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Abstract

This paper investigates a compartmental pest management model which divides the pest
population into a susceptible and an infective class, while also including a class of pathogenic
viruses. The model is age-structured, in the sense that it accounts for the differences in the
amounts of pathogenic viruses released by infective pests at various infection ages. First, the
asymptotic behavior of the system is established via a monotonicity analysis which makes
use of several integral inequalities. The linearized stability of the equilibria for the system is
then discussed by means of Michailov criterion. As an outcome of our analysis, it is observed
that the maximal length of the infective period plays an important role in the dynamics of
the system. Several pest control strategies are further investigated by means of numerical
simulations, the paper being concluded with a discussion on the biological significance of the
mathematical findings.
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1 Introduction

Pest control strategies were occasionally described in writings of the ancient Chinese, Sumerian, and
Egyptian scholars. Predatory ants, for example, were used in China as early as 1200 BC to protect
citrus groves from caterpillars and wood boring beetles. A passage in Homer’s Iliad (eighth century BC)
mentions the use of fire to drive locusts into the sea, and the ancient Egyptians organized long lines of
human drovers to repel swarms of invading locusts.

Nowadays, to prevent pest outbreaks farmers often resort to pesticides, but pesticide overuse may
have unwanted consequences including insect resistance, resurgence and outbreaks of secondary pests.
Also, pesticide residues may affect human health and the environment.

Generally, insects, like humans and other animals, can be infected by disease-causing organisms such
as bacteria, viruses and fungi. Under appropriate conditions, like high humidity or high pest abundance,
these naturally occurring organisms may multiply to cause disease outbreaks or epizootics that can
decimate an insect population. Hence, a wise alternative to chemical control is microbial control which
is, generally, man’s use of suitably chosen living entomopathogenic organisms, referred as microbial agents,
to control pests. Control agents can be bacteria, fungi, viruses, nematodes and protozoa that either kill
the harmful organism or interfere with its biological processes|7],[8],[10],[15],[13],[23],[14],[30]. The control
of rabbit pests in Australial9] by the viral disease called “myxomatosis” provides a spectacular example
of a virus controlling a pest.

With the development of biotechnology and the advent of ecologically advisable policies for pest
management, microbial control policies have achieved immense importance in agricultural protection
programs. A large number of Baculoviruses, each one with sometimes very restricted but different host
stages, can be used as microbial control agents of insects, the greatest potential being displayed by the
Baculoviridae Nuclear Polyhedrosis Virus (NPV) and the Granulo Virus (GV) [24]. In this regard, since
NPVs are often host specific, cause autoinfection and are usually fatal, their use is increasing gradually
in agricultural management[28]. At this moment, there is a growing amount of literature on the usage
of entomopathogens to suppress pests[14], [9],[6],[11],[12],[27], many models of pest-pathogen dynamics
being formulated and analyzed[1],[2],[3],[4],[5],[16],[17],[25].

In India, the “army worm” Spodoptera litura has defoliated many economically important crops in-
cluding cole, cotton, and soybean. Synthetic pesticides have been used against this pest, with unfortunate
side effects. Currently, entomologists are trying to use the Spodoptera polyhedrosis virus (SINPV) to
control the fourth instar larvae, which is the most damaging evolutionary stage of pest.

The celebrated Kermack and McKendrick SI model with differential infectivity has been introduced
by Kermack and McKendrick in [19, 20, 21], in the form

S'(t) = S(1) /O T AR ()
L Am g
() = /0 ORAGE

where S(t) and I(t) represent the size of the susceptible and infective class at time ¢, respectively, and
—wT

A(7) represents the expected infectivity of an individual with age of infection 7. If A(7) = pe™*7,
Kermack and McKendrick’s model simplifies to

S’ = —pS1,
{ I'=pSI —wl - (1.2)

: (1.1)

Goh [17] studied (1.2) from a numerical viewpoint, attempting to find sufficient conditions for the control
of a given pest population. In order to describe with greater accuracy the effects of pathogens upon a
target pest population, Anderson and May [2] formulated the system

