2), which essentially
asserts the ‘‘relative’’ saturation of the benefits extracted from the
mutualistic interaction at higher population sizes, the constants 𝑠𝑖, 1 ≤
≤ 𝑛, represent population sizes with respect to a common measuring
nit 𝑥. This assumption makes sure that the quantities given below are
ell-defined and finite:

𝑖(𝑠1, 𝑠2,… , 𝑠𝑛) ∶= lim
𝑥→∞

𝑎𝑖(𝑠𝑖𝑥)
𝑓𝑖(𝑠1𝑥, 𝑠2𝑥,… , 𝑠𝑛𝑥)

.

ote that the constants 𝐑𝑖(𝑠1, 𝑠2,… , 𝑠𝑛), defined as limits of growth-to-
oss ratios at high population densities, can be thought as reproductive
umbers. They play a role that is essentially similar to that of a basic
eproduction number in Mathematical Epidemiology (whose definition
lso uses the growth times removal to the power of −1 paradigm).

Unlike the latter, they have a non-local nature, since they do not char-
acterize the behavior of (1) in the vicinity of any point in particular, of
concern being a problem of a very distinct nature (unbounded species
growth, rather that disease eradication).

Let us state an additional assumption, meant to ensure the bound-
edness of the solutions of (1).

(B) The boundedness assumption There are 𝛼𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑛, for
which

𝐑𝑖(𝛼1, 𝛼2,… , 𝛼𝑛) < 1, for each 𝑖 ∈ {1, 2,… , 𝑛}.

Reviewing Theorems 2.1, 2.2 and Corollary 2.1 of Georgescu et al.
(2017) (paper which, in fact, has a wider scope than proving bound-
edness), one obtains the following result that asserts the ecological

well-posedness of (1).



P. Georgescu and H. Zhang

c

p
t
i
v

m
p
H
M

1
1
v

𝑓
t
ℎ
a

2

d
s
W
s
h

𝐑

Journal of Theoretical Biology 595 (2024) 111961 
Theorem 1.1. If (B) holds, then there is at least a coexistence equilibrium
of (1). Also, all solutions of (1) starting in int(R𝑛+) ultimately enter a
ompact region 𝐴 of int(R𝑛+).

The meaning of Theorem 1.1 is that if losses exceed gains at high
opulation densities, as quantified in assumption (B), then all popula-
ions sizes remain bounded for all future time. Note that Theorem 1.1 is,
n a sense, nontrivial, since it ensures the boundedness of all solutions
ia imposing conditions for certain relative population sizes. Further,

this result is formulated in terms of 𝑛 parameters (conditions), rather
than in terms of a single one, as it is the case for the usual results
concerning the stability of the equilibria in Mathematical Epidemiology
(for obvious reasons, we think of boundedness as a precursor to the sta-
bility of positive equilibria). It is then natural to think about situations
in which the boundedness conditions can be formulated in terms of a
single parameter.

In what follows, we shall augment condition (B) with either sub-
linearity or monotonicity conditions and use a monotone dynamical
systems approach to establish stability results for the coexistence equi-
libria of our model (1). To this purpose, the boundedness of solutions
is seen in Section 2 to be of paramount importance, as it drastically
limits down a certain trichotomy perspective provided by the monotone
dynamical systems approach. Next, we use in Section 3 these stability
results to discuss several higher-dimensional mutualistic models whose
2-dimensional versions are in current use, outlining the specific details
that require a certain form of the stability results. Finally, Section 4
is dedicated to further comments regarding the applicability of our
results.

It has been argued in Gómez and Verdú (2012) via an analysis of
phylogenetic, neontologic and paleontological information that mutu-
alisms with plants fueled primate diversification by hampering extinc-
tion and increasing geographical speciation. More generally, Chomicki
et al. (2019) listed and commented upon a plethora of mechanisms
by which mutualisms are able to modulate species richness, viewed as
a metric of diversification. It was noted that mutualisms can enhance
diversification directly, via partner shifts or host-symbiont genetic in-
compatibility, or indirectly, via increasing ecological opportunities,
or via decreasing extinction by enlarging range size or enhancing
individual survival. If mutualisms influence diversification, it is then
important to understand the stability of speciose mutualisms, which is
the eventual goal of this paper. Conversely, mutualisms can decrease
lineage diversification by means of ‘‘stabilizing coevolution’’ processes,
via increased trait matching, restriction by hosts of the genetic diversity
of the symbiont and via increasing the risk of extinction by decreasing
the realized niche of a species, reducing niche breadth, or associating
partner loss with a high fitness cost.

Further, as discussed in Chomicki et al. (2019), mutualisms can pro-
mote stable coexistence via altering the outcomes of competition, either
by increasing negative intraspecific interactions (promoting asymmetry
in the delivery of benefits), or by decreasing negative interspecific
interactions (increasing niche differentiation and partitioning, promot-
ing competition-colonization trade-offs among partners). They can also
promote stable coexistence via equalizing effects that lead partnering
species to be more equal in their competitive abilities, notably by lo-
cally altering competitive hierarchies across a variety of environmental
conditions. As a result, a partner that is unsuitable under a certain set
of conditions may become ideal under a different set, leading to species
coexistence and ecosystem resilience as the environmental conditions
change through space and time (Chamberlain et al., 2014).

Conversely (although this is a comparatively rarer outcome), mu-
tualisms could restrict species coexistence by limiting dispersal and
increasing relatedness in clustered populations of mutualists (Akçay,
2017), and by creating positive feedback that promotes the dominant
species, thereby negatively impacting species coexistence (Báez et al.,
2016). It then becomes of paramount importance to delineate and
analyze the potential mechanisms of mutualism-facilitated stabilization
3 
and coexistence within a given ecosystem, our results being then of
potential interest to theoretical ecologists studying the coexistence of
many interacting species and to conservationists aiming for rare species
preservation.

2. Main results

For the sake of completeness, let us introduce a few notions and
notations. For 𝑥, 𝑦 ∈ R𝑛, we shall write 𝑥 ≤ 𝑦 if 𝑦 − 𝑥 ∈ R𝑛+, 𝑥 < 𝑦 if
𝑦 − 𝑥 ∈ R𝑛+∖ {0} and 𝑥 ≪ 𝑦 if 𝑦 − 𝑥 ∈ int(R𝑛+).

