GLOBAL STABILITY FOR A
STAGE-STRUCTURED PREDATOR-PREY
MODEL

Paul Georgescu and Gheorghe Morogsanu
Department of Mathematics and Its Applications,
Central European University, Nador u. 9, 1051 Budapest, Hungary
tphgev01@phd.ceu.hu, Morosanug@ceu.hu

Abstract

The asymptotic behavior of a stage-structured predator-prey system is studied using the
theory of finite dimensional competitive systems. Using natural conditions on the persistency
constant for prey and on the reproduction rate of the mature predators, it is found that the
system under consideration has a unique positive equilibrium, which is globally asymptoti-
cally stable. Some considerations on the uniform persistency of the system are also included.
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1 Introduction

The age factors are important for the dynamics and evolution of many mammals. The rates of survival,
growth and reproduction almost always depend heavily on age or developmental stage and it has been
noticed that the life history of many species is composed of at least two stages, immature and mature,
with significantly different morphological and behavioral characteristics.

The study of stage-structured predator-prey systems has attracted considerable attention in recent
years, as a way to overcome the limitations of classical Lotka-Volterra models. Magnusson studied in [15]
the destabilizing effect of cannibalism in a predator-prey system in which mature predators prey upon
both immature predators and prey individuals. Chen established in [3] the existence of positive periodic
solutions for a delayed non-autonomous ratio-dependent predator-prey system with stage structure for
predator with the help of coincidence degree theory. Wang [22] and Xiao and Chen [24] studied the global
stability of a stage-structured predator-prey system using the theory of competitive systems, while the
model in Wang and Chen [23] accounted also for the effect of the delay caused by the crowding of the
prey. A comprehensive survey of recent progress in stage structured models, with emphasis on modelling
issues, can be found in Liu, Chen and Agarwal [12].

In [22], Wang considered the following predator-prey model with stage structure for predator, in which
the immature predators can neither hunt nor reproduce



(0) = 2(0) (r — as(t) ~ 1L (),

O =k sialt) = (D + dn ), (1)

Ys(t) = Dy1(t) — daya(t).

Here, z(t) denotes the density of prey at time ¢, while the densities of immature and mature predators
are denoted by y1 (t), respectively by y2(¢). The functional response of the mature predator is characterized
by the Holling type II function « — bz/(1 + mz), b being the search rate and m being the search rate
multiplied by the handling time. It is assumed that the reproduction rate of the mature predator depends
on the quantity of prey consumed, the conversion efficiency of prey into newborn immature predators
being denoted by k. It is assumed that the predators become mature after a fixed age. In this respect,
D denotes the rate at which immature predators become mature predators, that is, 1/D represents the
total time spent by a predator in its immature stage. Also, the mortality rates of immature, respectively
mature predators are denoted by di, respectively by ds.

It has been proved in [22], among other results, that if

kbrD
a—+ mr’

da(D +dy) < (1.2)
then there is a unique positive endemic equilibrium E* = (z*,y7,y3). By using the first approximation
method, Wang also proved that the positive equilibrium E* is locally asymptotically stable provided that
the following inequality holds

* ) *
x*(D+d1+d2)(a+2max*—mr) <D+d1+d2—|—x (a—|— max mr,«))

1+ ma*
- bysda(D + d1)
14+ mz*

(1.3)

It has also been shown in [22] that the positive equilibrium E* is globally asymptotically stable if the
following set of inequalities hold
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pp— 1+ mz*’ de > D. (14)
However, it has been observed by Xiao and Chen in [24] that the last two inequalities in condition (1.4)
contradict condition (1.2). Incidentally, let us note here that the same applies to relations (2.2) and
(4.1) in Wang and Chen [23], albeit in a slightly different form. Xiao and Chen also proved that E* is
globally asymptotically stable provided that (1.3) and (1.2) hold, together with one of the following two
assumptions

r+D+d;

(Hl)D+d1>rand£>%; (H2) D+d; <rand z > 20

where z is such that z < liminf;_..2(¢t). Their proof is based on the theory of three-dimensional
competitive systems and amounts to showing that (1.1) has the property of stability of periodic orbits.
Combined with the uniqueness of the positive equilibrium and its local asymptotic stability, this yields
that the positive equilibrium is actually globally asymptotically stable.