I'=pPS—(0+b+p)l,
H' =rH - 01, . (1.3)
P =A+wl—(y+pH)P,
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In the above, H represents the total size of the host population, H = S+ I, where S and I are as above,
P is the size of the pathogen population, w denotes the rate at which pathogens are produced by infective
individuals, v is the mortality rate of the host population in the infective stage, A is the release rate of
the pathogens, b represents the death rate of the host if no pathogens are present, p denotes the host
recovery rate and 6 is the pathogen-induced death rate. Anderson and May showed that if the release rate
A exceeds a critical level, the host (pest) population tends to extinction. Brown [5] then proposed and
investigated a modified SIRS model, understood as a framework for the study of epizootiological diseases
in an insect-pathogen system. By means of a linearized stability analysis, it has been shown in [5] that the
system with one immune and one susceptible host class can exhibit stable, periodic or unstable behavior
depending on the values of the model parameters. To incorporate the effects of the (constant) maturation
time, Moerbeek and Van Den Bosch[25] introduced several stage-structured models of insect-pathogen
interactions with delay and conclusioned that their dynamics is heavily influenced by the stage-specific
susceptibility. Zhang et al.[29] dealt with an impulsively controlled epidemic model with delay, stage-
structure and a general form of the incidence rate. In Zhang et al. [29], the pest population was divided
into three compartments: pest eggs, susceptible pests and infective pests and it has been assumed that
infective pests do not damage crops. The main results of Zhang et al. [29] indicated that if the amount of
infective pests released each time, the maturation delay and the period of impulsive period release satisfy
a certain condition, then the so-called susceptible pest-eradication periodic solution is globally stable,
while the system may also become permanent under certain hypotheses.

Since the above models cannot be used to assess the impact of the pathogenic virus density and
infection age upon the spread of the infection, the aim of this paper is to formulate and discuss a new
model of pest management which involves the release of pathogens and investigate its dynamics. In this
model, the pest population is divided into a susceptible and an infective class, a class of pathogenic
viruses being also included. An additional variable is used to keep track of the so-called age of infection.
The dynamics of the system is discussed by means of the linearized stability analysis of a functional
differential equation, which is equivalent to the original age-structured model. The linearized stability
analysis is performed using Michailov criterion and it is found that the maximal length of the infective
period influences the dynamics of the system decisively. The remaining part of the paper is organized as
follows. The model to be studied is proposed in Section 2, where the main biological assumptions used to
formulate the model are also stated. This model is then reformulated as a functional differential equation
on a certain space of continuous functions. The influence of the viral particle self-regulation and age
structure on the asymptotic behavior of the system is discussed in Section 3. The biological significance
of the mathematical findings is presented in Section 4, while numerical simulations are performed in
Section 5 in order to find the critical values for the model parameters.

2 The age-structured S model

In what follows, we attempt to formulate an age-dependent compartmental pest-pathogen model which
describes the propagation in a target pest population of a disease possessing a free-living stage in the
environment. This model includes time-dependent state variables representing the densities of suscep-
tible hosts S(t) and of pathogenic viruses Cp(t) together with a time and age-dependent state variable
representing the density of infected hosts I(¢,a), the variable a denoting the so-called age of infection,
that is, the time passed since the pest became infected. The general scheme of the transitions between
different pest states is presented in Figure 1.
The model to be studied is formulated as follows
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S(t) I(t,a) Co(t)

Removal due to disease progression

Removal

Figure 1: Flow chart of infection spread via pathogenic viruses

Cp(t)S(t)
S(t) = —— 1P t>0 2.4
D= TFmsn+men (24)
ol(t,a) OI(t,a)
N + 90 dr(a)I(t,a), t,a>0 (2.5)
Cl(t) = —de, Gy / Bla (2.6)
QQC (t
— t, 0
T+ kS() + kaCpt) 07
with the boundary condition
Gy ()5S ()
I(t,0) = , t>0 2.7
(t,0) L+ k1S(t) + k2Cp(t) 27)
and initial conditions
5(0) = 50(0), Cp(0) = Cp, (0), (2.8)
1(0,a) = Ip(a), a > 0. (2.9)