We shall denote by 𝜎(𝐴) the spectrum (eigenset) of a given square
atrix 𝐴 and by 𝑠(𝐴) its spectral abscissa, defined as the maximal real
art of an eigenvalue. Accordingly, a square matrix 𝐴 will be called
urwitz stable if 𝑠(𝐴) < 0. Further, a square matrix 𝐴 will be called a
etzler matrix if all its off-diagonal components are non-negative.

Given a 𝑛 × 𝑛 matrix 𝐴, one defines a directed graph 𝐺(𝐴) with
, 2,… , 𝑛 as its vertices in such a way that there is an arc from 𝑗 to 𝑘,
≤ 𝑗, 𝑘 ≤ 𝑛, iff 𝑎𝑗𝑘 ≠ 0. 𝐴 is then called irreducible if any two distinct
ertices of 𝐺(𝐴) can be joined by an oriented path.

For 𝑓 ∶ R𝑛+ → R𝑛, one denotes by 𝐷𝑓 (𝑥) the Jacobian matrix of
computed at 𝑥. If 𝐷𝑓 (𝑥) is a Metzler matrix for all 𝑥 ∈ R𝑛+, 𝑓 is

hen called cooperative. We shall also say that ℎ is sublinear on R𝑛+ if
(𝛼𝑥) > 𝛼ℎ(𝑥) for any 𝛼 ∈ (0, 1) and 𝑥 ≫ 0. Obviously, if ℎ is concave
nd ℎ(0) = 0, then ℎ is also sublinear.

.1. Conditions leading to boundedness

Unfortunately, although conceptually meaningful, condition (B) is
ifficult to verify in concrete situations, as it requires finding not a
ingle one but 𝑛 parameters satisfying not-so-transparent conditions.
e shall now comment upon its reformulation in a certain specific

ituation. To this goal, let us assume that the reproductive numbers
ave the quasi-polynomial expression

𝑖(𝑠1, 𝑠2,… , 𝑠𝑛) =
𝑛
∑

𝑘=1,𝑘≠𝑖
𝐶𝑖𝑘

(

𝑠𝑘
𝑠𝑖

)𝑝
, 𝑖 ∈ {1, 2,… , 𝑛}, (2)

motivated by a certain specific model (Wolin and Lawlor, 1984) that
will be indicated in Section 3, with

𝐶𝑖𝑘 ≥ 0 for all 1 ≤ 𝑖 ≠ 𝑘 ≤ 𝑛.

As done in Georgescu et al. (2017), define the Metzler matrix 𝐶 by

𝐶 =

⎛

⎜

⎜

⎜

⎜

⎝

−1 𝐶12 … 𝐶1𝑛
𝐶21 −1 … 𝐶2𝑛
⋮ ⋮ ⋮
𝐶𝑛1 𝐶𝑛2 … −1

⎞

⎟

⎟

⎟

⎟

⎠

. (3)

and observe (Georgescu et al., 2017, Theorem 3.1) that condition (B)
is equivalent to condition (H) below.

(H) The matrix 𝐶 is Hurwitz stable.

Note that the boundedness of (1) is now expressed in terms of a matrix-
related single parameter, the spectral abscissa of 𝐶, which brings the
situation more in line with the definition and usage of a (single) basic
reproduction number in Mathematical Epidemiology. Since the matrix
𝐶 is a Metzler matrix whose main diagonal elements are negative, this
is further equivalent to the following more palatable practical stability
condition (Poole and Boullion (1974), Theorem 2.1).

(S) The 𝑖th leading minor of 𝐶 has sign (−1)𝑖, 𝑖 ∈ {1, 2,… , 𝑛}.

Further, we observe (Georgescu et al., 2017, Theorem 3.1) that condi-
tion (U) below implies the existence of unbounded solutions.
(U) The matrix 𝐶 is Hurwitz unstable and irreducible.
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2.2. Stability under sublinearity conditions

Let us now turn our attention back to system (1). No claim towards
the uniqueness of the coexistence equilibrium or its stability have been
made in Georgescu et al. (2017), as those specific objectives are not
within the reach of the approach employed therein. However, having
in view that (1) is cooperative in the sense of the definition given above,
boundedness is a decisive first step towards stability, as seen from the
following trichotomy result, established in Zhao and Jing (1996).

Theorem 2.1 (Zhao and Jing, 1996). Given the system 𝑥′ = ℎ(𝑥), ℎ ∶
R𝑛+ → R𝑛 being a 𝐶1 map, assume that

1. ℎ is cooperative and 𝐷ℎ(𝑥) is irreducible for all 𝑥 ∈ R𝑛+;
2. ℎ(0) = 0 and ℎ𝑖(𝑥) ≥ 0 for any 𝑥 ∈ R𝑛+ such that 𝑥𝑖 = 0,

𝑖 ∈ {1, 2,… , 𝑛};
3. ℎ is strictly sublinear.

hen the following statements hold.

1. If 𝑠(𝐷ℎ(0)) ≤ 0, then 𝑥 = 0 is globally asymptotically stable in R𝑛+.
2. If 𝑠(𝐷ℎ(0)) > 0 and 𝜓(𝑡, 𝑦0) is the saturated solution of 𝑥′ = ℎ(𝑥)
starting in 𝑦0, then either

(a) For all 𝑦0 ∈ R𝑛+∖{0}, lim𝑡→∞ |𝜓(𝑡, 𝑦0)| = +∞, or
(b) The system 𝑥′ = ℎ(𝑥) admits a unique coexistence equilibrium

𝑥∗ which is globally asymptotically stable in R𝑛+∖{0}.

Under the hypotheses of Theorem 2.1, once 𝑠(𝐷ℎ(0)) > 0 and the
boundedness of the trajectories is ensured, then the global asymptotic
stability of the coexistence equilibrium follows. Also, the existence of
a coexistence equilibrium or the availability of a persistence result
preclude the global asymptotic stability of the origin.

If the sublinearity assumption is dropped and the positivity of
the spectral abscissa 𝑠(𝐷ℎ(0)) is a priori assumed, then the following
dichotomic attractivity result holds.

