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Abstract

The dynamics of an impulsively controlled three-trophic food chain system with general nonlinear functional responses for the
intermediate consumer and the top predator are analyzed using the Floquet theory and comparison techniques. It is assumed that
the impulsive controls act in a periodic fashion, the constant impulse (the biological control) and the proportional impulses (the
chemical controls) acting with the same period, but not simultaneously. Sufficient conditions for the global stability of resource
and intermediate consumer-free periodic solution and of the intermediate consumer-free periodic solution are established, the latter
corresponding to the success of the integrated pest management strategy from which our food chain system arises. In this regard, it
is seen that, theoretically speaking, the control strategy can be always made to succeed globally if proper pesticides are employed,
while as far as the biological control is concerned, its global effectiveness can also be reached provided that the top predator is
voracious enough or the (constant) number of top predators released each time is large enough or the release period is small enough.
Some situations which lead to chaotic behavior of the system are also investigated by means of numerical simulations.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical two-species continuous time models have constituted for a long time the main tool used to investigate
the interactions between ecological populations (see, for instance, [1–3]). However, as seen from Poincaré’s theorem,
such models have only two behavior patterns, that is, they approach either a limit cycle or an equilibrium point
and consequently fail to capture the complex behavior of some natural ecosystems. Further, other shortcomings of
certain two-species models have also been pointed out. These are the paradox of enrichment [4], which states that
an increase in the carrying capacity of the environment in a Lotka–Volterra model will cause an increase in the
size of the predator class at equilibrium, but not in that of the prey class, and the paradox of biological control [5],
which states that the low prey equilibrium densities of a Lotka–Volterra model are inherently unstable. Other authors
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have also criticised ratio-dependent type models, which were introduced as a replacement of Lotka–Volterra models
(see [6,7]).

Consequently, another paradigm started to prevail, that is, the idea that the behavior of a complex system can be
understood only when mutual interactions between a larger number of species are considered in a single model [8].
As a result, complex behavior, in the form of stable equilibria, limit cycles, multiple attractors and chaos, has been
observed in three- or more-species models [9] and it has also been noted that the dynamical outcome may depend on
the initial population sizes, which is more in line with the results of field experiments and observations.

To understand the dynamical behavior of ecological communities, one should start by tracing their food webs
and quantifying the strength of the respective interspecies interactions. It has been observed by Hastings and Powell
in [10] and by Klebanoff and Hastings in [11] that since food webs often describe a net of nonlinear predator–prey
interactions, there is a natural tendency of food webs to oscillate and chaos may ultimately arise when two or more
predator–prey subsystems oscillate with incommensurate frequencies. McCann and Yodzis [12] mention that the
parameter values chosen by Hastings and Powell in [10] may be biologically unfeasible, but the conclusions obtained
in [10] are valid, and indicate biologically reasonable sets of parameter values which also produce chaos. They also
provide comments about which biological conditions (metabolic types) favor the apparition of chaos. Six natural
types of food web configurations are studied in McCann et al. [13] and it is also found that the dominance of strong
consumer–resource interactions may generate cyclic dynamics when the frequencies of oscillation are commensurate,
respectively chaotic dynamics when the frequencies of oscillation are incommensurate, while the dominance of weak
coupling between interactions may dampen the total oscillation of the system, together with other biological factors,
such as omnivory and food-chain-predation mechanisms. See also Bascompte et al. [14].

The so-called simple food chain, which is studied in our paper, is a tri-trophic food chain which appears when
a top predator P feeds on an intermediate consumer C , which in turn feeds on a resource R. In this model, neither
the intermediate consumer nor the top predator feeds on other resources and nutrient recycling is not accounted for.
The qualitative behavior of the simple food chain model with Holling type II functional responses for both the top
predator and the intermediate consumer, that is, for gi (x) =

ai x
1+bi x , i ∈ {1, 2}, has been studied in detail by Hastings

and Powell in [10] and by Klebanoff and Hastings in [11]. See also [15,16]. In these papers, it has been found that
the model may exhibit chaotic behavior in the neighborhood of the intermediate consumer-free equilibrium and it has
also been observed that the clearance rate of the intermediate consumer b1 is a key parameter for the stability of the
model. A thorough analysis of the simple food chain model with ratio-dependent functional response for both the top
predator and the intermediate consumer has been performed in Hsu et al. [17]. Particularly, a tristability situation has
been observed, in which different solutions tend to the origin, intermediate consumer-free equilibrium and positive
equilibrium, respectively, for the same set of parameters and a discussion of the feasibility of the biological control
has also been provided. Chaotic-looking solutions have also been found to exist for certain parameter values.

Simple food chain models may naturally appear as a result of integrated pest management strategies. As it has been
noted that the abuse of pesticides has undesirable long-term environmental consequences, in order to regulate pest
populations, use is often made of different methods which are specifically suited to the target pest and minimize the
harmful effects on the environment or on nontarget organisms.

Biological control is defined as the reduction of pest populations by using their natural enemies (see [18]). While
an approach to biological control (importation) relies on the import of exotic natural enemies of the pests, other
approaches (augmentation and conservation) rely on supplementing or manipulating the existing natural enemies in
order to enhance their effectiveness and on modifying the environment, respectively. A way to achieve augmentation
is to release pest pathogens or infected pests with the purpose of generating an epidemic in the pest population, on the
grounds that infected pests generally cause less environmental damage, another one being to breed natural predators
of the pest in laboratories and to release them periodically in the ecosystem. Consequently, in our food chain model R
is the resource to be protected, C is the pest which should be regulated and P is a natural predator of the pest which
is augmented by means of periodic release of laboratory-bred individuals.

Adequate efficiency is attained when at least one of these approaches is combined with the responsible use of
chemical controls (pesticide spraying) and the use of mechanical accessories, such as pest barriers and pest traps, in
the form of an integrated pest management strategy. Note that the integrated pest management strategy is considered
successful when the pest population is reduced under certain economically significant levels, rather than when the
pest population is totally eradicated, as the latter might be economically or logistically unfeasible, or it might be
potentially damaging to the environment. In this regard, the economic injury level (EIL) is defined in Stern et al. [19]
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as the amount of pest injury which will justify the cost of using controls or the lowest pest density which causes
economic damage.

Due to the inherent discontinuity of human activities (that is, pesticides cannot be sprayed all year round but
only during certain periods of the year), a natural choice is to use discrete impulsive controls rather than continuous
controls for our pest management strategy. In this regard, the effect of impulsive perturbations on the simple food chain
model has been studied by Zhang and Chen [20] assuming linear responses for the top predator and the intermediate
consumer, by Zhang and Chen in [21] assuming Holling type II functional responses, by Zhang et al. in [22] assuming
Holling type IV (or simplified Monod–Haldane) functional responses and by Zhang et al. in [23] and Zhang and
Chen in [24] assuming Beddington–DeAngelis functional responses. In all these papers, only the case of a constant
impulsive perturbation has been considered. See also [25–27] for related results regarding the impulsive control of
predator–prey systems and Georgescu and Moroşanu [28] for the discussion of an integrated pest management strategy
involving biological and chemical impulsive controls. State-dependent impulsive control strategies are investigated in
Meng et al. [29] and Jiao et al. [30], while a different approach to the control of a model related to ours, based on the
use of Pontryagin’s principle, is employed in Apreutesei [31].

2. The model

The abundance and interaction of resource, intermediate consumer and top predator populations may be expressed
in terms of their biomass per spatial unit. In this regard, let x(t), y(t), z(t) be the biomass per spatial unit of the
resource, intermediate consumer and top predator, respectively. As previously mentioned, we assume that the top
predator feeds on the intermediate consumer only and in turn the intermediate consumer feeds on the resource only,
while the nutrient recycling is not accounted for.

The functional responses of the intermediate consumer and of the top predator are denoted by the nonlinear smooth
functions g1, g2, depending only on the resource biomass density and on the intermediate consumer biomass density,
respectively, and satisfying a few assumptions which will be outlined below. Due to the assumption above, our model
may be called, following the terminology given in Arditi and Ginzburg [32] or in Huisman and DeBoer [33], prey
dependent, as opposed to a model in which the functional responses of the predators are functions of the prey-to-
predator ratios, which is called ratio dependent (or, more generally, predator dependent, when the dependence of the
functional responses upon the characteristics of the predator classes takes a more complicated form). It is supposed
that in the absence of predation from the intermediate consumer, the resource grows according to a logistic growth
with intrinsic growth rate r and carrying capacity r/a.

The processes of resource conversion into intermediate consumer biomass and of intermediate consumer into top
predator biomass, respectively, are characterized by constant conversion rates k1 and k2. The death rates d1 and d2 of
the intermediate consumer and of the top predator, respectively, are also assumed to be constant.

It is assumed that top predators are bred in laboratories and subsequently released in an impulsive and periodic
fashion of period T , in a fixed number µ each time. It is also assumed that pesticides are sprayed in an impulsive
and periodic fashion, with the same period as that of the action of releasing top predators, but at different moments.
As a result of pesticide spraying, fixed proportions δ1, δ2, δ3 of the resource, intermediate consumer and top predator
biomass are degraded each time.