In the above, a; represents the amount of susceptible pests converted to infected pests per pathogen cell
and unit of time, ay denotes the amount of pathogenic viruses consumed to propagate the infection per
susceptible pest and unit of time, d¢, represents the amount of pathogenic viruses removed per unit of
time, dj(a) represents the amount of infected hosts with age of infection a which are removed per unit of
time, k1 and ko are nonnegative constants describing the effect of handling time on the incidence rate of
infection and the magnitude of the interference of pathogen cells in host organisms, respectively.

The incidence rate of infection used in the model above, that is,

OqC S

A8, Cp) = 14 k1S + koG’

degenerates into the bilinear incidence rate g1 (5, Cp) = a1C,S if k1 = ko = 0 and into saturated incidence
rates if k1 =0 or ky = 0.

In the following, we shall assume that all initial conditions are nonnegative. The next assumptions
are used to formulate the mathematical model:

(A1) The epidemic occurs on a fast timescale, no natural mortality of susceptibles being considered.
Susceptible hosts are not capable of reproduction once they are exposed to pathogenic organisms.
Infective pests are not capable of damaging crops.

(A2) Infected pests are parametrized by their age of infection, i.e., the time elapsed since the pest became
infected, which is denoted by a. Infected pests release pathogenic viruses at a age-dependent rate

Bla).

(A3) Pathogenic viruses are degraded at a constant rate dc, .
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(A4) The constants o;(i = 1,2) and dg, are all positive. Pathogenic viruses are produced by infected
host only in some bounded interval of age of infection [0,h), for some h > 0, which leads to
supp B(-) C [0,h), where h is the maximal age of infection, as well as to I(¢t,a) = 0 for a > h.
The mortality of infected hosts d; is a nonnegative function of the infection age a and satisfies

fo}h dr(a) = 4o0.

Remark 2.1. Since h is the maximal age of infection, it follows that the reasonable domain of the
function dy is the interval [0, h) and all infected pests die before reaching infection age h.

Remark 2.2. The quantities So(0) and Cp, (0) represent the initial amount of target pests and the initial
amount of pathogens released by farmers, respectively.

We now try to establish the well-posedness of the above model. From (2.5), (2.7) and (2.9), one obtains
that I(t,a) is given by

1+k; S(t—a)+lc_ng(t—a)

I(t,a) aCp(t=a)S(t=a) - [!di(€)d¢  for t > q > 0; (2.10)
t,a) = 2 - .
Ip(a —t)e™ Ja—e dr(&)de fora>t>0.

Using classical existence and uniqueness results for functional differential equations (see Hale[18], Kuang[22])
it is seen that the integrodifferential system (2.4)-(2.6) in which I(¢,a) is substituted with its expression
given by (2.10) has a unique solution, which is globally defined. We shall be concerned in the following
with the positivity and the asymptotic behavior of the aforementioned solution.

3 The dynamical behavior of the pest-pathogen model

From a practical point of view, a pest management strategy is considered successful if the size of the
susceptible pest class stabilizes in the long term under an economically significant threshold level (ET),
defined as the lowest pest density that will cause economic damage, or the amount of pest injury which
will justify the cost of using controls. Also, it is important to find out whether or not the size of the class
of pathogenic viruses tends to 0, that is, whether or not the pathogenic viruses remain active in the long
term.

To this purpose, let us denote by N;(t) the total size of the infected pest population at time ¢, defined
as

h
Ni(t) = / I(t,a)da.
0
Let us also define the total size of the pest population at time ¢ by

N(t) = S(t) + Ni(8).

3.1 The asymptotic behavior

The following result, apart from establishing the positivity of the solutions of (2.4)-(2.6), asserts that the
total size of the infected pest class tends to 0, that is the infection disappears in the long term.