Theorem 2.2 (Zhao and Jing, 1996). Given the system 𝑥′ = ℎ(𝑥), with
ℎ ∶ R𝑛+ → R𝑛 being a 𝐶1 map, assume that

1. ℎ is cooperative and 𝐷ℎ(𝑥) is irreducible for all 𝑥 ∈ R𝑛+;
2. ℎ(0) = 0 and ℎ𝑖(𝑥) ≥ 0 for all 𝑥 ∈ R𝑛+ such that 𝑥𝑖 = 0,

𝑖 ∈ {1, 2,… , 𝑛};
3. 𝑠(𝐷ℎ(0)) > 0.

Then either

1. For all 𝑦0 ∈ R𝑛+∖{0}, lim𝑡→∞ |𝜓(𝑡, 𝑦0)| = +∞, or
2. There is a coexistence equilibrium 𝑥∗ of the system 𝑥′ = ℎ(𝑥) such
that for each 𝑦0 satisfying 0 < 𝑦0 ≤ 𝑥∗, lim𝑡→∞ 𝜓(𝑡, 𝑦0) = 𝑥∗.
Moreover, for any 𝑦0 > 0, lim inf 𝑡→∞ 𝜓(𝑡, 𝑦0) ≥ 𝑥∗.

For the system (1) of concern, denoting by ℎ its right-hand side, we
note that ℎ(0) = 0, ℎ is cooperative due to (M) and

𝐷ℎ(𝑥) = 𝐷(𝑥) − 𝐽 (𝑥), (4)

with

𝐷(𝑥) = diag(𝑎𝑖(𝑥𝑖) + 𝑥𝑖𝑎′𝑖(𝑥𝑖) − 𝑓𝑖(𝑥), 1 ≤ 𝑖 ≤ 𝑛) (5)

𝐽 (𝑥) = (𝐽𝑖𝑗 (𝑥))1≤𝑖,𝑗≤𝑛, 𝐽𝑖𝑗 (𝑥) = 𝑥𝑖
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥). (6)

lso, the sublinearity condition reduces to

(𝛼𝑥) − 𝑓 (𝛼𝑥) > 𝑎(𝑥) − 𝑓 (𝑥), for any 𝛼 ∈ (0, 1) and 𝑥 ≫ 0, (SL)

here 𝑎 and 𝑓 are defined by 𝑎(𝑥) = (𝑎𝑖(𝑥𝑖))1≤𝑖≤𝑛 and 𝑓 (𝑥) = (𝑓𝑖(𝑥))1≤𝑖≤𝑛,
respectively. It is then seen that the following results hold.
 s

4 
Theorem 2.3. Assume that 𝐷(𝑥) − 𝐽 (𝑥) is irreducible for all 𝑥 ∈ int(R𝑛+)
nd 𝑠(𝐷(0)) > 0. Then either each solution of (1) that starts in R𝑛+∖0 is
nbounded or there is a coexistence equilibrium 𝑥∗ of (1) such that for any
with 0 ≪ 𝑥 ≤ 𝑥∗, lim𝑡→∞ 𝜓(𝑡, 𝑥) = 𝑥∗. Moreover, in the latter case, for
ny 𝑥 ≫ 0, lim inf 𝑡→∞ 𝜓(𝑡, 𝑥) ≥ 𝑥∗. Further, if (SL) holds, then 𝑥∗ is unique
nd globally asymptotically stable in int(R𝑛+).

Note that the persistence of the system (an outcome of (L)) is impor-
ant since, as seen below, 𝐷(𝑥)−𝐽 (𝑥) may not necessarily be irreducible
n the boundary of R𝑛+. From a biological viewpoint, 𝑠(𝐷(0)) > 0
haracterizes the fact that (1) is indeed a facultative mutualism.

One then obtains the following practical stability criterion which is
o be used when the reproductive numbers have the quasi-polynomial
orm (2).

heorem 2.4. Assume that the 𝐑𝑖’s are given by (2), 𝐷(𝑥) − 𝐽 (𝑥) is
rreducible for all 𝑥 ∈ int(R𝑛+) and 𝑠(𝐷(0)) > 0.

1. If 𝐶 is Hurwitz stable, then there is a coexistence equilibrium 𝑥∗ of
(1) such that for any 𝑥 with 0 ≪ 𝑥 ≤ 𝑥∗, lim𝑡→∞ 𝜓(𝑡, 𝑥) = 𝑥∗.
Moreover, for any 𝑥 ≫ 0, lim inf 𝑡→∞ 𝜓(𝑡, 𝑥) ≥ 𝑥∗. Further, if (SL)
holds, then 𝑥∗ is unique and globally asymptotically stable in int(R𝑛+).

2. If 𝐶 is Hurwitz unstable and irreducible, then each solution of (1)
that starts in R𝑛+∖0 grows unbounded.

.3. Stability under monotonicity conditions

It will be seen in Section 3 that the sublinearity condition is not
lways satisfied in concrete situations. To deal with this shortcoming,
et us note that the following related result which replaces sublinearity
nd irreducibility with a monotonicity condition for the associated
acobian has been established in Smith (1986).

heorem 2.5. Given the system
′
𝑖 = 𝑥𝑖𝑔𝑖(𝑥1, 𝑥2,… , 𝑥𝑛), 1 ≤ 𝑖 ≤ 𝑛, (7)

ssume the following hypotheses

H1) 𝐺 is cooperative;

H2) 𝐺(0)≫ 0;
H3) 𝐷𝐺(𝑦) ≥ 𝐷𝐺(𝑧) when 𝑧 ≥ 𝑦 ≥ 0,

being the vector-valued function defined by 𝐺(𝑥) = (𝑔𝑖(𝑥))1≤𝑖≤𝑛. If (7)
as an equilibrium point in int(R𝑛+), then this equilibrium point is unique in
nt(R𝑛+) and also globally asymptotically stable in int(R𝑛+).