It has been proved in Georgescu and Hsieh [7] by using Lyapunov functionals and LaSalle’s invariance
principle rather than by employing competitive systems theory, as done in [22] and [24], that conditions
z > r/(2a) and (1.2) are actually sufficient for the global asymptotic stability of (1.1) and that (1.3)
follows once z > r/(2a) holds.

In the following, we shall employ the theory of competitive systems and Muldowney’s necessary and
sufficient condition for the orbital stability of a periodic orbit, as done in [24], and obtain the global



stability of the positive equilibrium for a system which is slightly more general than the one studied in
[22] and [24], under a natural persistency condition and a condition on the reproduction rate of the prey.
We shall also provide a different persistency argument, based on the use of Lyapunov-like functionals, as
opposed to the study of the flow near the boundary, which was the method employed in [22].

2 The local stability of the positive equilibrium

In the following, we consider the system

2'(t) =n(z(t) — f(@(t)y2(t),
1) =kf(@(t)y2(t) — (D + di)yi(t), (2.1)
Ys(t) = Dy1(t) — daya(1),
under the following hypotheses
(H1) f e C'(]0,00),[0,00)), f(0) =0, f is strictly increasing on [0, 00).

(H2) (a) n€C'([0,00),R)
(b) n(z) =0 if and only if x € {0,z¢}, with xo > 0 and n(z) > 0 for = € (0, z).

(c) n is strictly decreasing on [zp,00), 0 < zp < xg.

The significance of the functions z,y;, y2 and of the parameters k, D, di, da is the same as in (1.1). Note
that (H1) is satisfied for some usual examples of predator functional response, namely for f(x) = ba? /(1+
maP), 0 < p < 1, that is, the generalized type II Holling functional response (Holling, [10]) and f(x) =
k(1 — e *) (Ivlev, [11]). Also, (H2) is satisfied for some commonly used examples of growth functions
n, namely for n(z) = z(1 — (z/K)), that is, the classical logistic growth, for n(z) = z(1 — (z/K)?),
0 € (0,1], that is, the generalized logistic growth (Richardson [18]) and for n(z) = x(re!=@/%) — q)
(Nisbet and Gurney, [16]). As in Aiello and Freedman [1], it is assumed that the immature predators
are either raised by their mature parents or grow on an abondant nutrient for which they do not have
to compete with adults and consequently neither crowding terms nor intra-species competition terms are
added for predators.

Under these circumstances, it is easy to see that if z(0), y1(0), y2(0) > 0, then z(t), y1(¢), y2(t) > 0
on their respective intervals of existence. Namely, it can be noted that the vector (Rj, Ra, R3) points
inside Q = [0,0)? at all points of dQ, where Ry, R, R3 are the right-hand sides appearing in (2.1), so
Nagumo’s tangency conditions are satisfied. See [17] for details.

It can also be proved that (0, 00)? is a positively invariant sent for (2.1). To this purpose, suppose that
z(0),41(0),y2(0) > 0 and note that 4 (yse?2t) = Dye?2t > 0. It follows that ¢ +— ya(t)e®2? is increasing
and consequently ys is strictly positive. Similarly, ¢ — 1 (t)e(D +d1)t i increasing and consequently y; is
strictly positive. The strict positivity of z can now be proved by a uniqueness argument. Namely, suppose
that x(to) = 0 for some ¢y > 0. Then the solution which starts from (0, y1(to), y2(t0)) at t = to should
coincide with the solution starting from (z(0),y(0), z2(0)) at ¢ = 0, which is obviously a contradiction.