Theorem 3.1. The following statements hold.
(i) S, Cp, I, N1 and N are nonnegative.

(ii) S and N are nonincreasing.
(iii) S, N7, N and fot (th d[(Cl)I(S,CL)dCl) ds are bounded.

(iv) fot Ni(s)ds is bounded and Np tends to 0 ast — oc.
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Proof. By integrating (2.4) on [0, ], one obtains
—— Cp(s) d
S(t) = So(0)e” o THREEOTRGEH T > 0, (3.11)
since Sp(0) is nonnegative. Suppose that C), becomes negative and define t* = inf;>o{t|C,(¢t) = 0}. Since
Cp(t) fo (t*,a)da and I(t*,a) is given by (2.10) with ¢ = ¢*, it follows that C},(¢*) > 0, which
leads to a contradlctlon. Then C,, is nonnegative, which implies that S is nonincreasing (due to (3.11))

and that I is nonnegative (due to (2.10). Since I and S are nonnegative, it also follows that N and Ny
are nonnegative. One notes that

h
Ni(t) = %(/ I(t,a)da)

h
/d, I(t,a)da —/ oIt a) ;.
0 aa

a1Cy(1)S(1)
/ di@)I(t, a)da + T e D)

_ _/ di(a)I(t, a)da — S () (3.12)

0
h
_ / di(a)I(t, a)da, (3.13)
0

which implies that N is nonincreasing. Integrating both sides of (3.13) on [0, ¢], we then derive

and consequently

t [ rh
S(t) + Ni(t) —i—/o (/0 dI(a)I(s,a)da> ds = So(0) + N7(0), (3.14)

from which the boundedness of S, Ny, N and of

t h
/ / dr(a)I(s,a)da | ds
0 0
follows. It is seen that

/Ot Ni(s)ds = /t /h I(s,a)dads
/ / (/ dr(€+a)e I HdI(T)def) I(s,a)dads
/ / (/ dr(€§+a)l (8+£,a+§)da>dgds,

By denoting @’ = a + &, s’ = s + &, one obtains

/0 " Ny(s)ds = /0 t /0 ' ( /5 hd,(a')f(s+g,a’)da’> deds
_ /Oh (/;%E (/ﬁh dI(a’)I(s’,a')da'> ds’> de
<h (/Ot+h /Oh dI(a')I(s’,a')da’ds’>
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and consequently fo Ni(s)ds is bounded as well. Also, since Ny = N — S and N, S are nonincreasing, it

follows that Ny has limit as t — oco. Since fo Ni(s)ds is bounded, it is then seen that Ny tends to 0 as
t — oo. This completes the proof. [l

Remark 3.2. The term fot (foh dr(a)(s, a)da) ds gives the total amount of infected hosts of all infection

ages which are removed during the time interval [0,¢].

Next, to facilitate the further analysis of the asymptotical behavior, we shall construct a connection
between the production of new pathogenic viruses and the degradation rate of infected pests.

Lemma 3.3. Suppose that there exists a nonnegative integrable function g defined on [0, h) for the given
h such that for every a € [0, h)

h—a cate
B(a) < / 9(€)dr (€ + a)e Ja i ge. (3.15)

Then

// B(a)I(s,a)dads (3.16)
< ( /0 g(&)d&) ( /0 o /0 hch(a)f(s,a)dads)-

Proof. According to (2.10) and (3.15), one obtains that

/Ot/ohﬁ(a) s, a)dads // /h£ (©)d1(§+a)l(s +¢&,a+&)dadids
< /0 o(ie | o /O d1(a)I(s, a)dads.

Subsequently, ones directly obtain the following results

Theorem 3.4. Assume that the condition (3.15) holds. Then

(i) C, and fo s)ds are bounded.
(ii) S tends to a positive limit S* as t — oo.