On the basis of the above assumptions, we may formulate the following impulsively perturbed model

(S)



x ′(t) = x(t)[r − ax(t)] − g1(x(t))y(t), t 6= (n + l − 1)T, t 6= nT ;

y′(t) = k1g1(x(t))y(t)− g2(y(t))z(t)− d1 y(t), t 6= (n + l − 1)T, t 6= nT ;

z′(t) = k2g2(y(t))z(t)− d2z(t), t 6= (n + l − 1)T, t 6= nT ;

∆x(t) = −δ1x(t), t = (n + l − 1)T ;

∆y(t) = −δ2 y(t), t = (n + l − 1)T ;

∆z(t) = −δ3x(t), t = (n + l − 1)T ;

∆x(t) = 0, t = nT ;

∆y(t) = 0, t = nT ;

∆z(t) = µ, t = nT .

Here, T > 0, 0 < l < 1, ∆ϕ(t) = ϕ(t+) − ϕ(t) for ϕ ∈ {x, y, z} and t > 0, 0 ≤ δ1, δ2, δ3 < 1, n ∈ N∗. The
functions g1, g2 are assumed to satisfy the following assumptions.



978 P. Georgescu, G. Moroşanu / Mathematical and Computer Modelling 48 (2008) 975–997

(G) gi is of class C1 on R+, gi (0) = 0, increasing and such that x 7→ gi (x)/x is decreasing on R+,
∣∣g′

i (x)
∣∣ ≤ L i for

x ∈ R+, i ∈ {1, 2}, where L1, L2 ≥ 0.

Note that hypothesis (G) is satisfied if functions g1, g2 represent Holling type II functional responses, that is,
gi (x) =

ai x
1+bi x , i ∈ {1, 2}, in which ai , i ∈ {1, 2} are the search rates of the resource and of the intermediate

consumer, respectively, and bi , i ∈ {1, 2}, represent the corresponding clearance rates, that is, search rates multiplied
by the (supposedly constant) handling time. Also, the above-mentioned constants L1 and L2 can be taken as globally
Lipschitz constants for g1, g2, respectively.

Impulsive perturbations of our three-trophic food chain model have also been considered by Zhang and Chen
in [21], in the form of the periodic constant impulsive perturbations of the top predator only (that is, no second
group of conditions in (S)), with particular Holling type II functional responses for the intermediate consumer and
for the top predator. In [21], the local asymptotic stability of the intermediate consumer-extinction periodic solution
is established, provided that the impulsive period T is small enough, and it is also shown that the resource and
intermediate consumer-free periodic solution is unstable.

By using similar techniques, that is, the Floquet theory of impulsively perturbed systems of ordinary differential
equations and comparison techniques, we are also able to prove further global stability results for both the intermediate
consumer-free periodic solution and the resource and intermediate consumer-free periodic solution, under appropriate
conditions, the former result representing a sufficient condition for the success of our pest control strategy. Note that,
due to the impulsive top predator release of constant strength, our controlled system does not exhibit the domino effect,
characteristic to the unperturbed food chain system, that is, if one species dies out then all the species at higher-trophic
levels die out as well (although the extinction of the resource will attract the extinction of the intermediate consumer,
of course). Due to the proportional impulsive perturbations at t = (n + l −1)T , n ∈ N∗, the resource and intermediate
consumer-free periodic solution is no longer unstable for any values of the parameters involved, as it is the case
when only constant impulsive perturbations of z are employed, and the existence of a threshold parameter which
controls its stability is also established. Also, our food chain system may be interpreted as the nonlinear coupling
of two predator–prey subsystems (intermediate consumer–resource and top predator–intermediate consumer) through
the mediation of the intermediate consumer, while the impulsive perturbations induce commensurate oscillations, as
they act with the same period T . It is therefore expected that the system will display an oscillatory behavior, tending
to a (impulsively perturbed) limit cycle of period T for an important portion of the parameter space, corresponding to
impulsive and periodic perturbations with significant strength.

3. Preliminaries

In this section we shall introduce a few definitions and notations together with a few auxiliary results relating to
comparison methods and the Floquet theory for impulsively perturbed systems of ordinary differential equations. The
biological well-posedness of the Cauchy problem associated to our system (S) for strictly positive initial data will also
be established.

Let us denote by f = ( f1, f2, f3) the mapping defined by the right-hand sides of the first three equations in (S).
Let also V0 be the set of functions V : R+ ×R3

+ → R+ which are locally Lipschitz in the second variable, continuous
on ((n + l − 1)T, nT ] × R3

+ and on (nT, (n + l)T ] × R3
+ and for which the limits lim(t,y)→((n+l−1)T +,x) V (t, y) =

V ((n + l − 1)T +, x) and lim(t,y)→(nT +,x) V (t, y) = V (nT +, x) exist and are finite for x ∈ R3
+ and n ∈ N∗.

For V ∈ V0, we define the upper-right Dini derivative of V with respect to the system (S) at (t, x) ∈ ((n + l −

1)T, nT )× R3
+ or (nT, (n + l)T )× R3

+ by

D+V (t, x) = lim sup
h↓0

1
h

[V (t + h, x + h f (t, x))− V (t, x)] .

We now indicate a comparison result for solutions of impulsive differential inequalities which allows us to estimate
the values of the solutions of (S). We suppose that h : R+ × R+ → R satisfies the following hypotheses.

(H) h is continuous on ((n + l − 1)T, nT ] × R+ and on (nT, (n + l)T ] × R+ and the limits
lim(t,y)→((n+l−1)T +,x) h(t, y) = h((n + l − 1)T +, x), lim(t,y)→(nT +,x) h(t, y) = h(nT +, x) exist and are finite
for x ∈ R+ and n ∈ N∗.
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Lemma 3.1 ([34]). Let V ∈ V0 and assume that
D+V (t, x(t)) ≤ h(t, V (t, x(t))), t 6= (n + l − 1)T, nT ;

V (t, x(t+)) ≤ ψ1
n (V (t, x(t))), t = (n + l − 1)T ;

V (t, x(t+)) ≤ ψ2
n (V (t, x(t))), t = nT,

(3.1)

where h : R+ × R+ → R satisfies (H) and ψ1
n , ψ

2
n : R+ → R+ are nondecreasing for all n ∈ N∗. Let r(t) be the

maximal solution of the impulsive Cauchy problem
u′(t) = h(t, u(t)), t 6= (n + l − 1)T, nT ;

u(t+) = ψ1
n (u(t)), t = (n + l − 1)T ;

u(t+) = ψ2
n (u(t)), t = nT ;

u(0+) = u0

(3.2)

defined on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t) for all t ≥ 0, where x(t) is an arbitrary
solution of (3.1).

Note that under appropriate regularity conditions the Cauchy problem (3.2) has a unique solution and in that case r
becomes the unique solution of (3.2). We now indicate a result which provides estimations for the solution of a system
of differential inequalities.

Lemma 3.2 ([34]). Let the function u ∈ PC1(R+,R) satisfy the inequalities
du

dt
≤ (≥)p(t)u(t)+ f (t), t 6= τk, t > 0;

u(τk+) ≤ (≥)dku(τk)+ hk, k ≥ 0;

u(0+) ≤ (≥)u0,

(3.3)

where p, f ∈ PC(R+,R) and dk ≥ 0, hk and u0 are constants and (τk)k≥0 is a strictly increasing sequence of
positive real numbers. Then, for t > 0,

u(t) ≤ (≥)u0

( ∏
0<τk<t

dk

)
e
∫ t

0 p(s)ds
+

∫ t

0

( ∏
0≤τk<t

dk

)
e
∫ t

s p(τ )dτ f (s)ds +

∑
0<τk<t

( ∏
τk<τ j<t

d j

)
e
∫ t
τk

p(τ )dτ
hk .

In the above, by PC(R+,R) (PC1(R+,R)) is meant the class of real piecewise continuous (real piecewise
continuously differentiable) functions defined on R+. For other results on impulsive differential equations, see Bainov
and Simeonov [34]. Using Lemma 3.2, it is now possible to prove that the Cauchy problem with strictly positive initial
data is well-posed for our system (S), that is, solutions (x, y, z) starting with strictly positive initial data remain strictly
positive and bounded on their whole domains.

Lemma 3.3. The positive orthant (R∗
+)

3 is an invariant region for the system (S).

Proof. Let us consider (x, y, z) : [0, T0) → R3 a saturated solution for (S) which starts with strictly positive x(0),
y(0), z(0). Under our assumptions (G), it is easy to see thatx ′(t) ≥ x(t)

[
r − ax(t)− g′

1(0)y(t)
]
, 0 ≤ t < T0, t 6= (n + l − 1)T, nT ;

y′(t) ≥ y(t)
[
k1g1(x(t))− g′

2(0)z(t)− d1
]
,

z′(t) = z(t) [k2g2(y(t))− d2]

as long as the solution remains positive. It then follows from Lemma 3.2 that
x(t) ≥ x(0) (1 − δ1)

[
t+(1−l)T

T

]
e
∫ t

0 p1(s)ds, 0 ≤ t < T0;

y(t) ≥ y(0) (1 − δ2)

[
t+(1−l)T

T

]
e
∫ t

0 p2(s)ds,

z(t) ≥ z(0) (1 − δ3)

[
t+(1−l)T

T

]
e
∫ t

0 p3(s)ds,
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wherep1(t) = r − ax(t)− g′

1(0)y(t);
p2(t) = k1g(x(t))− g′

2(0)z(t)− d1;

p3(t) = k2g2(y(t))− d2,

that is, x, y, z remain strictly positive on [0, T0). �

Also, using Lemma 3.2, it is possible to show that all solutions of (S) starting in (R∗
+)

3 remain bounded and are
actually defined on the whole R+.