Since 2’ < n(zx), it follows that x(t) < max(z(0), zo) for all ¢, which insures the boundedness of . Let
us also define F'(z,y1,y2) =« + (1/k)y1 + (1/k)y2. Computing the derivative of F along the solutions of
(2.1), we obtain that

F +dF < n(x) + dz,

where d = min(dy, ds), and so
F(a(t),y1(t), y2(8)) < F(2(0),91(0), y2(0))e ™

1 _ it
+ (nar + dmax (z(0), z9))

d )



for all ¢, where njps is a boundedness constant for n on [0, max(z(0),zo)], that is, on the boundedness
interval for z. It follows that x,y;,y2 are bounded and consequently, from basic ODE theory, they are
defined on all [0, 00). This means that the system (2.1) is well-defined in a biological (and mathematical)
sense. Regarding the behavior of the solutions which start on the boundary of [0,00)3, it is easy to see
that the solutions which start in the plane y; Oy, tend to the origin while remaining in the plane y;Oys
(obviously, this case is mathematically significant only, as no initial prey population exists), the solutions
which start on the semiaxis Oz tend to (zg,0,0), while all other solutions starting on the boundary enter
(0, 00)3.

Moreover, following the lines of Georgescu and Hsieh [7, Theorems 3.1 and 3.2], it is possible to
show that T' = do(D + dy)/D is a threshold parameter for the stability of (2.1), in the sense that if
da(D+dy)/D > kf(zo), then the predator classes tend to extinction and the unique prey-only equilibrium
(70,0,0) is globally asymptotically stable on (0,00)?, while if the reverse inequality is satisfied, then the
prey-only equilibrium becomes unstable and there is a unique positive equilibrium (z*,y7,y5). As the
dynamics of the system in the case da(D + d1)/D > kf(xo) is now completely determined, we shall
assume for the rest of the paper that the reverse inequality is satisfied, that is,

Note that if we define the basic reproduction number of the predator population as

1 D
Ro—kf(xo)'d—Q'ma
by analogy with the considerations indicated in [21] for differential systems arising in epidemiology, then
(2.2) can simply be rewritten as Ry > 1.

Here, 1/ds represents the time spent by a predator into the mature stage (the only one in which the
predators can hunt and consume prey) and D/(D + d;) represents the fraction of immature predators
which survive to the mature stage. As f(zo) represents the functional response of the mature predators
introduced into a prey-only population at carrying capacity of the environment and k measures the
efficience of the conversion of prey into new immature predators, the significance of Ry is quite clear:
Ry represents the average number of offsprings produced by a predator during its lifetime. Of course, if
Ry > 1, that is, if few mature predators introduced in a prey population at carrying capacity have the
capability to reproduce fast enough, then the survival of the predator population is guaranteed, so the
prey-only equilibrium is unstable.

We first attempt to characterize the local stability of (2.1) at (z*,y7,y3). It is easy to see that the
Jacobian matrix of (2.1) at a generic point (z,y1,y2) is given by

n'(z) = fz)y 0 —f(z)
Jea1(@,y1,y2) = kf'(x)y2  —(D+dy) kf(z) |- (2.3)
0 D —da

Moreover, the coordinates x*, yj, y5 of the equilibrium point £* verify the following equilibrium relations

n(z*) = f(z*)ys,
kf(x*)ys = (D +d)yt,
Dyi = days3.

From the above equilibrium relations, it follows that the characteristic equation at (z*,y], y3) is given by

N (D +dy +do) + f(x%)ys —n/ ()] N2 (2.4)
FA(D +dy +do)(f' (2" )ys — n'(27))] + (D + di)da f'(z7)y5 = 0.



By the Routh-Hurwitz theorem, all roots of (2.4) have negative real parts if

(D +di+dz) + f'(2")ys —n'(2")] [(D + d1 + do)(f' (2" )y5 — n/(z7))] (2.5)
> (D + dy)dy f'(x7)y3,

while if the reverse of (2.5) is satisfied, then two characteristic roots have positive real parts. Note that
if z* > zp, then n/(z*) < 0 and consequently

(D +dy +d2) + f'(x")ys — 0/ ()] [(D + di + do) (' (z")y5 — n/(z7))]
> (D +dy +do)? f'(2%)ys
> 4D +dy)daf'(x)ys,

so (2.5) is satisfied if the inequality * > xp holds and consequently any positive equilibrium E* =
(z*,y7,y3) for which * > xp is locally asymptotically stable.

3 The uniform persistence of the system

Let z such that liminf, .. 2(t) > z. We now prove that if £ > xp, then (2.1) is uniformly persistent,
that is, there are m, M € (0, 0c0) such that

m < 1itminf<p(t) <M for p € {z,y1,¥2} .