Proof. By integrating (2.6), one obtains

t ¢ Cp(s)S(s)
Cylt) + de, / Cols)ds + “2/0 T RS() + Ry

// B(a)I(s,a)dads, (3.17)

and, due to Lemma 3.3, it follows that Cyt), [ Cy(s)ds and [, W%ds are bounded. Since S is

nonincreasing, it has a limit for ¢ — oo and, due to (3.11) and to the boundedness of fot %d
this limit is positive.
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Remark 3.5. Condition (3.15) is to be understood as a boundedness condition for the release rate of
patogenic viruses. In this regard, it is natural to expect that if this rate is majorized by a suitable function
of the virus removal rate, then the total amount of pathogenic viruses released within t time units will
stay bounded and the susceptible pests will persist in the long term.

Next, we shall consider the case dc, = 0 (no removal of pathogenic viruses, that is). In this setting,
the pathogenic viruses will remain active in the long term, as the following result asserts.

Theorem 3.6. Assume that dc, = 0. Further, assume that

a18(a) — asdr(a) > 0. (3.18)
Then Cp(t) converges to a positive limit C;; > Cp,(0) and S(t) tends to 0 as t — oco.
Proof. From (3.12) and (3.17), we obtain that

Cp(t) = Cpy ( —|——/ / (a1 f(a) — azdr(a))I(s,a)dads
(NI(O) Ni ().

Due to (3.18) and (iv) of Theorem 3.1, Cp(t) has a limit Cj for ¢ — oo and Cj > €y, (0) + £2Ny(0). The
asymptotic behavior of S(t) for ¢ — oo follows now from (3.11). O

Remark 3.7. The product terms a15(a) and asd(a) describe the practical infection efficiency and the
practical removal efficiency when the infection-age of infected pests is a. In this regard, Theorem 3.6
can be interpreted as if the pathogenic viruses are not naturally degraded and are produced fast enough,
compensating infection-stage mortality, then the susceptible pest population S will become extinct in the
long term.

3.2 The linearized stability analysis
Let us recall equations (2.4)-(2.6) and consider the following reduced system

_ a1 Cy(1)S(%)
{ () = ~ st R, (3.19)

(a)Cp(t—a)S(t—a azCp(t)S(t
Cp(t) = —de, Cp(t) + fo 1+k18)(t El)+132c(*p(t2a) da — e

1+’€1S(t)+ktch(t) )

where A(a) = a1 B(a)eJo 4@ We consider two critical states: the pest-free state and the initial state,

in which all pests are susceptible. Mathematically, we obtain two equilibria, i.e., a trivial equilibrium

(0,0) and a semi-trivial infected pest-free equilibrium (5, 0), where S = S(0). In the following, we shall

analyze the local stability of the equilibria by analyzing the characteristic equation of system (3.19).
The characteristic equations at (0,0) and (.S, 0) have the following forms

A0
det( 0 A+de, )‘O

det “s 0
€ asS S h Y =Y
0 Atdo, +15% — 55 Jo Ala)e™**da
For the trivial equilibrium, one obtains the non-positive eigenvalues 0 and —d¢,. For the infected pest-

free equilibrium, one obtains the eigenvalue 0, the remaining eigenvalues being determined by the roots
of the following equation

and, respectively,

()(2? 7)\
A+do + / ®da = 0. 3.20
@ TI Y kS 1+ k15 “ (3:20)
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Obviously, the stability of the infected pest-free solution is determined by the sign of the real part for the
complex roots of (3.20). The following preliminary result is taken into account by the argument principle
known as Michailov criterion.

Lemma 3.8. Let _ _ h
QQS S —\
SN =A+de, + = — = A(a)e™da
¥ T kS Txks ) 1@
and let AcArg®()\) denote the change of the argument of a curve ® in C considering windings and
orientation. Also, let A be the variation of the argument for v(u)( noted by Argvy(n)) as p varies from

0 to oo for a curve v in C, i.e.,

A= Ac0,00)ATgy (1) (3.21)
Suppose that
(a) (3.20) has no pure imaginary roots;

(b) there exists a positive constant k* such that |\| < k* for all complex roots of (3.20) with Re A > 0.