Note that hypotheses (H1)–(H3) do not imply by themselves that
here is a coexistence equilibrium by themselves; this should be estab-
ished separately. Condition (H2), dealing in an ecological setting with
he per capita growth rates in near-extinction conditions, ensures that
7) describes a facultative mutualism too. With a view to characterize
he dynamics of (1), let us define

0(𝑥) = diag(𝑎′𝑖(𝑥𝑖) + 𝑥𝑖𝑎
′
𝑖(𝑥𝑖) − 𝑓𝑖(𝑥) 1 ≤ 𝑖 ≤ 𝑛).

rom Theorem 2.5, one obtains that the following result holds true.

heorem 2.6. If (B) holds and

H2p) 𝑎(0) − 𝑓 (0)≫ 0;

H3p) 𝐷0(𝑦) −𝐷𝑓 (𝑦) ≥ 𝐷0(𝑧) −𝐷𝑓 (𝑧) when 𝑧 ≥ 𝑦 ≥ 0,

hen (1) has a unique coexistence equilibrium which is globally asymptoti-
ally stable in int(R𝑛+).

As it will be seen below, Theorems 2.3 and 2.6 have distinct areas
f applicability, even when the former is particularized to Kolmogorov
ystems (note that Theorem 2.3 can be applied to systems which are
ot in Kolmogorov form too). This, in turn, has the following practical

tability consequence.



P. Georgescu and H. Zhang

i

i
i
𝑛
t
w
m
m
t

𝑎

n

𝐑

I
t

T
g

w
𝑛

𝐴

t

s

R
s

(

Journal of Theoretical Biology 595 (2024) 111961 
Theorem 2.7. Assume that the 𝐑𝑖’s are given by (2) and (S) holds, together
with (H2p) and (H3p). Then (1) has a unique coexistence equilibrium which
s globally asymptotically stable in int(R𝑛+).

3. Applications

In what follows, we shall illustrate the applicability of our frame-
work by discussing the stability of the coexistence equilibria for 𝑛-
species versions of several widely used models of mutualism.

3.1. Wolin and Lawlor’s model

Let us consider the 𝑛-species mutualistic model

𝑥′𝑖 = 𝑟𝑖𝑥𝑖

[

𝐴𝑖 −
𝑥𝑝𝑖

𝐾𝑖 +
∑

𝑘≠𝑖 𝑏𝑖𝑘𝑥
𝑝
𝑘

]

, 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ≥ 1, (8)

ntroduced in Georgescu et al. (2017) to enhance the model proposed
n Wolin and Lawlor (1984) and May (1976), to which it reduces when
= 2 and 𝑝 = 1. The model of Wolin and Lawlor (1984) assumes

hat the mutualism increases the carrying capacity of the environment
ith respect to the recipient species (in other words, benefits from
utualism reduce negative density dependence) and that the effects of
utualism are the most prominent at high recipient density. It is seen

hat

𝑖(𝑥𝑖) = 𝑟𝑖𝐴𝑖, 𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑛) =
𝑟𝑖𝑥

𝑝
𝑖

𝐾𝑖 +
∑

𝑘≠𝑖 𝑏𝑖𝑘𝑥
𝑝
𝑘

which implies that

𝑎𝑖(𝑠𝑖𝑥)
𝑓𝑖(𝑠1𝑥, 𝑠2𝑥,… , 𝑠𝑛𝑥)

= 𝐴𝑖

[

𝐾𝑖
(𝑠𝑖𝑥)𝑝

+
∑

𝑘≠𝑖
𝑏𝑖𝑘

(

𝑠𝑘
𝑠𝑖

)𝑝
]

;

ote that this decreases as a function of 𝑥. Consequently,

𝑖(𝑠1, 𝑠2,… , 𝑠𝑛) = lim
𝑠→∞

𝐴𝑖

[

𝐾𝑖
(𝑠𝑖𝑥)𝑝

+
∑

𝑘≠𝑖
𝑏𝑖𝑘

(

𝑠𝑘
𝑠𝑖

)𝑝
]

= 𝐴𝑖

[

∑

𝑘≠𝑖
𝑏𝑖𝑘

(

𝑠𝑘
𝑠𝑖

)𝑝
]

,

the associated matrix 𝐶 having the form

𝐶 =

⎛

⎜

⎜

⎜

⎜

⎝

−1 𝐴1𝑏12 … 𝐴1𝑏1𝑛
𝐴2𝑏21 −1 … 𝐴2𝑏2𝑛
⋮

𝐴𝑛𝑏𝑛1 𝐴𝑛𝑏𝑛2 … −1

⎞

⎟

⎟

⎟

⎟

⎠

.

Also,

𝑎𝑖(𝛼𝑥) − 𝑓𝑖(𝛼𝑥) > 𝑎𝑖(𝑥) − 𝑓𝑖(𝑥)

⇔
(𝛼𝑥𝑖)𝑝

𝐾𝑖 +
∑

𝑘≠𝑖 𝑏𝑖𝑘(𝛼𝑥𝑘)𝑝
<

𝑥𝑝𝑖
𝐾𝑖 +

∑

𝑘≠𝑖 𝑏𝑖𝑘𝑥
𝑝
𝑘

⇔ 𝐾𝑖 +
∑

𝑘≠𝑖
𝑏𝑖𝑘(𝛼𝑥𝑘)𝑝 > 𝐾𝑖𝛼𝑝 +

∑

𝑘≠𝑖
𝑏𝑖𝑘(𝛼𝑥𝑘)𝑝.

which holds true for all 𝛼 ∈ (0, 1) and 𝑥 ≫ 0. It is also seen that
𝐷(𝑥) − 𝐽 (𝑥) is given by

(𝐷(𝑥) − 𝐽 (𝑥))𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟𝑖

[

𝐴𝑖 −
(𝑝 + 1)𝑥𝑝𝑖

𝐾𝑖 +
∑

𝑘≠𝑖 𝑏𝑖𝑘𝑥
𝑝
𝑘

]

, 𝑖 = 𝑗

𝑟𝑖𝑝𝑏𝑖𝑗𝑥
𝑝+1
𝑖 𝑥𝑝−1𝑗

(

𝐾𝑖 +
∑

𝑘≠𝑖 𝑏𝑖𝑘𝑥
𝑝
𝑘
)2
, 𝑖 ≠ 𝑗,

which implies that 𝐷(𝑥) − 𝐽 (𝑥) is irreducible for any 𝑥 ∈ int(R𝑛+), since
all off-diagonal elements are nonzero. Note that 𝐷(𝑥) −𝐽 (𝑥) may be re-
ducible on the boundary of R𝑛+ (for instance, 𝐷(𝑥∗)−𝐽 (𝑥∗) is reducible,
with 𝑥∗ = ( 𝑝