From a biological viewpoint, it is clear that the uniform persistence of the system insures the survival
of all populations, which reach in the long term at least a certain numerical level not depending on the
initial population sizes. Let us denote

h:n/f“xp,oo)'

It is easy to see that h(xzg) = 0 and h is strictly decreasing on [z p, +00). We start by proving a quantitative
property of the solutions of (2.1).

Lemma 3.1. For all p > 0 small enough, if

limsup y2(t) < p
t—o0
then
liminf z(t) > h™*(p).

t—oo

Proof. Tt is seen that

20 = (0 | o ]
> (@(0) () ~ o+

for t large enough and € > 0 arbitrary. The conclusion follows easily, if p is chosen small enough, so that
h is well-defined. O

We now introduce a few notions regarding the persistence of a semidynamical system. Let m; be a
semidynamical system defined on a closed subset F' of a locally compact metric space (X, d).

Definition 3.1. [t is said that a subset S of F' is a uniform repeller if there is 7 > 0 such that for each
x € F\S, liminf;_ d(m (x,t),S) > n.



Of course, the semidynamical system is then uniformly persistent if the boundary of F' is a uni-
form repeller. We now state an elegant result of Fonda ([6, Corollary 1]) about uniform repellers for
semidynamical systems on abstract metric spaces.

Theorem 3.2. Let 7 be a semidynamical system defined on a locally compact metric space X and let S be
a compact subset of X such that X\S is positively invariant. A necessary and sufficient condition for S
to be a uniform repeller is that there exists a neighborhood U of S and a continuous function P : X — IR
satisfying

1. P(x)=04if and only if x € S.
2. For all x € U\S there is a Ty > 0 such that P(m(z,Ty)) > P(x).

Using the above result, it is possible to prove that the set B = {(m,yl,yg) € [0, M]3 y2 = 0} is a
uniform repeller, where M is a suitable boundedness constant.

Theorem 3.3. Suppose that (2.2) is satisfied. Then B is a uniform repeller.

Proof. Tt is seen that B is compact and that [0, M]*\B is positively invariant. Let P : [0, M]> — R{
defined by P(x,y1,y2) = y2. Define also

U= {($7y17y2) € [OaM]37P(xay17y2) < p}

where p is small enough, so that kf(h=(p))D/(D + d1) > dz and h=*(p) is well defined.
Suppose by contradiction that there is z € U such that for all £ > 0 one has

P(r(z,1)) < P(2) < p,

where z = (2%, y7,y5) and 7(z, -) is the solution of (2.1) with initial data z(0) = =%, y1(0) = yF, y2(0) = 3.
Let us consider

£(t) = y2(t) + (1= p )y ()

D +d;

with p* small enough, so that

(1= p)kf(h™'(p)) —da >0

D+d;
One then has
€(0) = (D () - daya (1) + 50 (1= ") K @)z — (D + dy)y]
=Dy~ day = D(1 = s + 1 (1= S o)
:p*y1 + |:D fdl (1 — p*)k‘f(x) — dz] Y2
>tk | (= PRGN — i e

As a result, &'(t) > C&(t) for some sufficiently small C' and consequently £(t) — oo as t — oo, which
contradicts the boundedness of z,y1,y2. It then follows by Theorem 3.2 that B is an uniform repeller,
which finishes the proof. O

It is then easy to see that under the hypotheses of Theorem 3.3, the system (2.1) is uniformly persistent
provided that condition x > zp holds. Consequently, we obtain the following result.

Theorem 3.4. If (2.2) is satisfied and x > xp holds, then (2.1) is uniformly persistent.