Then the number of roots in the right half-plane equals % — %.

The proof of this result is given in the Appendix.
To apply Lemma 3.8, we need to prove that ®(\) satisfies conditions (a) and (b) in Lemma 3.8.

Lemma 3.9. Suppose that one of the following conditions hold

asS S h .
(a) dc, + T > S Jo Ala)da;

5 h
(b) do, + 155 # 705 1+k = fo a)da and —>—= 1+k = Jo Ala)da <.
Then ® has no zeros on the imaginary axis.

The proof of this result is given in the Appendix.

Lemma 3.10. There exists a positive constant k* such that |\ < k* for all complex roots of (3.20) with
Re X > 0.

The proof of this result is given in the Appendix.
According to Lemmas 3.8-3.10, we directly obtain the following result.

Theorem 3.11. If

QQS OqS / fa g d
de + = Jo (&) £d , 3.22
St T ms T kS Jy P ¢ (3.22)

then all possible roots of (3.20) lie in the left half-plane.

Remark 3.12. Condition (3.22) guarantees that all real parts of eigenvalues are negative. That is, (3.22)
has a stabilizing effect.

Theorem 3.13. If

OZQS a1§ /h 7fad( d
do, + _ < — Jo' di(©)de gy < 7, 3.23
St g S 11ms ), PWe “=7 (3:23)

then a single root lies in the right half-plane.

Proof. In fact, A = Arg®(coi) — Argp(0) = 5 —m = —7. Hence N> = 1. This completes the proof. [

Remark 3.14. Condition (3.23) guarantees that the infected pest-free equilibrium is unstable. That is,
(3.23) has a destabilizing effect.
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The following result demonstrates that, under some circumstances, the supremum infection age h
plays an important role in dynamics of structure.

Corollary 3.15. Suppose that the following parameters take the form

for some € > 0. Then

(a) The equilibrium (S,0) is always stable for all h > 0, if dc, + (11?5?) > (lf;%ﬁ)dl :

«1583 asS . 1 o153 g = .
(b) If 11+k 5 > de, + (1+21§) and h 7 In algﬁfdz(dc:(lJrklg)«szg)’ the equilibrium (S,0) is
stable
158 as8 158 1 158
(c) If T (LtkS) max{ﬁ’dcv+(1+2ls)} and 3 In a158— d;(dc:(1+k1$)+a25) <h—e< gz In o SA—di(L kS

the equilibrium (S, 0) is unstable.

4 Pest control strategies

Field surveys are outlined by Prasad and Wadhwani[26] as follows. The viral preparation contained
2 x 10? polyhedra per ml. Considering this as stock solution, four different dilutions (viz. 0.1, 0.25, 0.5
and 0.75 ml) were prepared and fed to the target pest population—the fourth instar larvae of S. litura by
leaf-dip method, Castor leaves of 6 cm diameter being dipped in prepared concentrations for 1 min and
shade-dried for 30 min. Then leaf discs were placed in a slanting position in separate containers so that
the larvae can feed on both the surfaces of the leaf. Ten fourth instar larvae were released in each container
with three replicas and one control. The histomicrograph clearly revealed that various midgut cells, fat
bodies, connective tissues and integument either lost their identity or became highly disorganized. Also,
at maximum period of treatment, i.e. 96 h, mortality increased from 5.43% to 78.91%, from the lowest
dose (0.1 ml) to the highest applied dose of 0.75 ml. Above all, the overall destruction of tissues led to
liquefied contents inside the body cavity, giving the infected insect a turgid appearance. The infected
larval body is laden with polyhedral occlusion bodies (POBs) which contain viral particles. Even a slight
damage or disturbance of the integument released liquefied body fluid containing large number of POBs.
This infected fluid further spread infection when healthy larvae came in contact with the fluid, causing
autoinfection.
To confirm our mathematical findings and facilitate their interpretation, we proceed to investigate
further by using numerical simulations (See Table 1).
Let S(t) denote the number of pests in the larvae and adult stages. In each generation there is a burst