√

𝐾1𝐴1
𝑝+1 , 0, 0… , 0)). Further,𝐷(0)−𝐽 (0) = diag(𝑟𝑖𝐴𝑖), 1 ≤ 𝑖 ≤ 𝑛.

t then follows that 𝑠(𝐷(0) − 𝐽 (0)) = max1≤1≤𝑛 𝑟𝑖𝐴𝑖 > 0. Consequently,
he following stability result holds.
5 
heorem 3.1. There is a unique coexistence equilibrium of (8) which is
lobally asymptotically stable in int(R𝑛+) provided that

|

|

|

|

|

−1 𝐴1𝑏12
𝐴2𝑏21 −1

|

|

|

|

|

> 0,
|

|

|

|

|

|

|

−1 𝐴1𝑏12 𝐴1𝑏13
𝐴2𝑏21 −1 𝐴2𝑏23
𝐴3𝑏31 𝐴3𝑏32 −1

|

|

|

|

|

|

|

< 0, … ,

(−1)𝑛

|

|

|

|

|

|

|

|

|

−1 𝐴1𝑏12 … 𝐴1𝑏1𝑛
𝐴2𝑏21 −1 … 𝐴2𝑏2𝑛
⋮

𝐴𝑛𝑏𝑛1 𝐴𝑛𝑏𝑛2 … −1

|

|

|

|

|

|

|

|

|

> 0.

Note that for 𝑛 = 2 the stability condition is 𝐴1𝐴2𝑏12𝑏21 < 1, in
hich case we obtain (Vargas-De-León, 2012, Proposition 1). Also, for
= 3, the stability conditions become

1𝐴2𝑏12𝑏21 < 1, 𝐴1𝐴2𝑏12𝑏21 + 𝐴1𝐴3𝑏13𝑏31 + 𝐴2𝐴3𝑏23𝑏32
+ 𝐴1𝐴2𝐴3(𝑏12𝑏23𝑏31 + 𝑏13𝑏32𝑏21) < 1,

he second condition implying the first one.
Let us now note that while the hypotheses of Theorem 2.3 are

atisfied, those of Theorem 2.6 are not.

emark 3.1. Note that not all hypotheses of Theorem 2.6 are satisfied,
ince in this case

𝐷0(𝑥) −𝐷𝑓 (𝑥))𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝑟𝑖𝑝𝑥

𝑝−1
𝑖

𝐾𝑖 +
∑

𝑘≠𝑖 𝑏𝑖𝑘𝑥
𝑝
𝑘

, 𝑖 = 𝑗

𝑟𝑖𝑝𝑏𝑖𝑗𝑥
𝑝
𝑖 𝑥
𝑝−1
𝑗

(

𝐾𝑖 +
∑

𝑘≠𝑖 𝑏𝑖𝑘𝑥
𝑝
𝑘
)2
, 𝑖 ≠ 𝑗.

Consequently, condition (H3p) will not hold.

To illustrate Theorem 3.1, we have represented in Fig. 1 the regions
of the 𝐴1-𝐴2 parameter space that lead to a globally stable coexistence
equilibrium for a 3-dimensional version of (8). For Fig. 1, 𝛼12 = 0.1,
𝛼21 = 0.3, 𝛼13 = 0.4, 𝛼31 = 0.2, 𝛼23 = 0.6, 𝛼32 = 0.2, while 𝐴3 = 0.2
(for (a)), 𝐴3 = 0.6 (for (b)), 𝐴3 = 1.5 (for (c)). Note that our parameter
values are chosen for convenience and do not immediately correspond
to any concrete mutualistic interaction, much like the values chosen for
the other figures.

3.2. Wolin and Lawlor’s model with a hyperconnected species

Let us now consider a particularization of (8) (also of concern
in Georgescu et al. (2017)) which describes the situation in which the
𝑛th species is ‘‘hyper-connected’’, in the sense that it interacts with
species 1, 2,… , 𝑛− 1 that do not interact between themselves (see also
Vargas-De-León (2015)). This may occur when the 𝑛th species is an
exclusive pollinator for the other (plant) species 1, 2,… , 𝑛 − 1. In this
case, (8) reduces to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑥′1 = 𝑟1𝑥1

(

𝐴1 −
𝑥𝑝1

𝐾1 + 𝑏1𝑛𝑥
𝑝
𝑛

)

,

𝑥′2 = 𝑟2𝑥2

(

𝐴2 −
𝑥𝑝2

𝐾2 + 𝑏2𝑛𝑥
𝑝
𝑛

)

,

⋮

𝑥′𝑛 = 𝑟𝑛𝑥𝑛

(

𝐴𝑛 −
𝑥𝑝𝑛

𝐾𝑛 + 𝑏𝑛1𝑥
𝑝
1 +⋯ + 𝑏𝑛𝑛−1𝑥

𝑝
𝑛−1

)

(9)

and consequently

𝐶 =

⎛

⎜

⎜

⎜

⎜

⎜

−1 0 … 0 𝐴1𝑏1𝑛
0 −1 … 0 𝐴2𝑏2𝑛
⋮
0 0 … −1 𝐴𝑛−1𝑏𝑛−1𝑛

⎞

⎟

⎟

⎟

⎟

⎟

.

⎝
𝐴𝑛𝑏𝑛1 𝐴𝑛𝑏𝑛2 … 𝐴𝑛𝑏𝑛𝑛−1 −1

⎠
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Fig. 1. Regions in the 𝐴1–𝐴2 plane leading to a globally stable coexistence equilibrium for a 3-dimensional version of (8) and distinct values of 𝐴3.
Observe that the 𝑝th order leading minors are equal to (−1)𝑝 for 𝑝 ∈
{1, 2,… , 𝑛 − 1}, and that

det 𝐶 = (−1)𝑛−1[−1 + 𝐴𝑛(𝐴1𝑏1𝑛𝑏𝑛1 + 𝐴2𝑏2𝑛𝑏𝑛2 +⋯ + 𝐴𝑛−1𝑏𝑛−1𝑛𝑏𝑛𝑛−1)].