Proof. By Theorem 3.3, the boundedness of x,y1,y2 and inequality > xp, there are m, M > 0 such
that
m < litminfga(t) <limsupp(t) <M (3.1)

t—o0

for ¢ € {x,y2}. From the second equation in (2.1) one infers that

ta
yi(te) = e”PHE"0y, () +/ kf(2(s))yz(s)e Pravlt=s)gs,
t1
SO
1 — ¢~ (D+di)(t2—t1)

1o) > o~ (D+di)(t2—t1), (4 k
yi(tz) > e yi(t1) + kf(m)p Drd

for to > t; > t*, t* great enough, which implies that

kf(m)p
D+di’

liminf y, (t) >
t—oo

Since y1 is bounded, it follows that (3.1) holds for ¢ = y; as well, with suitable m, M and consequently
(2.1) is persistent and in the long term both the predator and prey populations reach at least a certain
level not depending on the initial population sizes. O

The biological interpretation of the above result is very simple. Once few mature predators introduced
in a prey-only equilibrium can reproduce fast enough (kf(x¢) > do2(D+d;1)/D) and there is an abondance
of prey on the long term (z > xp), then the survival of all populations is assured for all future time. For
other related arguments pertaining to the persistence of certain epidemiologic systems, see Margheri and
Rebelo [14].

To prove the global stability of the positive endemic equilibrium E*, we need now introduce a few
notions and results about competitive systems and the orbital stability of their periodic orbits. See Smith
[19] for a comprehensive treatment of asymptotic behavior of finite and infinite dimensional competitive
systems.

Definition 3.2. The autonomous differential system
¥ = f(z), f:DCR"—R" (3.2)

is said to be competitive in D if there is a diagonal matric H = diag(ei,ea,...,e,), € € {—1,1},
i =1,..,n such that HJ3.9)H has nonpositive off-diagonal elements for all x € D.

It is known (see, for instance, Smith [19, Theorem 4.1]) that three-dimensional competitive systems
defined on convex sets have the Poincare-Bendixson property, in the sense that any nonempty compact
w-limit set of (3.2) which contains no equilibria is a closed orbit of (3.2).

Definition 3.3. An orbit O of (3.2) is called orbitally stable if and only if for all € > 0 there is § > 0
with the property that any solution xz(t) starting in a point x(0) with the property that the distance from
z(0) to O is less than 6 remains at distance less than ¢ from O for any t > 0. The orbit O is then called
orbitally asymptotically stable if it is orbitally stable and the distance from x(t) to O tends to 0 ast — oo.

Definition 3.4. The system (3.2) is then said to have the property of stability of periodic orbits if all its
periodic orbits are orbitally asymptotically stable in the sense mentioned above.

Of great interest in the study of orbital stability of periodic solutions is the following result of Mul-
downey [15, Theorem 4.2], which converts a somewhat nonstandard problem associated to an autonomous
dynamical system (the orbital stability of a periodic solution) into a more standard one, but associated
to a nonautonomous system.



Proposition 3.5. A sufficient condition for a periodic trajectory v = {p(t);0 <t < T} of (3.2) to be
orbitally asymptotically stable is that the nonautonomous linear system

Z' = J3 (p(1)2
be asymptotically stable.

Here, J([g]_l)
k-th additive and multiplicative compound matrices of dimension n, see Muldowney [15]. We here only
indicate that if n = 3, k = 2 and A = (a;;) then the second additive compound of A is given by

the formula

is the second additive compound of the Jacobian matrix of (3.2). For the definition of

1<i,j <37

a11 + a2  ao3 —a13
2] _
Al = asz a1 +asz a2
—as a1 G2+ ass

We now show that our system (2.1) is competitive and that, under certain conditions, it has the property
of stability of periodic orbits.

Theorem 3.6. Suppose that (2.2) is satisfied and that x > xp holds. Then the system (2.1) is competitive
and has the property of stability of periodic orbits.

Proof. Consider
100
D=[0,M? H=]|0-10
001
By (2.3), one has
n'(z) — f'(z)y2 0 —f(x)
HlonH = | —kf'(x)y2 —(D+d1)—kf(z) |,
0 -D —ds

and so HJ(2.1)H has nonpositive off-diagonal entries on D, that is, it is competitive on D.

We attempt to show that the system (2.1) has the property of stability of periodic orbits by applying
Proposition 3.5. Let p = (z(t),y1(¢), y2(t)) be a positive periodic orbit of (2.1).