Lemma 3.4. All solutions (x(·), y(·), z(·)) of (S) with initial data (x(·), y(·), z(·)) ∈ (R∗
+)

3 are bounded and defined
on R+.

Proof. Let us consider a solution (x(·), y(·), z(·)) of (S) starting with strictly positive x(0), y(0), z(0) and define
u1 : R+ → R+ by

u1(t) = x(t)+
1
k1

y(t)+
1

k1k2
z(t), t ≥ 0.

One then has

du1

dt
= x(t)[r − ax(t)] −

d1

k1
y(t)−

d2

k1k2
z(t), t > 0, t 6= (n + l − 1)T, t 6= nT . (3.4)

Let us denote D = min(d1, d2). It follows that

du1

dt
+ Du1 ≤ x(t) [r + D − ax(t)] , t > 0, t 6= (n + l − 1)T, t 6= nT . (3.5)

As the right-hand side of (3.5) is bounded from above by C = (r + D)2/(4a), it follows that

du1

dt
(t)+ Du1(t) ≤ C, t > 0, t 6= (n + l − 1)T, t 6= nT,

together with

u1((n + l − 1)T +) ≤ (1 − δ)u1((n + l − 1)T )

and

u1(nT +) = u1(nT )+
µ

k1k2
,

where δ = min(δ1, δ2, δ3). By Lemma 3.2, it follows that

u1(t) ≤ u1(0+)

[ ∏
0<(n+l−1)T<t

(1 − δ)

]
e−Dt

+ C
∫ t

0

[ ∏
s≤(n+l−1)T<t

(1 − δ)

]
e−D(t−s)ds +

∑
0<nT<t

µ

k1k2
e−D(t−nT ), t > 0, (3.6)

which yields

u1(t) ≤ u1(0+)e−Dt
+

C(1 − e−Dt )

D
+

µ

k1k2

eDT

eDT − 1
, t > 0, (3.7)

and since the limit of the right-hand side of (3.7) for t → ∞ is

L =
C

D
+

µ

k1k2

eDT

eDT − 1
< ∞,

it easily follows that u1 is bounded on its domain. Consequently, x, y, z are bounded and it follows by an easy
continuability argument that they are defined on the whole R+. �
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It is also important to note that by a very similar procedure one may obtain that

u2(t) ≤ u2(0+)e−d1t
+

C1

d1

(
1 − e−d1t

)
,

where u2(t) = x(t)+ (1/k1)y(t) and C1 = (r + d1)
2/(4a). Consequently,

x(t)+
1
k1

y(t) ≤

[
x(0+)+

1
k1

y(0+)

]
+
(r + d1)

2

4ad1
for t > 0.

At this point, it is useful to note that from the above it may be seen that y is bounded, with boundedness constant

B = k1

[
x(0+)+

1
k1

y(0+)+
(r + d1)

2

4ad1

]
. (3.8)

Of course, this boundedness constant is not necessarily optimal, but it is important to note that it is T - and µ-
independent. In the following, we shall also be interested in finding an ultimate boundedness constant for y, that
is, a boundedness constant for y after the transient effects of the initial data are eliminated, rather than a boundedness
constant; the former can be much smaller.

We now introduce a few basic results regarding the Floquet theory of impulsive systems of ordinary differential
equations. Let us consider the system{

X ′(t) = A(t)X (t), t 6= τk, t ∈ R;

∆X = Bk X, t = τk, τk < τk+1, k ∈ Z, (3.9)

under the following hypotheses.

(H1) A(·) ∈ PC(R,Mn(R)) and there is T > 0 such that A(t + T ) = A(t) for all t ≥ 0.
(H2) Bk ∈ Mn(R), det(In + Bk) 6= 0 for k ∈ Z.
(H3) There is q ∈ N∗ such that Bk+q = Bk , τk+q = τk + T for k ∈ Z.

Let Φ(t) be a fundamental matrix of (3.9). Then there is a unique nonsingular matrix M ∈ Mn(R) such that
Φ(t + T ) = Φ(t)M for all t ∈ R, which is called the monodromy matrix of (3.9) corresponding to Φ. Actually,
all monodromy matrices of (3.9) are similar and consequently they have the same eigenvalues λ1, λ2, . . . , λn , which
are called the Floquet multipliers of (3.9). Under these hypotheses, the following result holds.

Lemma 3.5 ([34]). Suppose that conditions (H1)–(H3) hold. Then

1. The system (3.9) is stable if and only if all Floquet multipliers λk , 1 ≤ k ≤ n satisfy |λk | ≤ 1 and if |λk | = 1, then
to λk there corresponds a simple elementary divisor.

2. The system (3.9) is asymptotically stable if and only if all Floquet multipliers λk, 1 ≤ k ≤ n satisfy |λk | < 1.
3. The system (3.9) is unstable if there is a Floquet multiplier λk such that |λk | > 1.

Note that we shall be able to use Lemma 3.5 in our settings even though we also employ the constant impulse
∆z = µ apparently not covered by our Lemma 3.5. This happens since we shall actually study the stability of certain
periodic discontinuous solutions by means of the small amplitude perturbations method and the above-mentioned
jump condition disappears after we reduce our problem to the stability of the null solution for certain systems, using
the proper change of variables which involves discontinuous functions.

4. Periodically forced subsystems

When the intermediate consumer y is eradicated, it is easy to see that the equations in (S) decouple and we are led
to consider the properties of the subsystems

(RS; x)


x ′(t) = x(t)[r − ax(t)], t 6= nT, (n + l − 1)T ;

∆x(t) = −δ1x(t), t = (n + l − 1)T ;

∆x(t) = 0, t = nT ;

x(0+) = x0,
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and

(RS; z)


z′(t) = −d2z(t), t 6= nT, (n + l − 1)T ;

∆z(t) = −δ3z(t), t = (n + l − 1)T ;

∆z(t) = µ, t = nT ;

z(0+) = z0,

which describe the dynamics of the resource and of the top predator, respectively, in the absence of the intermediate
consumer. First, it is seen that if a certain inequality which characterizes resource productivity is satisfied, then the
system formed with the first three equations in (RS; x) has a periodic solution, to which all solutions of (RS; x)
starting with strictly positive x0 tend as t → ∞, while if the opposite inequality is satisfied, then all solutions of
(RS; x) tend to 0 as t → ∞. The above-mentioned periodic solution will be labeled as x∗

r rather than, for instance,
x∗

r,a,δ1
, as systems of type (RS; x) will always occur with the same a and δ1, but sometimes with different r ’s, so there

is no danger of confusion.

Lemma 4.1. The following statements hold.

1. Suppose that ln(1 − δ1)+ rT > 0. Then the system formed with the first three equations in (RS; x) has a periodic
solution x∗

r . With this notation, the following properties are satisfied.
(a)

∫ T
0 x∗

r (t)dt = (1/a) [ln(1 − δ1)+ rT ].
(b) limt→∞

∣∣x(t)− x∗
r (t)

∣∣ = 0 for all solutions x(t) of (RS; x) starting with strictly positive x0.
(c) supt≥0

∣∣x∗
r1
(t)− x∗

r2
(t)
∣∣ ≤ f1(r1, r2; T, a, δ1), with limr1→r2 f1(r1, r2; T, a, δ1) = 0.

2. Suppose that ln(1 − δ1)+ rT ≤ 0. Then limt→∞ x(t) = 0 for all solutions of (RS; x).

Proof. First, it is easy to see that

u(t) =
(r/a)u(t0)er(t−t0)

(r/a)+ u(t0)
(
er(t−t0) − 1

) , (n + l − 1)T ≤ t0 < t ≤ (n + l)T (4.1)

for any solution u of the first equation in (RS; x), and so

u((n + l)T ) =
(r/a)u((n + l − 1)T +)erT

r/a + u((n + l − 1)T +)
(
erT − 1

) .
Then

u((n + l)T +) = (1 − δ1)
(r/a)u((n + l − 1)T +)erT

(r/a)+ u((n + l − 1)T +)
(
erT − 1

) (4.2)

for any solution u of the first equation in (RS; x). Now suppose that ln(1 − δ1) + rT > 0. By the periodicity
requirement, it follows that

x∗
r ((n + l − 1)T +) =

(r/a)
[
(1 − δ1)erT

− 1
]

erT − 1

and so

x∗
r (lT +) =

(r/a)
[
(1 − δ1)erT

− 1
]

erT − 1
.