This leads directly to the next practical stability result, this time ex-
pressed in terms of a single inequality.

Theorem 3.2. There is a unique coexistence equilibrium of (9) which is
globally asymptotically stable in int(R𝑛+) provided that

𝐴𝑛(𝐴1𝑏1𝑛𝑏𝑛1 + 𝐴2𝑏2𝑛𝑏𝑛2 +⋯ + 𝐴𝑛−1𝑏𝑛−1𝑛𝑏𝑛𝑛−1) < 1.

To illustrate Theorem 3.2, we have represented in Fig. 2 the regions
of the 𝐴1-𝐴2 parameter space that lead to a globally stable coexistence
equilibrium for a 3-dimensional version of (9). For Fig. 2, 𝛼13 = 0.5,
𝛼31 = 0.8, 𝛼23 = 0.6, 𝛼32 = 0.1, while 𝐴3 = 0.2 (for (a)), 𝐴3 = 0.6 (for
(b)), 𝐴3 = 1.5 (for (c)).

3.3. Wright’s model

With a view to using our previously established stability results, let
us now consider the model

𝑥′𝑖 = 𝑟𝑖𝑥𝑖

(

1 −
𝑥𝑖
𝐾𝑖

)

+ 𝑥𝑖
∑

𝑘≠𝑖

𝛽𝑖𝑘𝑥𝑘
𝛼𝑖𝑘 + 𝑥𝑘

, 1 ≤ 𝑖 ≤ 𝑛. (10)

introduced in Georgescu et al. (2017) as a 𝑛-species version of the
model proposed in Wright and simple (1989). In (10), as well as in its
initial version proposed in Wright and simple (1989), both suitable to
describe pollination or other foraging mutualisms, per capitamutualistic
benefits saturate as partner density increases in a similar manner to
what happens when foraging on resources due to resource handling or
uptake rate. Note that in (10) the per capita mutualistic benefits are a
priori bounded, regardless of partner density.
6 
At a glance, (10) does not fit the framework (1), due to the mu-
tualistic contribution being expressed as an increase in predation and
having the ‘‘wrong’’ sign. Let us first restate (10) as

𝑥′𝑖 = 𝑥𝑖

[

(𝑟𝑖 +
∑

𝑗≠𝑖
𝛽𝑖𝑗 ) −

(

𝑟𝑖𝑥𝑖
𝐾𝑖

+
∑

𝑗≠𝑖

𝛽𝑖𝑗𝛼𝑖𝑗
𝛼𝑖𝑗 + 𝑥𝑗

)]

, 1 ≤ 𝑖 ≤ 𝑛. (11)

In these settings,

𝑎𝑖(𝑥𝑖) = 𝑟𝑖 +
∑

𝑘≠𝑖
𝛽𝑖𝑘, 𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑛) =

𝑟𝑖𝑥𝑖
𝐾𝑖

+
∑

𝑘≠𝑖

𝛽𝑖𝑘𝛼𝑖𝑘
𝛼𝑖𝑘 + 𝑥𝑘

and consequently

𝑎𝑖(𝑠𝑖𝑥)
𝑓𝑖(𝑠1𝑥, 𝑠2𝑥,… , 𝑠𝑛𝑥)

=
𝑟𝑖 +

∑

𝑘≠𝑖 𝛽𝑖𝑘
𝑟𝑖𝑠𝑖𝑥
𝐾𝑖

+
∑

𝑘≠𝑖
𝛽𝑖𝑘𝛼𝑖𝑘
𝛼𝑖𝑘+𝑠𝑘𝑥

.

Note that ultimately decreases as a function of 𝑥. It then follows that

𝐑𝑖(𝑠1, 𝑠2,… , 𝑠𝑛) = lim
𝑥→∞

𝑟𝑖 +
∑

𝑘≠𝑖 𝛽𝑖𝑘
𝑟𝑖𝑠𝑖𝑥
𝐾𝑖

+
∑

𝑘≠𝑖
𝛽𝑖𝑘𝛼𝑖𝑘
𝛼𝑖𝑘+𝑠𝑘𝑥

= 0, 1 ≤ 𝑖 ≤ 𝑛,

the matrix 𝐶 being then given by

𝐶 = −𝐼𝑛,

which is Hurwitz stable.
Note that

𝑎𝑖(𝛼𝑥) − 𝑓𝑖(𝛼𝑥) > 𝑎𝑖(𝑥) − 𝑓𝑖(𝑥)

⇔ 𝑟𝑖 +
∑

𝑘≠𝑖
𝛽𝑖𝑘 −

(

𝑟𝑖𝛼𝑥𝑖
𝐾𝑖

+
∑

𝑘≠𝑖

𝛽𝑖𝑘𝛼𝑖𝑘
𝛼𝑖𝑘 + 𝛼𝑥𝑘

)

> 𝑟𝑖

+
∑

𝛽𝑖𝑘 −

(

𝑟𝑖𝑥𝑖
𝐾

+
∑ 𝛽𝑖𝑘𝛼𝑖𝑘

𝛼 + 𝑥

)

𝑘≠𝑖 𝑖 𝑘≠𝑖 𝑖𝑘 𝑘
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Fig. 2. Regions in the 𝐴1–𝐴2 plane leading to a globally stable coexistence equilibrium for a 3-dimensional version of (9) and distinct values of 𝐴3.
⇔
𝑟𝑖𝑥𝑖
𝐾𝑖

>
∑

𝑘≠𝑖

𝛽𝑖𝑘𝛼𝑖𝑘
(𝛼𝑖𝑘 + 𝑥𝑘)(𝛼𝑖𝑘 + 𝛼𝑥𝑘)

.

Since 𝑥 ≫ 0 is arbitrary, the sublinearity condition (SL) will not hold,
so one cannot use Theorem 2.3 in this case. With a view towards using
Theorem 2.6 instead, let us observe that

(𝐷0(𝑥) −𝐷𝑓 (𝑥))𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝑟𝑖
𝐾𝑖
, 𝑖 = 𝑗

𝛽𝑖,𝑗𝛼𝑖,𝑗
(𝛼𝑖,𝑗 + 𝑥𝑗 )2

, 𝑖 ≠ 𝑗,

from which (H3p) follows. Also,

𝑎(0) − 𝑓 (0) = diag(𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑛),

which implies that (H2p) is satisfied too. Consequently, the following
result holds.