Let us consider the system

7' =I5 )2, Z = (21,2, 25)" (33)

and prove that this system is asymptotically stable. Let us define

V(10,220 2000) = | (100 2 a0 202000 ) .

where ||-|| is a norm on IR3, defined by
(21, 22, 23)[| = max (|z1] , [22] + |z3]) -

Note that V is well defined, since (2.1) is persistent under the given hypotheses. Then system (3.3) can
be expanded as

1==(=n(z) + f'(@)y2 + (D + d1))z1 + kf ()22 + f(2)2s,
zy =Dz + (n'(z) = f'(2)y2 — d2)22, (3.4)
é = kf/ J?)yQZQ — (D +d; + d2)2’3.



By using (3.4), it is possible to derive the estimations
Dy |z| < =(=n'(2) + f'(@)y2 + (D + dv)) [21] + K f (2) [22] + f'(2) |23]

D |z < Dlz| = (—=n/(z) + f(x)y2 + d2) |22|, (3.5)
Dy |zs| < kf'(x)yz2|22] — (D + di + d2) [23] -

Then
D faal < ~(=n'@) 4 Fan + (D4 ]+ 2 (2 (o D)) a)
and
D, <|z2| + %) < D|z1| — (d2 + min(—n'(x), D + d1)) <|22| + %) . (3.7)

From the above, we may infer that

Y1 | 23] Y1 Y2 — Y1 e |23] Y1 |23
D i —_— = —_— — D —_—
(2 (et o)) o (g D) 2 (a4
< (-8 ﬂ<|22|+@) DDz - kL <|32|+@)
Y1 Y2 ) Yo k ) y2 Y2 k

and therefore

<D+ (E ~ DL min(—n'(2),D + d1)> 9 <|zz| + @)
Y2 Y1 Y2 Y2 k

It is now possible to evaluate the time derivative of V. Let to > 0. If V(t) = |21(¢)| in a vicinity of ¢,
then

D1V (to) < —(=n'(z) + f'(@)y2 + (D + d1)) |z1] + % (% <|22| + |Z_lj|)>
< [MER 1) s = (0 + )]
Y1

<

Bopn/(@) - f(x)ye

” V(to)-

IfVt) = v1t) [|zz(t)| + Z?’ét)} in a vicinity of ¢g, then

: . ;
D, V(ty) < Np |z1] + <£ ~ DA i (—n/(z),D + d1)> hn <|22| + M)
Y2 Y1 Y2 Y2

V(to).

< [% —min (—n'(x), D + dy)
1

If neither of these situations happens, then

_yi(to) [23(to)|
|21 (to)| = y2(t2) [|22(t0)| + 3k0 }
R 2 (0)
Dtz =0 [ (o1 + E2)]|




and consequently, by the same argument,

D+V(t0) S min (

v, , i ,
E +n'(x) = f (m)ygl , ly— —min (—n/(z), D + d;)

Then, for all ¢ > 0, one has

D,V (t) <max < 1

< max ( 0

Y11 max (n'(x), —(D +dy))

=+ n'(x) - f'(2)y2 "

U1

?

< % + max (n'(z), —(D 4+ d1)) V().

Note that if > xp, then n/(z(t)) is strictly negative on some [t.,00). It follows that

V() < V() yyl 1(?*))6“‘“‘”%

so lim;_,oc V() = 0. It then follows from the persistence of (2.1) that
lim z1(¢) = lim 23(t) = lim 23(¢t) =0,
t—00 t—o00 t—oo

so the null solution of (3.3) is asymptotically stable. By Proposition 3.5, the system (2.1) has the property
of stability of periodic solutions. O

It is then possible to prove that for three-dimensional competitive systems which are permanent,
the local asymptotic stability of a unique positive equilibrium and the property of stability of periodic
orbits insure that the endemic equilibrium is actually globally asymptotically stable. More precisely, the
following result ([24, Theorem 2.2]) holds.

Proposition 3.7. Assume that n = 3 and that D is convex and bounded. If (3.2) is competitive and
permanent in D, it has a unique equilibrium in D and it also has the property of stability of periodic
orbits, then the interior equilibrium is globally asymptotically stable in Int D.