Obviously, as ln(1− δ1)+rT > 0, the periodic solution x∗
r does indeed exist, is unique and strictly positive. Actually,

it may be seen that

x∗
r (t) =

(r/a)Aer(t−(n+l−1)T )

1 + A
(
er(t−(n+l−1)T ) − 1

) , (n + l − 1)T < t ≤ (n + l)T, (4.3)

where

A =
(1 − δ1)erT

− 1
erT − 1

. (4.4)
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Also, since

x∗
r

′(t)

x∗
r (t)

= r − ax∗
r (t), t ∈ ((n + l − 1)T, (n + l)T ],

it follows that

ln
(
x∗

r (t2)
)
− ln

(
x∗

r (t1)
)

=

∫ t2

t1

[
r − ax∗

r (s)
]

ds; (n + l − 1)T < t1 ≤ t2 ≤ (n + l)T

and so

ln
(
x∗

r ((n + l)T )
)
− ln

(
x∗

r ((n + l − 1)T +)
)

=

∫ (n+l)T

(n+l−1)T

[
r − ax∗

r (s)
]

ds.

By the periodicity of x∗
r , it follows that

− ln (1 − δ1) =

∫ T

0

[
r − ax∗

r (s)
]

ds,

from which the first assertion follows. Now let x(t) be a solution of (RS; x) starting with strictly positive initial data.
We shall prove that limt→∞

∣∣x(t)− x∗
r (t)

∣∣ = 0.
If x(lT +) = x∗

r (lT +), then obviously x ≡ x∗
r . Now suppose that x(lT +) > x∗

r (lT +); if the reverse inequality is
satisfied one can devise a similar argument to obtain the conclusion mentioned above.

Let us denote f : R+ → R+,

f (x) = (1 − δ1)
(r/a)xerT

(r/a)+ x(erT − 1)
.

It is then seen that x 7→ f (x) is strictly increasing on R+, while x 7→ f (x)/x is strictly decreasing on R+. By (4.1),
it is also seen that

x∗
r ((l + 1)T +) = f (x∗

r (lT +)), x((l + 1)T +) = f (x(lT +))

and by the periodicity of x∗
r it is seen that x∗

r ((l + 1)T +) = x∗
r (lT +). It follows that

x((l + 1)T +) = f (x(lT +)) > f (x∗
r (lT +)) = x∗

r (lT +),

since f is strictly increasing on R+. Also,

x((l + 1)T +) = f (x(lT +)) =
f (x(lT +))

x(lT +)
x(lT +) < x(lT +),

since x(lT +) > x∗
r (lT +), f (x∗

r (lT +)) = x∗
r (lT +) and x 7→ f (x)/x is strictly decreasing on R+.

Similarly, by an induction argument,

x((n + l + 1)T +) = f (x((n + l)T +)) > f (x∗
r ((n + l)T +)) = f (x∗

r (lT +))

= x∗
r (lT +)

and

x((n + l + 1)T +) = f (x((n + l)T +)) =
f (x((n + l)T +))

x((n + l)T +)
x((n + l)T +)

< x((n + l)T +).

One then obtains that (x((n + l)T +))n≥0 is monotonically decreasing and bounded from below by x∗
r (lT +), so it is

convergent to some w1 > 0. Also,

x((n + l + 1)T +)− x((n + l)T +) = f (x((n + l)T +))− x((n + l)T +) → 0 as n → ∞.

From the above, it follows that f (w1) = w1, and so w1 = x∗
r (lT +), since the equation f (t) = t has a single strictly

positive solution. It then follows that (x((n + l)T +))n≥0 → x∗
r (lT +) for n → ∞. Also, by (4.1), one may prove that∣∣x(t)− x∗

r (t)
∣∣ ≤ erT

∣∣x((n + l)T +)− x∗
r ((n + l)T +)

∣∣ , for t ∈ ((n + l)T, (n + l + 1)T ],
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from which the second assertion follows. The remaining assertion can be proved by direct computation, making use
of the explicit representation formula (4.3) and of the T -periodicity of x∗

r1
and x∗

r2
. In fact, one may obtain that∣∣x∗

r1
(t)− x∗

r2
(t)
∣∣ ≤ |r1 − r2|

[
1
a

+
(1 − A)2

a

]
+

A(1 − A)

a

(
r1er2T

− r2er1T
)

for t ≥ 0.

Now suppose that ln(1 − δ1)+ rT ≤ 0. Again, by (4.2), it is seen that

x((n + l)T +) = (1 − δ1)
(r/a)x((n + l − 1)T +)erT

(r/a)+ x((n + l − 1)T +)
(
erT − 1

)
= x((n + l − 1)T +)

(r/a)(1 − δ1)erT

(r/a)+ x((n + l − 1)T +)
(
erT − 1

)
≤ x((n + l − 1)T +),

as (1 − δ1)erT
≤ 1. It then follows that (x((n + l − 1)T +))n≥0 is monotonically decreasing and bounded from below

by 0, so it converges to some w2 ≥ 0. Since x((n + l)T +) = f (x((n + l − 1)T +)), it follows that f (w2) = w2. Then

w2 = w2
(r/a)(1 − δ1)erT

(r/a)+ w2
(
erT − 1

)
and, since ln(1 − δ1)+ rT ≤ 0, it easily follows that w2 = 0. By (4.1), it also follows that

x(t) ≤ x((n + l − 1)T +)erT for t ∈ ((n + l − 1)T, (n + l)T ]

and so limt→∞ x(t) = 0. �

We now suggest an approximate interpretation of the hypotheses in Lemma 4.1. Let us suppose that x approaches
0 in (RS; x). Then rT approximates the total growth (per unit biomass) of the resource biomass in a period, while
ln(1 − δ1) is a correction term which accounts for the loss of resource biomass (per unit biomass) due to pesticide
spraying. If the total growth rT does not exceed the loss ln(1 − δ1), there is a net loss of resource biomass when x
approaches 0 and so the resource biomass x(t) tends to 0 as t → ∞, while if ln(1 − δ1)+ rT > 0, there is a net gain
of resource biomass when x approaches 0 which prevents the extinction of the resource x .

Secondly, it is seen that the system formed with the first three equations in (RS; z) has a periodic solution to which
all solutions of (RS; z) starting with strictly positive z0 tend as t → ∞, irrespective of the sign of ln(1 − δ1) + rT .
This happens since the survival of the top predator is assured by the periodic impulse µ and does not depend upon
the survival or extinction of the resource, although the persistence level is, of course, indirectly affected. Again, this
solution will be labeled as z∗

d2
, for reasons similar to those outlined above.

Lemma 4.2. The system formed with the first three equations in (RS; z) has a periodic solution z∗

d2
. With this notation,

the following properties are satisfied.

1.
∫ T

0 z∗

d2
(t)dt =

µ

1−e−d2T (1−δ3)

[
(1 − e−d2lT )+ (1 − δ3)(e−d2lT

− e−d2T )
]
.

2. limt→∞

∣∣∣z(t)− z∗

d2
(t)
∣∣∣ = 0 for all solutions z(t) of (RS; z) starting with strictly positive z0.

3. supt≥0

∣∣∣z∗

d2
(t)− z∗

d̃2
(t)
∣∣∣ ≤ f2(d2, d̃2; T, a, δ3), with limd̃2→d2

f2(d̃2, d2; T, a, δ3) = 0.

Proof. First, it is easy to see that

u(t) = e−d2(t−t0)u(t0) t, t0 ∈ ((n + l − 1)T, nT ) or (nT, (n + l + 1)T ) (4.5)

for any solution u of the first equation in (RS; z) and so

z∗

d2
((n + 1)T +) = z∗

d2
((n + 1)T )+ µ

= e−d2(1−l)T z∗

d2
((n + l)T +)+ µ

= e−d2(1−l)T (1 − δ3)z
∗

d2
((n + l)T )+ µ

= e−d2(1−l)T (1 − δ3)e
−d2lT z∗

d2
(nT +)+ µ

= e−d2T (1 − δ3)z
∗

d2
(nT +)+ µ.
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By the periodicity requirement, it follows that

z∗

d2
(nT +) = e−d2T (1 − δ3)z

∗

d2
(nT +)+ µ

and so

z∗

d2
(0+) =

µ

1 − e−d2T (1 − δ3)
. (4.6)

Obviously, by (4.6), the periodic solution searched for does indeed exist, is unique and strictly positive. Actually, it
may be seen that

z∗

d2
=


µ

1 − e−d2T (1 − δ3)
e−d2(t−nT ), t ∈ (nT, (n + l)T ]

µ

1 − e−d2T (1 − δ3)
e−d2(t−nT )(1 − δ3), t ∈ ((n + l)T, (n + 1)T ].

(4.7)

The first assertion follows then by direct computation.

Now let z be a solution of (RS; z)with strictly positive initial data. We shall prove that limt→∞

∣∣∣z(t)− z∗

d2
(t)
∣∣∣ = 0.

It is seen that z − z∗

d2
verifies the system

(z − z∗

d2
)′(t) = −d2(z − z∗

d2
)(t), t 6= (n + l − 1)T, t 6= nT ;

∆(z − z∗

d2
)(t) = −δ3(z − z∗

d2
)(t), t = (n + l − 1)T ;

∆(z − z∗

d2
)(t) = 0, t = nT .