Theorem 3.3. There is a unique coexistence equilibrium of (10) which is
globally asymptotically stable in int(R𝑛+).

To illustrate Theorem 3.3, we have represented in Fig. 3 several
trajectories of a 3-dimensional version of (10) corresponding to dif-
ferent initial data, all converging to the coexistence equilibrium 𝑥∗ =
(233.3, 300, 499.8). For Fig. 3, 𝑟1 = 0.3, 𝑟2 = 0.2, 𝑟3 = 0.1, 𝐾1 = 100,
𝐾2 = 100, 𝐾3 = 100, 𝛼12 = 0.1, 𝛼13 = 0.3, 𝛽12 = 0.1, 𝛽13 = 0.3, 𝛼21 = 0.2,
𝛼23 = 0.2, 𝛽21 = 0.1, 𝛽23 = 0.3, 𝛼31 = 0.3, 𝛼32 = 0.1, 𝛽31 = 0.1, 𝛽32 = 0.3,
the initial data being generated using Matlab’s randperm function.

3.4. Graves et al.’s model

Let us now consider the model

𝑥′𝑖 = 𝑟𝑖𝑥𝑖

(

1 −
𝑥𝑖

)

+ 𝑐𝑖𝑥𝑖
(

1 − 𝑒−
∑

𝑘≠𝑖 𝛼𝑖𝑘𝑥𝑘
)

, 1 ≤ 𝑖 ≤ 𝑛, (12)

𝐾𝑖

7 
Fig. 3. Trajectories converging to a globally stable coexistence equilibrium for a 3-
dimensional version of (10) and different initial data.

also introduced in Georgescu et al. (2017) as a 𝑛-species version of the
model proposed in Graves et al. (2006). The (2-dimensional) model of
Graves et al. (2006), updating an earlier model of Dean (1983) in order
to remove singularities along certain lines in the phase space, assumes
that each mutualist asymptotically enhances the others’ growth rates
rather than directly affecting the carrying capacity.

Called by its proponents ‘‘limited per capita growth rate mutualism
model’’, the model of Graves et al. can accommodate facultative–
facultative, facultative–obligate and obligate–obligate mutualisms (al-
though we do require that (12) satisfies 𝑐𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 and 𝛼𝑖𝑘 ≥ 0,
1 ≤ 𝑖, 𝑘 ≤ 𝑛, 𝑖 ≠ 𝑘 in order to fit our facultative mutualism narrative, the
original model of Graves et al. does not have this limitation), reduces



P. Georgescu and H. Zhang

I

𝑎

a

t

𝐶

w

A
h

(

Journal of Theoretical Biology 595 (2024) 111961 
to the Gause–Witt model locally, but it is more suitable to represent
strong mutualistic interactions, being used in Graves et al. (2006) to
describe a lichen symbiosis composed of nitrogen-fixing cyanobacteria
in symbiotic association with a fungus.

Again, at a glance, (12) does not fit our framework (1). Let us restate
(12) as

𝑥′𝑖 = 𝑥𝑖

[

(𝑟𝑖 + 𝑐𝑖) −
(

𝑟𝑖𝑥𝑖
𝐾𝑖

+ 𝑐𝑖𝑒
−
∑

𝑘≠𝑖 𝛼𝑖𝑘𝑥𝑘
)]

, 1 ≤ 𝑖 ≤ 𝑛. (13)

n these settings,

𝑖(𝑥𝑖) = 𝑟𝑖 + 𝑐𝑖, 𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑛) =
𝑟𝑖𝑥𝑖
𝐾𝑖

+ 𝑐𝑖𝑒
−
∑

𝑘≠𝑖 𝛼𝑖𝑘𝑥𝑘

nd consequently
𝑎𝑖(𝑠𝑖𝑥)

𝑓𝑖(𝑠1𝑥, 𝑠2𝑥,… , 𝑠𝑛𝑥)
=

𝑟𝑖 + 𝑐𝑖
𝑟𝑖𝑠𝑖
𝐾𝑖
𝑥 + 𝑐𝑖𝑒

−
(

∑

𝑘≠𝑖 𝛼𝑖𝑘𝑠𝑘
)

𝑥
.

Note that this ultimately decreases as a function of 𝑥. It is seen that

𝐑𝑖(𝑠1, 𝑠2,… , 𝑠𝑛) = lim
𝑥→∞

𝑟𝑖 + 𝑐𝑖
𝑟𝑖𝑠𝑖
𝐾𝑖
𝑥 + 𝑐𝑖𝑒

−
(

∑

𝑘≠𝑖 𝛼𝑖𝑘𝑠𝑘
)

𝑥

= 0, 1 ≤ 𝑖 ≤ 𝑛,

he matrix 𝐶 being given by

= −𝐼𝑛,

hich is Hurwitz stable. Note that

𝑎𝑖(𝛼𝑥) − 𝑓𝑖(𝛼𝑥) > 𝑎𝑖(𝑥) − 𝑓𝑖(𝑥)

⇔ 𝑟𝑖 + 𝑐𝑖 −
(

𝑟𝑖𝛼𝑥𝑖
𝐾𝑖

+ 𝑐𝑖𝑒
−
∑

𝑘≠𝑖 𝛼𝑖𝑘𝛼𝑥𝑘
)

> 𝑟𝑖 + 𝑐𝑖 −
(

𝑟𝑖𝑥𝑖
𝐾𝑖

+ 𝑐𝑖𝑒
−
∑

𝑘≠𝑖 𝛼𝑖𝑘𝑥𝑘
)

⇔
𝑟𝑖𝑥𝑖(1 − 𝛼)

𝐾𝑖
> 𝑐𝑖

(

𝑒−𝛼
∑

𝑘≠𝑖 𝛼𝑖𝑘𝑥𝑘 − 𝑒−
∑

𝑘≠𝑖 𝛼𝑖𝑘𝑥𝑘
)

.

gain, since 𝑥 ≫ 0 is arbitrary, the sublinearity condition (SL) will not
old, so one still cannot use Theorem 2.3. Let us observe that

𝐷0(𝑥) −𝐷𝑓 (𝑥))𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

−
𝑟𝑖
𝐾𝑖
, 𝑖 = 𝑗

𝑐𝑖𝛼𝑖,𝑗𝑒
−
∑

𝑘≠𝑖 𝛼𝑖𝑘𝑥𝑘 , 𝑖 ≠ 𝑗,

from which (H3p) follows. Also,

𝑎(0) − 𝑓 (0) = diag(𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑛),

which implies that (H2p) holds. Consequently, the following result
holds.