By Theorem 3.6 and Proposition 3.7, it then follows that the positive equilibrium is globally asymp-
totically stable in (0,00)? since condition z > xp implies that * > xp and consequently, as previously
noted, the positive equilibrium is locally asymptotically stable. From all our previous considerations,
it is then possible to conclude with the following global stability result, which characterizes the global
asymptotic stability of the positive equilibrium.

Theorem 3.8. Suppose that (2.2) is satisfied and that x > xp holds. Then (2.1) is uniformly persistent
and there is a unique positive equilibrium E* = (x*,y},y3), which is globally asymptotically stable on
(0,00)°.

For f(x) = bz/(1 + mz) and n(z) = z(r — ax), our Theorem 3.8 improves [24, Theorem 2.1], since
(H1) and (H2) in [24] are unified in a single weaker assumption, while being observed that there is no
need to assume a priori the local asymptotic stability of the positive endemic equilibrium.



4 Numerical examples and concluding remarks

It has been seen in Theorem 3.8, our main result, that the positive equilibrium E* is globally asymptot-
ically stable provided that x > xp and Ry > 1. However, while condition Ry > 1 is both necessary and
sufficient for the stability of the positive equilibrium (if Ry < 1, then the positive equilibrium E* does
not even exist), condition z > xp is only sufficient and not necessary.

Conceptually, the a-priori estimate x > zp has a distinct advantage over lengthy computational
conditions arising from coefficient estimations in Lyapunov functionals, the use of Routh-Hurwitz theorem
or other similar theoretical devices, which can be found in many papers. These conditions often heavily
depends on the particulars of the problem under consideration (on the particular form of n and f, for
instance) and do not generally possess any sort of biological interpretation. In contrast, our a-priori
estimation has a clear meaning and no futher assumptions on the shape of the functional response f of
the mature predator are needed.

However, zp does not appear to be a threshold parameter for the stability of the positive equilibrium
as far as z is concerned and it also appears to be difficult to determine one. Also, while natural and
transparent, this sort of estimations cannot generally be used to determine domains of attraction since
the persistency constant which can be computed with the help of the general results such as Theorem
3.3 is often not large enough to verify the estimate needed in Theorem 3.8.

To illustrate our theoretical discussion, we have also provided a set of MATLAB simulations. Our
data has been scaled and the examples are illustrative only; the numerical figures do not correspond to
a particular predator-prey interaction. The prey population z, respectively the predator populations y1,
yo are represented in a system of three-dimensional Cartesian coordinates by x, respectively by y and z.

We denote by LT and RT the left, respectively right-hand side of (2.5), that is

LT=|D+dy +dy+ 2" 2a_7rm+a x* 2a_7rm+a (D + dy + da),
1+ max* 1+ max*
r—azx*

RT=——
1+ ma*

da(D + dy)

The first situation is the one in which Ry < 1 and consequently the predator classes tend to extinction.
To illustrate this case, we choose a = 0.5, d; = 0.8,dy =0.45,r=3.5,D =1.2, k=0.01, m = 0.1, b = 3.
Then Ry = 0.164 < 1 and it seen in Figure 1 that the trajectories of our system tend to the prey-only
equilibrium indeed (by coming very close to the origin first).

Figure 1: Simulation for case 1. E* does not exist. All trajectories approach the prey-only equilibrium.




The second situation is the one in which Ry > 1 and E* is locally asymptotically stable. In this
case, the behavior of the trajectories is more complicated, as £* may or may not globally asymptotically
stable. Also, the persistency constant x may or may not verify the estimation sought after in Theorem
3.8.

We first picture the situation in which x is large enough. For this case, labeled as case 2a, we choose
a =0.5,d =08, do =045, r=35,D =04, k=02 m=0.2b=3. Then Ry = 1.296 > 1,
z = 4.09 > r/(2a) = 3.5, so the positive equilibrium E* is globally asymptotically stable, by Theorem
3.8. See Figure 2 for details.

Figure 2: Simulations for cases 2a and 2b. 2a)E* is GAS, due to the inequality > r/(2a), 2b)E* is
GAS, even though z < r/(2a).