Consequently,

z(t)− z∗

d2
(t) =


e−d2(t−(n−1)T )

(
z(0+)−

µ

1 − e−d2T (1 − δ3)

)
(1 − δ3)

n−1,

t ∈ ((n − 1)T, (n + l − 1)T ];

e−d2(t−(n−1)T )
(

z(0+)−
µ

1 − e−d2T (1 − δ3)

)
(1 − δ3)

n,

t ∈ ((n + l − 1)T, nT ];

(4.8)

from which the second assertion follows. The third assertion can be proved by direct computation, as done for
Lemma 4.1. �

5. Local stability results: A Floquet analysis

In this section we study the local stability of the resource and intermediate consumer-free periodic solution
(0, 0, z∗

d2
(t)) and of the intermediate consumer-free periodic solution (x∗

r (t), 0, z∗

d2
(t)) by means of the Floquet theory,

supposing that the productivity condition for the resource ln(1− δ1)+rT > 0 is satisfied. In this sense, it will be seen
that the local stability of the intermediate consumer-free periodic solution is governed by a threshold-like condition
expressed in terms of an integral involving the periodic solutions x∗

r and z∗

d2
introduced in the previous section, while

the resource and intermediate consumer-free periodic solution is always unstable.

Theorem 5.1. Suppose that ln(1 − δ1)+ rT > 0. The following properties hold.

1. The resource and intermediate consumer-free periodic solution (0, 0, z∗

d2
(t)) is unstable.

2. The intermediate consumer-free periodic solution (x∗
r (t), 0, z∗

d2
(t)) is locally asymptotically stable provided that

ln(1 − δ2)+

∫ T

0

[
k1g1(x

∗
r (s))− g′

2(0)z
∗

d2
(s)− d1

]
ds < 0 (5.1)

and unstable provided that the reverse inequality holds.

Proof. To study the stability of the resource and intermediate consumer-free periodic solution (0, 0, z∗

d2
(t)), let us

denote

x(t) = u(t), y(t) = v(t), z(t) = w(t)+ z∗

d2
(t), (5.2)
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u, v and w being understood as small amplitude perturbations. Substituting (5.2) into the first three equations of (S),
one obtains

u′(t) = u(t) [r − au(t)] − g1(u(t))v(t)
v′(t) = k1g1(u(t))v(t)− g2(v(t))

[
w(t)+ z∗

d2
(t)
]
− d1v(t)

w′(t) = k2g2(v(t))
[
w(t)+ z∗

d2
(t)
]
− d2w(t).

(5.3)

The corresponding linearization of (5.3) at (0, 0, 0) is
u′(t) = ru(t)
v′(t) = −

[
g′

2(0)z
∗

d2
(t)+ d1

]
v(t)

w′(t) = k2g′

2(0)z
∗

d2
(t)v(t)− d2w(t)

(5.4)

and so a fundamental matrix of (5.4) is

Φ1
L(t) =


er t 0 0

0 e
−
∫ t

0

[
g′

2(0)z
∗
d2
(s)+d1

]
ds

0

0
(∫ t

0
k2g′

2(0)z
∗

d2
(s)e

−
∫ s

0

[
g′

2(0)z
∗
d2
(τ )+d1

]
dτ

ds

)
e−d2t e−d2t

 . (5.5)

The linearization of the jump conditions at (n + l − 1)T reads as∆u(t) = −δ1u(t), t = (n + l − 1)T ;

∆v(t) = −δ2v(t),
∆w(t) = −δ3w(t),

(5.6)

while the linearization of the jump conditions at nT reads as∆u(t) = 0, t = nT ;

∆v(t) = 0,
∆w(t) = 0.

(5.7)

Consequently, the local stability of the resource and intermediate consumer-free periodic solution (0, 0, z∗

d2
(t)) can be

analyzed by studying the eigenvalues of the monodromy matrix

M1 =

1 − δ1 0 0
0 1 − δ2 0
0 0 1 − δ3

Φ1
L(T ).

Since the eigenvalues of M1 are

λ1 = (1 − δ1)erT , λ2 = (1 − δ2)e
−
∫ T

0

[
g′

2(0)z
∗
d2
(s)+d1

]
ds
, λ3 = (1 − δ3)e−d2T

and λ1 > 1, it follows that the resource and intermediate consumer-free periodic solution (0, 0, z∗

d2
(t)) is unstable,

with a one-dimensional unstable manifold.
We now study the stability of the intermediate consumer-free periodic solution (x∗

r (t), 0, z∗

d2
(t)). Let us denote

x(t) = u(t)+ x∗
r (t), y(t) = v(t), z(t) = w(t)+ z∗

d2
(t), (5.8)

u, v, w being understood again as small amplitude perturbations. Substituting (5.8) into the first three equations of
(S), one obtains

u′(t) = u(t)
[
r − a(u(t)+ x∗

r (t))
]
− g1(u(t)+ x∗

r (t))v(t)
v′(t) = k1g1(u(t)+ x∗

r (t))v(t)− g2(v(t))(w(t)+ z∗

d2
(t))− d1v(t)

w′(t) = k2g2(v(t))(w(t)+ z∗

d2
(t))− d2w(t).

(5.9)

The corresponding linearization of (5.9) at (0, 0, 0) is
u′(t) = u(t)

[
r − ax∗

r (t)
]
− g1(x

∗
r (t))v(t)

v′(t) =
[
k1g1(x

∗
r (t))− g′

2(0)z
∗

d2
(t)− d1

]
v(t)

w′(t) = k2g′

2(0)z
∗

d2
(t)v(t)− d2w(t).

(5.10)
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Let us define

ϕ : R+ → R, ϕ(t) =

∫ t

0

[
r − ax∗

r (s)
]

ds,

ψ : R+ → R, ψ(t) =

∫ t

0

[
k1g1(x

∗
r (s))− g′

2(0)z
∗

d2
(s)− d1

]
ds.

Then a fundamental matrix of (5.10) is

Φ2
L(t) =


eϕ(t) −eϕ(t)

∫ t

0
g1(x

∗
r (s))e

ψ(s)−ϕ(s)ds 0

0 eψ(t) 0

0 e−d2t
∫ t

0
k2g′

2(0)z
∗

d2
(s)ed2s+ψ(s)ds e−d2t

 .
The linearization of the jump conditions at (n + l − 1)T and nT gives again (5.6) and (5.7). Consequently, the
local stability of the intermediate consumer-free periodic solution (x∗

r (t), 0, z∗

d2
(t)) can be analyzed by studying the

eigenvalues of the monodromy matrix

M2 =

1 − δ1 0 0
0 1 − δ2 0
0 0 1 − δ3

Φ2
L(T ).

It is seen that the eigenvalues of M2 are

λ1 = (1 − δ1)eϕ(T ), λ2 = (1 − δ2)eψ(T ), λ3 = (1 − δ3)e−d2T .

It is obvious that 0 < λ3 < 1. Also, λ1 = 1, from Lemma 4.1. If (5.1) is satisfied, then 0 < λ2 < 1 and λ1 = 1 is a
simple eigenvalue, which implies that (x∗

r (t), 0, z∗

d2
(t)) is stable. If the reverse of (5.1) is satisfied, then λ2 > 1 and

(x∗
r (t), 0, z∗

d2
(t)) is unstable. Finally, noting that

∫ T
0 g1(x∗

r (s))e
ψ(s)−ϕ(s)ds > 0, since the integrand is strictly positive,

one sees that if

ln(1 − δ2)+

∫ T

0

[
k1g1(x

∗
r (s))− g′

2(0)z
∗

d2
(s)− d1

]
ds = 0, (5.11)

then (x∗
r (t), 0, z∗

d2
(t)) is again unstable, since λ = 1 is an eigenvalue of multiplicity 2 and its elementary divisor is not

simple. �

Note that the meaning of condition (5.1) is completely similar to that of condition ln(1 − δ1)+ rT < 0, but applied

to the dynamics of y this time. Namely, suppose that y approaches 0. Then
∫ T

0

[
k1g1(x∗

r (s))− g′

2(0)z
∗

d2
(s)− d1

]
ds

approximates the total growth (per unit biomass) of the intermediate consumer biomass in a period (note that
limt→0(g(t)/t) = g′

2(0)), while ln(1 − δ2) is a correction term which accounts for the loss of intermediate consumer
biomass (per unit biomass) due to pesticide spraying. If the total growth exceeds the loss ln(1 − δ2), then there is a net
gain of consumer biomass when y approaches 0 which prevents the extinction of the intermediate consumer, while if
the loss ln(1 − δ2) exceeds the total growth, there is a net loss of consumer biomass when y approaches 0 and so y(t)
tends to 0 as t → ∞. Also, condition ln(1 − δ1) + rT > 0 ensures the instability of the resource and intermediate
consumer-free periodic solution, since it prevents the extinction of the resource.

Since g1 and g2 are general functional responses, we have to state our stability condition (5.1) in terms of the
periodic solutions x∗

r and z∗

d2
rather than in a more explicit form. Actually, this form may make more sense even when

the particular forms of g1 and g2 are known (for instance, when g1, g2 are Holling type II functional responses), as
the resulting explicit inequalities are rather cumbersome and their interpretations are not transparent.

6. Global stability results

In this section, we perform a global stability analysis of the resource and intermediate consumer-free periodic
solution (0, 0, z∗

d2
(t)) and of the intermediate consumer-free periodic solution (x∗

r (t), 0, z∗

d2
(t)), respectively.
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Theorem 6.1. The following statements hold.