Theorem 3.4. There is a unique coexistence equilibrium of (12) which is
globally asymptotically stable in int(R𝑛+).

To illustrate Theorem 3.4, we have represented in Fig. 4 several
trajectories of a 3-dimensional version of (12) corresponding to dif-
ferent initial data, all converging to the coexistence equilibrium 𝑥∗ =
(129.9, 110, 120). For Fig. 4, 𝑟1 = 1, 𝑟2 = 1, 𝑟3 = 1, 𝑐1 = 0.3, 𝑐2 = 0.1,
𝑐3 = 0.2, 𝐾1 = 100, 𝐾2 = 100, 𝐾3 = 100, 𝛼12 = 0.1, 𝛼13 = 0.3, 𝛼21 = 0.2,
𝛼23 = 0.2, 𝛼31 = 0.3, 𝛼32 = 0.1, the initial data being generated using
Matlab’s randperm function.

4. Conclusions

This paper aims at expanding the scope of the abstract framework
introduced in Georgescu et al. (2017) for a discussion of generic
multispecies mutualisms from the viewpoint of establishing bounded-
ness by presenting sufficient conditions for the global stability of the
coexistence equilibria. Conversely, the situation in which solutions go
unbounded is also of concern, as this possibility always looms over
models of mutualism.
8 
Fig. 4. Trajectories converging to a globally stable coexistence equilibrium of a 3-
dimensional version of (12) and different initial data.

These conditions, involving both terms describing intrinsic growth
functions and terms characterizing mutualistic interactions, are formu-
lated in terms of reproductive numbers which are defined in a non-local
manner and characterize the mutualistic support received at higher
population densities. Due to the specific form of certain assumptions,
our approach is applicable to the study of facultative mutualisms only.
Note that in order to characterize the dynamics of the system one needs
to define a reproductive number for each species, rather than use a
single one for the entire model, as it is the case for disease propagation
models. Of primary use are results regarding the asymptotic behavior
of monotone dynamical systems that offer a trichotomy perspective.

If the reproductive numbers have a certain quasi-polynomial form
motivated by the specifics of Wolin and Lawlor’s model, a single
parameter can then be used to formulate a stability condition rather
than multiple ones, namely the spectral abscissa of a certain matrix
of coefficients. A more comprehensive investigation to delineate other
situations in which the reproductive numbers aggregate as a single
parameter is still needed. Our findings are then applied to establish the
global asymptotic stability of the coexistence equilibria for 𝑛-species
versions of several mutualistic models in current use.

Due to the plethora of mechanisms that can lead of a mutualistic
interaction, our framework is, unsurprisingly, not without limitations.
Particularly, due to the sign of the terms describing mutualistic interac-
tions, our framework cannot describe a truly generic situation in which
the mutualistic support leads to an increase in growth rates (although it
is successful in several particular situations), a parallel approach being
needed to deal with that specific type of mutualisms. In particular, our
model cannot be used to discuss the stability properties of a Gause–
Witt mutualism, for which the splitting and rearranging procedure
involving the terms describing mutualistic interactions employed above
for Wright’s and Graves et al.’s models does not function anymore (note
that this procedure requires, apart from a specific form of those terms,
the a priori boundedness of per capita mutualistic benefits).

As such, our stability results are not directly comparable with
those established in Travis and Post (1979), where the stability of a
𝑛-dimensional Gause–Witt mutualistic community near a feasible equi-
librium is discussed in terms of the stability of the interaction matrix
evaluated at that equilibrium. By contrast, our matrix 𝐶 is not localized,
in the sense that it is not tied to any equilibrium in particular or to
any Jacobian, and it is defined via (a specific form of) the reproductive
numbers, rather than directly via the species interaction terms.

While the stability results established in Travis and Post (1979) are
of a local nature, our analysis, motivated by the global stability results

for 2-dimensional models of mutualism presented in Georgescu et al.
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(2016), Maxin et al. (2017) and Vargas-De-León (2012), is geared to-
wards proving global stability results instead. Thus, it is not exhaustive,
as it overlooks genuine local stability considerations and it is perhaps
tributary to the particular requirements of the main theoretical tools
of concern, Theorems 2.1 and 2.2, and to the particular assumptions
involved in the construction of our framework (as previously noted,
neither the sublinearity nor the monotonicity conditions hold for all
commonly used models).

Particularly, if the sublinearity condition does not hold, it is entirely
possible to find multiple coexistence equilibria for models that lie
within the confines of our framework, as our other assumptions do not
ensure uniqueness by themselves. In this regard, an investigation on the
stability of two-species models of mutualism for which birth and death
are modeled as separate processes has been performed in Georgescu
and Zhang (2023), delineating between accelerating (higher-powered)
and decelerating (lower-powered) density dependences. It has subse-
quently being determined that accelerating density dependences pro-
mote the stability of coexistence equilibria, while decelerating density
dependences either completely destabilize the system via promoting the
unboundedness of solutions or give rise multiple coexistence equilibria.

Our settings do not accommodate models of mutualism that are
derived via Levin’s colonization-extinction metapopulation framework
such as those of Klausmeier (2001) or Nee (2000) (note that the
variables in Klausmeier (2001) and Nee (2000) represent proportions
of patches, rather than population sizes, leading to undesirable signs
for certain interaction terms). For similar reasons, our framework does
not natively accommodate the interplay between mutualism and other
types of interactions such as predation and competition either and
models such as the one presented in Jelle Lever et al. (2014) are not
amenable to being treated within the confines of our framework unless
a splitting and rearranging procedure related to the one employed
above for Wright’s and Graves et al.’s models is available.
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