Table 1: Threshold values for the stability and instability of the equilibrium (S(= S(0)),0)

@1 :ko'i’ 323:510(2312 1: 0.2, Stability of the Instability of the
B(ag) - 1.0}3 Idcp_: 0’.1 equilibrium(S, 0) equilibrium(S, 0)

S =100 h —e < 0.736 0.736 < h — e < 1.077

'S = 500 h —e<0.734 0.734 < h — e < 1.006

S = 1000 h —e < 0.734 0.734 < h — e < 0.997

'S = 2000 h —e<0.734 0.734 < h — e < 0.993

of new larvae and adults. This resets the initial amount S(0) for each generation in an insect population
with nonoverlapping generations. Hence, the time variable is on a fast time scale, suitable for describing
processes within a generation([17]).
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35 :
S(0)=100,Cp(0)=1
S(0)=100,Cp(0)=5
30+ S(0)=100,Cp(0)=10| 1
‘ S(0)=100,Cp(0)=15

25+
(%]
[0}
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L
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(3]
g 15¢
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Figure 2: a1 = 0.3,a2 = 0.5,k; = 0.2,k = 0.3, d;(a) = 1,6(a) = 10/3,dc, = 0.1, h = 1 and € = 0.1. The
trajectories with the same initial value S(0) and different initial values C,(0).

Suppose that pathogenic viruses are grown in laboratories and then released during the time interval
(—h,0]. This means that we can control the initial amount of viral particles Cp(0) and thus C,(0) is
a control parameter. Given a pest population S(0), we can then use Figure 2 to compute the least
value Cp(0) so that the limit of S(¢) as ¢ — oo will be below a desirable level. More precisely, if we set
the economic threshold (ET)= 40, from Figure 4 (the magnified view of Figure 3), we may choose the
highest applied dose of 15 to control the amount of the pest population below the given ET under the
assumption that the period of treatment is 4. To make the management more economically viable, it is
recommended to use the dose of 10 to control the amount of the pest population below the given ET
under the assumption that the period of treatment is 6. On the other hand, Figures 3 and 4 reveal that
different doses of the virus bring about significant mortality (it is fated that infected hosts should die
out), which was both dose and time dependent.

From Figures 5 and 6, it is seen that a small amount of pathogenic viruses may be introduced into a
target pest population in order to generate an epidemic which will subsequently lead to the death of all
infected pests.

5 Concluding remarks

The present paper attempts to formulate and study an integrated pest management model which relies on
the use of pathogenic viruses as biocontrol agents. The pest population is divided into susceptibles and
infectives, a class of pathogenic viruses being also employed. Our model keeps track of the so-called “age
of infection”, that is, the time elapsed since the pest became infected. Consequently, a partial differential
equation of transport type is used to model the dynamics of the infective class. Through the use of some
reasonable hypotheses, our mathematical model can be reduced to a 2-dimensional functional differential
equation with distributed delay. The asymptotic behavior of the system is studied using monotonicity
methods and integral estimations. It is seen that the size of the susceptible pest population stabilizes in
the long term at a certain positive level and the total size of the infective class tends to 0, while if the
decay rate of the pathogenic viruses is 0, then the susceptible pests become extinct as well.

Next, a linearized stability analysis is performed via the use of Michailov criterion and it is found out
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Figure 3: a1 = 0.3,a2 = 0.5,k; = 0.2,k = 0.3, d;(a) = 1,6(a) = 10/3,dc, = 0.1, h = 1 and € = 0.1. The
time series for S with the same initial value S(0) and different initial values Cp(0).
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Figure 4: a1 = 0.3,a2 = 0.5,k; = 0.2,k = 0.3, d;(a) = 1,6(a) = 10/3,dc, = 0.1, h = 1 and € = 0.1. The
magnified view of the time series for S with the same initial value S(0) and different initial values C,(0).
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Figure 5: a1 = 0.3,a2 = 0.5,k; = 0.2,k = 0.3, d;(a) = 1,6(a) = 10/3,dc, = 0.1, h = 1 and € = 0.1. The
time series for S with the same initial value Cp(0) and different initial values S(0).
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Figure 6: a1 = 0.3,a2 = 0.5,k; = 0.2,k = 0.3, d;(a) = 1,6(a) = 10/3,dc, = 0.1, h = 1 and € = 0.1. The
trajectories with the same initial value Cp(0) and different initial values S(0).