1. Suppose that ln(1−δ1)+rT ≤ 0. Then the resource and intermediate consumer-free periodic solution (0, 0, z∗

d2
(t))

is globally asymptotically stable.
2. Suppose that ln(1 − δ1) + rT > 0. Then the intermediate consumer-free periodic solution (x∗

r (t), 0, z∗

d2
(t)) is

globally asymptotically stable provided that

ln(1 − δ2)+

∫ T

0

[
k1g1(x

∗
r (s))− cg2 z∗

d2
(s)− d1

]
ds < 0, (6.1)

where

cg2 = inf
0≤u≤My

g′

2(u),

My being an ultimate boundedness constant for y.

Proof. Suppose first that ln(1 − δ1) + rT ≤ 0. Let ε1 > 0 such that k1g1(ε1) < d1 (this is always possible since
limε→0 g1(ε) = 0) and let also η = (1 − δ1)e(k1g1(ε1)−d1)T . Note that 0 < η < 1. It is seen that

x ′(t) = x(t) [r − ax(t)] − g1(x(t))y(t) ≤ x(t) [r − ax(t)]

and so, by Lemma 3.1, x(t) ≤ x̃(t) for t ≥ 0, where x̃ is the solution of (RS; x) with the same initial data at 0+ as
x . As any such solution x̃ tends to 0 for t → ∞, by Lemma 4.1, x tends to 0 as well and there is T1 > 0 such that
x(t) ≤ ε1 for t ≥ T1. For the sake of simplicity, we suppose that x(t) ≤ ε1 for all t > 0. One then obtains that

y′(t) = k1g1(x(t))y(t)− g2(y(t))z(t)− d1 y(t)

≤ y(t) [k1g1(ε1)− d1] , t 6= (n + l − 1)T .

By integrating the above inequality on ((n + l − 1)T, (n + l)T ], one obtains

ln (y((n + l)T ))− ln (y((n + l − 1)T +)) ≤ (k1g1(ε1)− d1)T for n ≥ 1

and so

ln (y((n + l)T ))− ln (y((n + l − 1)T ))− ln(1 − δ1) ≤ (k1g1(ε1)− d1)T for n ≥ 1.

It then follows that

y((n + l)T ) ≤ y((n + l − 1)T )η

and consequently

y((n + l)T ) ≤ y(lT )ηn,

which implies that y((n + l)T ) → 0 as n → ∞. Also,

y(t) ≤ y((n + l − 1)T +)e(k1g1(ε1)−d1)(t−(n+l−1)T ), t ∈ ((n + l − 1)T, (n + l)T ]

which implies that

y(t) ≤ y((n + l − 1)T +), t ∈ ((n + l − 1)T, (n + l)T ]

and consequently y(t) → 0 as t → ∞.
We finish by proving that z(t)− z∗

d2
(t) → 0 as t → ∞. To this purpose, let 0 < ε2 < d2/(k2L2). Since y(t) → 0

as t → ∞, there is some T2 > 0 such that y(t) ≤ ε2 for all t ≥ T2. For the sake of simplicity, we suppose that
y(t) ≤ ε2 for all t > 0.

It follows that

z′(t) = k2g2(y(t))z(t)− d2z(t)

≤ k2L2 y(t)z(t)− d2z(t)

≤ −(d2 − k2L2ε2)z(t), t 6= (n + l − 1)T, t 6= nT .
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Consequently, one infers from Lemma 3.1 that

z̃1(t) ≤ z(t) ≤ z̃2(t),

where z̃1 is the solution of (RS; z) with the same initial data at 0+ as z and z̃2 is the solution of (RS; z) with d2
changed into d2 − k2L2ε2 and the same initial data at 0+ as z.

As these solutions become close to z∗

d2
(t), respectively to z∗

d2−k2 L2ε2
(t) as t → ∞, by Lemma 4.2, it follows that,

for t large enough,

z∗

d2
(t)− ε2 ≤ z(t) ≤ z∗

d2−k2 L2ε2
(t)+ ε2

and the conclusion follows from Lemma 4.2. The first assertion is now established.
Now suppose that ln(1 − δ1) + rT > 0. We first show that y(t) → 0 as t → ∞. To this purpose, choose ε3 > 0

such that

ln(1 − δ2)+

∫ T

0

[
k1g1(x

∗
r (s)+ ε3)− cg2(z

∗

d2
(s)− ε3)− d1

]
ds < 0.

This choice is obviously feasible, as
∣∣g1(x∗

r (s)+ ε3)− g1(x∗
r (s))

∣∣ ≤ L1ε3 and (6.1) is satisfied. Let us also denote

ξ = (1 − δ2)e
∫ T

0

[
k1g1(x∗

r (s)+ε3)−cg2 (z
∗
d2
(s)−ε3)−d1

]
ds

and observe that 0 < ξ < 1.
It is seen that

x ′(t) = x(t) [r − ax(t)] − g1(x(t))y(t) ≤ x(t) [r − ax(t)] ,

and so, by Lemma 3.1, x(t) ≤ x̃(t) for t ≥ 0, where x̃ is the solution of (RS; x) with the same initial data at 0+

as x . As any such solution becomes close to x∗
r (t) for t → ∞, by Lemma 4.1, there is some T3 > 0 such that

x(t) ≤ x∗
r (t)+ ε3 for t ≥ T3. For the sake of simplicity, we suppose that x(t) ≤ x∗

r (t)+ ε3 for all t > 0.
Also,

z′(t) = k2g2(y(t))z(t)− d2z(t) ≥ −d2z(t),

and so, by Lemma 3.1, z(t) ≥ z̃(t) for t ≥ 0, where z̃ is the solution of (RS; z)with the same initial data at 0+ as z. As
any such solution becomes close to z∗

d2
(t) for t → ∞, by Lemma 4.2, there is some T4 > 0 such that z(t) ≥ z∗

d2
(t)−ε3

for t ≥ T4. For the sake of simplicity, we suppose that z(t) ≥ z∗

d2
(t)− ε3 for all t > 0.

Since y(t) is ultimately bounded, there is T5 > 0 such that y(t) ≤ My for all t ≥ T5, where My is an ultimate
boundedness constant for y. For the sake of simplicity, we suppose that y(t) ≤ My for all t > 0. Also, note that in
this situation g2(y(t)) ≥ cg2 y(t) for t ≥ 0. One then obtains that

y′(t) = k1g1(x(t))y(t)− g2(y(t))z(t)− d1 y(t)

≤ y(t)
[
k1g1(x

∗
r (t)+ ε3)− cg2(z

∗

d2
(t)− ε3)− d1

]
, t 6= (n + l − 1)T,

and it consequently follows that

y′(t)

y(t)
≤ k1g1(x

∗
r (t)+ ε3)− cg2(z

∗

d2
(t)− ε3)− d1, t 6= (n + l − 1)T .

By integrating the above inequality on ((n + l − 1)T, (n + l)T ], one obtains

ln(y((n + l)T ))− ln(y((n + l − 1)T +)) ≤

∫ (n+l)T

(n+l−1)T

[
k1g1(x

∗
r (t)+ ε3)− cg2(z

∗

d2
(t)− ε3)− d1

]
dt

and so

ln(y((n + l)T ))− ln(y((n + l − 1)T ))− ln(1 − δ2) ≤

∫ T

0

[
k1g1(x

∗
r (t)+ ε3)− cg2(z

∗

d2
(t)− ε3)− d1

]
dt

by periodicity. It then follows that

y((n + l)T ) ≤ y((n + l − 1)T )ξ
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and consequently

y((n + l)T ) ≤ y(lT )ξn,

which implies that y((n + l)T ) → 0 as n → ∞. Also

y′(t)

y(t)
≤ k1g1(x(t)) ≤ k̃,

k̃ being a suitable boundedness constant, so

y(t) ≤ y((n + l − 1)T +)ek̃(t−(n+l−1)T ), t ∈ ((n + l − 1)T, (n + l)T ]

which implies that

y(t) ≤ (1 − δ2)y((n + l − 1)T )ek̃T , t ∈ ((n + l − 1)T, (n + l)T ],

and consequently y(t) → 0 as t → ∞. We now prove that x(t) − x∗
r (t) → 0 as t → ∞. To this purpose, let

0 < ε4 ≤ r/L1. Since y(t) → 0 as t → ∞, there is T6 > 0 such that y(t) < ε4 for t ≥ T6. For the sake of simplicity,
we suppose that y(t) < ε4 for all t > 0.

It follows that

x ′(t) = x(t) [r − ax(t)] − g1(x(t))y(t)

= x(t)

[
r −

g1(x(t))

x(t)
y(t)− ax(t)

]
≥ x(t) [(r − L1ε4)− ax(t)]

for t 6= (n + l − 1)T, t 6= nT . Consequently, one infers from Lemma 3.1 that

x̃1(t) ≤ x(t) ≤ x̃2(t),

where x̃2 is the solution of (RS; x) with the same initial data at 0+ as x and x̃1 is the solution of (RS; x) with r
changed into r − L1ε4 and the same initial data at 0+ as x .