We then describe the case in which z < r/(2a), but E* retains its global asymptotic stability. For
this case, labeled as case 2b, we choose a = 0.5, dy = 0.8, dy = 045, r = 3.5, D = 1.2, k£ = 0.1,
m =0.2,b=3. Then Rp =2.1 > 1, LT = 1.446 > RT = 0.916 (so E* is locally asymptotically stable),
z = 1.92 < r/(2a) = 3.5, but the positive equilibrium E* is still globally asymptotically stable. See
Figure 2 for details.

Finally, it may happen that x < r/(2a) and E* loses its global asymptotic stability. For this case,
labeled as case 2c¢, we choose a = 0.5, d; = 0.8, do = 0.20, r = 3.5, D = 1.2, k = 0.2172, m = 0.01,
b=3. Then Ry = 12.788 > 1, LT = 1.2913 > RT = 1.2905 (so E* is locally asymptotically stable),
z = 0.514 < (r/2a) = 3.5 and the positive equilibrium E* is not globally asymptotically stable. See
Figure 3 for details.

The third situation is the one in which Ry > 1 and E* is unstable. To illustrate this case, labeled
as case 3, we choose a = 0.5, d; = 0.8, do = 0.20, r = 3.5, D = 1.2, Kk = 0.3, m = 0.005, b = 3. Then
Ry =18.260 > 1 and LT = 0.939 < RT = 1.323 (so E* is unstable) and it is seen from Figure 4 that the
trajectories of the system approach a periodic orbit.

By essentially the same argument as in Georgescu and Hsieh [7, Theorem 4.1], it is seen that that in
case 3 there is at least a periodic solution, but no more than finitely many and at least one of these is
orbitally asymptotically stable. Also, in this case any solution which does not start on the one-dimensional
stable manifold of E* tends to a periodic solution. Similarly, in case 2c, there is at least a periodic solution
which is necessarily orbitally unstable.

This model, or similar ones accounting for the effects of further biological interactions, may be used
to provide details abouth the survival of endangered mammal and reptilian species. See Zhang, Chen
and Neumann [25], where the problem of optimal harvesting is also addressed, for a somewhat more
complicated model, but under the assumption that all the functions which are used to model the biological



Figure 3: Simulation for case 2c. E* is LAS but not GAS.

interactions are linear, except for the logistic term. In [25], the case of the Chinese Alligator is considered,
as a stage-structured species preying on aquatic animals, and some recommendations for the species
preservation are provided. Similarly, the conclusion which arises from our Theorem 3.8 is very simple: to
guarantee the survival of the endangered predators at a stable and sure level, its reproduction rate should
be improved, so that Ry > 1 (perhaps by artificial insemination) and the prey should be kept numerically
above a certain level, so that z > xp (perhaps by raising prey offsprings in dedicated facilities and
subsequently releasing them into the natural habitat). Both measures are necessary and an improvement
in a single area is not enough.

Our abstract functional response of the mature predator f, which has been modeled after the widely
used Holling type II functional response, does not depend on the sizes of the predator populations ¥
and yo, but only on the prey abundance z, so predators are not assumed to interact with each other
during their daily feeding activities. However, other types of functional responses which account for
interference between predators have been proposed (Beddington-DeAngelis, [2],[5], Crowley and Martin
[4], Hassell and Varley [9]). See the comprehensive paper of Skalski and Gilliam [20] for a comparison of
the accuracy provided by these alternative functional responses based on statistical data for a wide range



of predator-prey systems.

The population ecology models involving ordinary differential equations are often not as descriptive
or as realistic as those using delay differential equations. In this regard, it has been observed by Harrison
in [8] by validating a variety of predator-prey models against a known data set regarding the interaction
between Paramecium aurelia and its predator Didinium nasutum presented by Luckinbill in [13] that the
best numerical fit has been given by a delayed numerical response of the predator coupled with a sigmoid
functional response. However, unlike for the latter, the stability analysis for the former is much easier to
be carried out, as time delays generally have a destabilizing effect and may introduce bifurcations and
other rich dynamics under certain conditions. This simplification has been done for our model, where the
delaying effect of the gestation period for predators is not taken under consideration. Also, the logistic
part of the equation which models the growth of the prey class may need to contain a delay term, for
similar reasons. We plan to address these issue in a subsequent work.
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