© Global Publishing Company 65



MATH. SCI. RES. J. 14(3) 2010 53-69 HONG ZHANG and PAUL GEORGESCU

that the maximal age of infection plays an important role important role in the dynamics of the system.
In this regard, the purpose of the paper is to investigate the impact of the maximal infection age upon
the stability of the system. A condition which assures the stability of the semitrivial susceptibles-only
equilibrium regardless of the value of the maximal age of infection is found, while being observed that
if the converse inequality is satisfied, then the susceptibles-only equilibrium may still be stable provided
that the maximal age of infection is less than a certain value.

The mathematical results which are obtained in this paper may be useful for many agricultural

researchers, as the use of viral pathogens is a viable method of pest control, its characteristic feature
being that it usually does not need to be reapplied each time a pest outbreak occurs.
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6 Appendix

6.1 Proof of Lemma 3.8

Proof. Let C = C' U C? denote a closed semicircle into the right half-plane, in which C' denotes the
straight line on the imaginary axis from ri to —ri and C? the semicircle from —ri to i with radius r
into the right half-plane. It is easy to note that

1
N-P= %AcArgCI)()\).
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Here, N and P represent the number of zeros and, respectively, poles in C. In view of the analyticity of
®(A) in C, one obtains that P = 0. It is then noted that

N = QL (A1 Arg®(A) + Acz2 Arg®(N)).
T

If we denote by A, Arg®()), i = 1,2, the changes of the argument as r tends to oo, one obtains
AZLArg®(N) = —2A.

Next, let N°° be the number of zeros inside the semicircle as r trends to oo, which is well defined by
condition (b). Therefore, we get that

In the following we shall compute AZ, Arg®(\). Recalling the equality

%A%%Arg@()\) = % /c2 (g((;\\)) dA.
Let A =re?, 0 € [-Z,Z] and r € (0,00). We then get
/ T i0F! (il
Lawn = | e

- /% irew(l + 1+€1§ foh aA(a)e—ar(c059+iSin9)da) 0
s e g, B A e o,

- z iew(l + 1+€1§ foh aA(a)e—ar(cose—i—isin g)da) 0
) /— €+ S B — iy o Ala)emer(eon g

Hence, it follows from Lebesgue’s dominated convergence theorem that

D'(N) .
d\ — im as r — o0,
/02 (A)

that is,
LA, Argd(n) =
op SO ATITA) = 5

%. This completes the proof. O

. _1
Consequently, N> = 5

6.2 Proof of Lemma 3.9
Proof. Indeed, ®(iw) = 0 if and only if Re®(iw) =0 and Im®(iw) = 0, that is,

asS S h < -
dc, + 1,+;;€1§h_ T Jo A(a) coswada = 0,
w+ 1+i1§ Jo A(a)sinwada =0

Condition (a) guarantees that Re ®(iw) > 0, so clearly ®(iw) # 0. The second condition ensures
Im ®(iw) > 0 for all w > 0 since sinwa € [—1,1]. Hence we conclude that ®(A) has no zeros on the
imaginary axis since zeros of ®(\) come in complex conjugate pairs. This completes the proof. O
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6.3 Proof of Lemma 3.10
Proof. Letting A = x + yi(z > 0) in (3.20), we have

S —_ h —Tra
T+ dcz + ai 1+i1§ - 1+i1§ Jo (A(a)e™ " cosay)da = 0,
y+ 1+i1§ fo (A(a)e—m sin ay)da =0

We may choose k* as
h
k* =2(de, + a2§+§/ A(a)da),
0

which completes the proof. [l
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