As these solutions become close to x∗
r (t), respectively to x∗

r−L1ε4
(t) as t → ∞, by Lemma 4.1, it follows that, for

t large enough,

x∗

r−L1ε4
(t)− ε4 ≤ x(t) ≤ x∗

r (t)+ ε4

and the conclusions now follow again from Lemma 4.1. To prove that z(t)− z∗

d2
(t) → 0 as t → ∞, we may proceed

as done for the proof of the first assertion. The second assertion is now established. �

Note that condition (6.1) has a somewhat theoretical value and is only sufficient for the global asymptotic stability
of the intermediate consumer-free periodic solution. One may not expect, though, an integral condition of type (6.1) to
be threshold-like (to be necessary as well). This happens since (S) has to inherit, at least partially, the chaotic behavior
of the unperturbed system, which is attained for a certain window in the parameter space, as noted in Klebanoff
and Hastings [11]. At this point, the availability of a good estimate of the ultimate boundedness constant for y
or of cg2 is crucial. In this regard, if one considers the case in which g2 is a Holling type II functional response,
g2(y) = (a2 y)/(1 + b2 y), then g′

2(y) = a2/(1 + b2 y)2 and then infy∈R+
g′

2(u) = 0. Consequently, if no good
estimations for the ultimate boundedness constant are available and B is large, then the only sensible way to ensure
the validity of (6.1) is to assume that

ln(1 − δ2)+

∫ T

0

[
k1g1(x

∗
r (s))− d1

]
ds < 0,

but this is a rather crude estimation, which ensures the extinction of the intermediate consumer even if no top predator
is present.

Note also that, at least formally, both the local stability condition (5.1) and the global stability condition (6.1)
display a significant dependence on the functional response g2 of the top predator, with a dominance on the dependence
on a2.
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7. Biological interpretations of the stability results

From Theorem 6.1, we note that if the pesticide is not selective enough, that is, if δ1 is large enough to make
ln(1−δ1)+rT negative, or, in other words, if the pesticide has a significant negative effect on the growth of the resource
biomass, then the resource and intermediate consumer-free periodic solution is globally asymptotically stable, which
means that our control strategy fails. Alternatively, this means that a nonselective pesticide should not be applied very
often (T should be large) in order to avoid resource extinction. Of course, this may have a negative impact on the
overall success of the integrated pest management strategy.

From Theorem 6.1, it is seen that, theoretically speaking, our control strategy can be always made to succeed
globally by the use of proper pesticides, provided that δ1 is small enough, in order to have the inequality
ln(1 − δ1) + rT > 0 satisfied, and δ2 is large enough to have (6.1) satisfied, for any given top predator functional
response g2. Also, it is seen that an aggressive (g′

2(0) large enough) top predator may stabilize an otherwise unstable
intermediate consumer-free periodic solution, at least locally (see (5.1)). In order to stabilize the intermediate
consumer-free periodic solution globally, the top predator should be aggressive enough, even at large intermediate
consumer densities, when saturation effects are supposed to appear, so that

inf
0≤u≤My

g′

2(u) >
ln(1 − δ2)+

∫ T
0

[
k1g1(x∗

r (s))− d1
]

ds∫ T
0 z∗

d2
(s)ds

.

If g2 is a Holling type II functional response (see above) or a Ivlev functional response (g2(x) = k(1 − e−bx )), which
are convex regarded as functions of x , then the above reduces to

g′

2(My) >
ln(1 − δ2)+

∫ T
0

[
k1g1(x∗

r (s))− d1
]

ds∫ T
0 z∗

d2
(s)ds

.

Note that
∫ T

0 k1g1(x∗
r (s))ds and

∫ T
0 z∗

d2
(s)ds are g2-independent.

Since limµ→∞

∫ T
0 z∗

d2
(s)ds = +∞, from Lemma 4.2, and x∗

r does not depend upon µ, it is seen from Theorem 6.1
that the intermediate consumer-free periodic solution can be stabilized globally by means of increasing µ alone. Note
that B, the global boundedness constant for y which is indicated in (3.8) and which may also serve as an ultimate
boundedness constant for y, is µ-independent.

Also,∫ T

0
k1g1(x

∗
r (s))ds < k1L1

∫ T

0
x∗

r (s)ds = k1L1(1/a) (ln(1 − δ1)+ rT ) ,

from Lemma 4.1, so

lim sup
T ↓−(ln(1−δ1))/r

∫ T

0
k1g1(x

∗
r (s))ds ≤ 0.

As

lim inf
T ↓−(ln(1−δ1))/r

cg2

∫ T

0
(z∗

d2
(s)+ d1)ds > 0

from Lemma 4.2 and cg2 is T -independent, it is seen from Theorem 6.1 that the intermediate consumer-free periodic
solution can also be globally stabilized by means of decreasing T alone, in such a way that ln(1 − δ1)+ rT remains
strictly positive.

However, as mentioned in the Introduction, our purpose is to drive the intermediate consumer population under
the economic injury level rather than eradicate it completely, so our pest management strategy may be considered
successful even in situations in which (6.1) is not satisfied, provided that the intermediate consumer population
stabilizes under the economic injury level.

Accepting (1/T )
∫ T

0 f (t)dt as an averaging measure for the oscillations of a periodic and positive function f of
period T (an average level of persistence, that is), it is seen from Lemma 4.2 that an increase in µ causes an increase
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in the average level of z∗

d2
, while from Lemma 4.1 it is seen that an increase in µ has no effect on the average level of

x∗
r .

From Lemma 4.1, it may also be observed that an increase in the carrying capacity of the environment (a decrease of
a while keeping r constant, that is) causes an increase in the average level of x∗

r , while having no effect on the average
level of z∗

d2
. This is certainly conceivable, since if y tends to extinction, then the resource x and the top predator z are

essentially independent, as the top predator z does not feed upon the resource x . Also, as seen from (5.1) and (6.1), an
increase in the carrying capacity of the environment may not necessarily destabilize the intermediate consumer-free
periodic solution (x∗

r (t), 0, z∗

d2
(t)), at least when the functional response g1 of the intermediate consumer is a Holling

type II functional, since
∫ T

0 g1(x∗
r (s))ds is bounded from above as a function of a, but it certainly reduces the chances

of having a stable intermediate consumer-free periodic solution, since
∫ T

0 g1(x∗
r (s))ds is decreasing as a function of a.

It is then seen that we obtain a paradox of enrichment for our food chain model, albeit in a weaker form. Also, noting
that all terms in (5.1) are negative except for k1

∫ T
0 g1(x∗

r (s))ds, we observe that periodic solutions (x∗
r (t), 0, z∗

d2
(t))

with low x∗
r ’s are inherently stable rather than unstable, so the paradox of biological control is not present in our

model.
To show that our pest management strategy does not over-rely on the use of pesticides, although this, in some

sense, has already been observed above, we briefly study below the case in which no pesticides are sprayed (that is,
δ1 = δ2 = δ3 = 0) and outline the success conditions.

It is seen that in this situation ln(1 − δ1)+ rT = rT > 0 and
∫ T

0 z∗

d2
(s)ds = µ/d2. Also, this time x∗

r (t) = r/a for
t ≥ 0 (see (4.3) and (4.4)). We consequently obtain with the help of Theorems 5.1 and 6.1 the following result.

Theorem 7.1. Suppose that δ1 = δ2 = δ3 = 0. Then the following statements hold.

1. The resource and intermediate consumer-free periodic solution (0, 0, z∗

d2
(t)) is unstable.

2. The intermediate consumer-free periodic solution (r/a, 0, z∗

d2
) is stable provided that

(k1g1(r/a)− d1) T < g′

2(0)µ/d2,

respectively globally asymptotically stable provided that

(k1g1(r/a)− d1) T < cg2µ/d2.

3. The intermediate consumer-free periodic solution (r/a, 0, z∗

d2
) is unstable provided that

(k1g1(r/a)− d1) T ≥ g′

2(0)µ/d2.

It is now easy to see that a voracious top predator can always stabilize the system, driving the intermediate consumer
to extinction and the prey to the carrying capacity of the environment. Also, for µ large enough or T small enough,
the global stability condition is always satisfied. Note that, for a significant part of the parameter space, the dynamical
outcome does not depend upon the initial population sizes, which is perhaps not surprising, having in view that we
study a model with predator-dependent functional responses, as opposed to a model with ratio-dependent functional
responses.

We may further particularize gi (x) = (ai x)/(1 + bi x), i ∈ {1, 2}, and obtain that (r/a, 0, z∗

d2
) is stable provided

that T < (a2µ(a + b1r)) / (d2(k1a1r − d1a − d1b1r)) and unstable provided that the reverse inequality holds, that is,
a result similar to Theorem 3.1 in Zhang and Chen [21].

In the situations in which the intermediate consumer-free equilibrium is globally asymptotically stable, or at least
the intermediate consumer population stabilizes below the economic injury level, it would be interesting from a
practical point of view to give a general estimate of the time required for the intermediate consumer population to
drop below the economic injury level. Unfortunately, we were not able to address this issue in this work.

8. Numerical simulations

We are now concerned with the numerical investigation of some situations not covered by our Theorems 5.1 and
6.1 which may lead to a chaotic behavior of the system. Following Klebanoff and Hastings [11] and Kuznetsov and
Rinaldi [16], we rescale the variables using the formulas

x1 =
ax

r
, x2 =

ay

rk1
, x3 =

az

rk1k2
, s = r t
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and obtain the following scaled system

(SC)



x ′

1(s) = x1(s)[1 − x1(s)] −
m1x1(s)

1 + n1x1(s)
x2(s), s 6= (n + l − 1)T1, s 6= nT1;

x ′

2(s) =
m1x1(s)

1 + n1x1(t)
x2(s)−

m2x2(s)

1 + n2x2(s)
x3(s)− D1x2(s), s 6= (n + l − 1)T1, s 6= nT1;

x ′

3(s) =
m2x2(s)

1 + n2x2(t)
x3(s)− D2x3(s), s 6= (n + l − 1)T1, s 6= nT1;

∆x1(s) = −δ1x1(s), s = (n + l − 1)T1;

∆x2(s) = −δ2x2(s), s = (n + l − 1)T1;

∆x3(s) = −δ3x3(s), s = (n + l − 1)T1;

∆x1(s) = 0, s = nT1;

∆x2(s) = 0, s = nT1;

∆x3(s) = µ1, s = nT1,

where

m1 =
a1k1

a
, n1 =

b1r

a
, n2 =

rb2k1

a
, D1 =

d1

r
, D2 =

d2

r
, T1 = rT,

µ1 =
aµ

rk1k2
.

It is easy to see that the corresponding unperturbed system

(RSC)


x ′

1(s) = x1(s)[1 − x1(s)] −
m1x1(s)

1 + n1x1(s)
x2(s), s 6= (n + l − 1)T1, s 6= nT1;

x ′

2(s) =
m1x1(s)

1 + n1x1(t)
x2(s)−

m2x2(s)

1 + n2x2(s)
x3(s)− D1x2(s), s 6= (n + l − 1)T1, s 6= nT1;

x ′

3(s) =
m2x2(s)

1 + n2x2(t)
x3(s)− D2x3(s), s 6= (n + l − 1)T1, s 6= nT1;

has at most five equilibria, namely:

1. The trivial equilibrium O = (0, 0, 0).

2. The intermediate consumer and top predator-free equilibrium R = (1, 0, 0).

3. The top predator-free equilibrium

RC = (D1/(m1 − n1 D1), (m1 − n1 D1 − D1)/(m1 − n1 D1)
2, 0).

4. The positive equilibria

P1 = (x P1
1 , D2/(m2 − n2 D2), x P1

3 ), P2 = (x P2
1 , D2/(m2 − n2 D2), x P2

3 ),

where

x Pi
1 =

n1 − 1
2n1

+ (−1)i

√
(n1 + 1)2 − 4 m1n1 D2

m2−n2 D2

2n1

x Pi
3 =

1
m2 − n2 D2

(
m1x Pi

1

1 + n1x Pi
1

− D1

)
, i ∈ {1, 2} .

Note that the first two equilibria exist irrespective of the values of the parameters which characterize the system, while
several conditions need to be satisfied for the existence of the last three equilibria.

The dynamics of the unperturbed system (RSC) have been studied in detail by Klebanoff and Hastings in [11]
and by Kuznetsov and Rinaldi in [16]. However, the behavior of the perturbed system (SC) is severely affected by
our periodic forcing and the qualitative picture bears little resemblance, at least for significant forcing, to that of the
unperturbed system.
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Fig. 8.1. m1 = 2.4, n1 = 3, m2 = 0.02, n2 = 0.4, D1 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, µ1 = 0.25, T1 = 10, l = 0.5. The
trajectory approaches a periodic orbit of period T1. The unperturbed system has a top predator-free equilibrium, but no positive equilibria.

From Theorem 5.1, it is easy to see that the intermediate consumer-free periodic solution is unstable provided that
m2 < m2s , where

m2s =
ln(1 − δ2)+

∫ T1
0

m1(x1)
∗(s)

1+n1(x1)
∗(s)ds − D1T1∫ T1

0 (x3)
∗

D2
(s)ds

and locally stable provided that the reverse inequality is satisfied.
For m1 = 2.4, n1 = 3, m2 = 0.02, n2 = 0.4, D1 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05,

µ1 = 0.25, T1 = 10, l = 0.5 (part of the values are close to the ones used by McCann and Yodzis in [15]) and
x1(0) = 0.75, x2(0) = 0.49, x3(0) = 0.05, it is seen that the intermediate consumer-free periodic solution is unstable
and the stabilizing value is m2s = 0.098. The unperturbed system has a top predator-free equilibrium, but no positive
equilibria.

It is then seen that in this case the trajectory of the perturbed system tends to a periodic orbit of period T1. Apart
from deciding the stability or instability of the intermediate consumer-free periodic solution, the parameter m2 does
not seem to otherwise influence the qualitative properties or the shape of the limiting set. The behavior of the trajectory
is depicted in Fig. 8.1.

A related behavior is captured in Fig. 8.2 for m1 = 10, n1 = 3, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01,
δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, µ1 = 0.25, T1 = 11, l = 0.5 and x1(0) = 0.75, x2(0) = 0.49, x3(0) = 0.05. The
intermediate consumer-free periodic solution is unstable and the stabilizing value is m2s = 1.329. The unperturbed
system has a top predator-free equilibrium and a positive equilibrium.

In this case the trajectory of the perturbed system tends to a periodic orbit of period 3T1.
A typical example of chaotic behavior (strange attractor) is captured in Fig. 8.3 for m1 = 10, n1 = 3, D1 = 0.4,

m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, µ = 0.25, T1 = 30, l = 0.5 and x1(0) = 0.75,
x2(0) = 0.49, x3(0) = 0.05. The intermediate consumer-free periodic solution is unstable and the stabilizing value
is m2s = 1.244. Again, the unperturbed system has a top predator-free equilibrium and a positive equilibrium. The
two-dimensional plot x2 vs. x1 and the time series for x1, x2, x3 also indicate that the trajectory has a chaotic behavior.
A slight increase in m2 (m2 = 0.109) “stabilizes” the behavior of the system, and the trajectory tends again to a
periodic solution of period T1.

A somewhat similar situation is captured in Fig. 8.4 for m1 = 10, n1 = 2, D1 = 0.4, m2 = 0.1, n2 = 0.4,
D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, µ = 0.25, T1 = 10, l = 0.5 and x1(0) = 0.75, x2(0) = 0.49,
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Fig. 8.2. m1 = 10, n1 = 3, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, µ1 = 0.25, T1 = 11, l = 0.5. The
trajectory approaches a periodic orbit of period 3T1. The unperturbed system admits a top predator-free equilibrium and a positive equilibrium.

Fig. 8.3. m1 = 10, n1 = 3, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, µ = 0.25, T1 = 30, l = 0.5. The
trajectory is chaotic (bistability-like scenario). The unperturbed system admits a top predator-free equilibrium and a positive equilibrium.

x3(0) = 0.05. The intermediate consumer-free periodic solution is unstable and the stabilizing value is m2s = 1.745.
The unperturbed system has a top predator-free equilibrium and two positive equilibria. A slight increase in m2
(m2 = 0.1119) “stabilizes” the behavior of the system, and the trajectory tends again to a periodic solution of period
T1. That is, m2 not only has the potential to stabilize the intermediate consumer-free periodic solution, but also the
potential to mitigate the chaotic behavior of a trajectory for certain values significantly smaller than the stabilizing
critical value, an increase of m2 over these values ensuring that the trajectories of the system tend to certain periodic
solutions.
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Fig. 8.4. m1 = 10, n1 = 2, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, µ = 0.25, T1 = 10, l = 0.5. The
trajectory is chaotic (bistability-like scenario). The unperturbed system admits a top predator-free equilibrium and two positive equilibria.

9. Concluding remarks

In this paper, an integrated pest management model described through an impulsively perturbed tri-trophic simple
food chain system is proposed and investigated. To control the behavior of the system, biological controls, in the form
of periodic release of top predators in a fixed number and chemical controls, in the form of periodic pesticide spraying,
are employed. It is assumed that as a result of pesticide spraying fixed proportions of resource biomass, intermediate
consumer biomass and top predator biomass are degraded each time. Nonlinear general smooth functions are used
to model the functional response of the intermediate consumer and of the top predator and a general prey-dependent
model is consequently obtained.

By means of the Floquet theory of impulsively perturbed systems of ordinary differential equations, it is seen
that the local stability of the intermediate consumer-free periodic solution is governed by a threshold-like inequality,
provided that a certain condition on the productivity of the resource is satisfied. If the reverse of the productivity
condition is satisfied, then the resource and intermediate consumer-free periodic solution is globally asymptotically
stable.

A sufficient condition for the global stability of the intermediate consumer-free periodic solution, corresponding to
the ultimate success of our pest management strategy, is established, while it is observed that, biologically speaking,
the integrated pest management strategy can be considered successful when the intermediate consumer population
stabilizes under a certain economic injury level, not necessarily when it is completely eradicated. Formally, both the
local and global stability condition display a significant dependence on the functional response of the top predator.

It is observed that, theoretically speaking, the control strategy can be always made to succeed by the use of proper
pesticides, while as far as the biological control is concerned, its global effectiveness can also be reached provided
that the top predator is voracious enough, or the number µ of top predators released each time is large enough or the
period T is small enough. Any of these features alone can ensure the global success of our control strategy, although
in concrete situations these may or may not be biologically feasible or may require a large amount of resources.

Finally, a numerical analysis of some situations leading to a chaotic behavior of the system is also provided.
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