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Abstract

Let X be a real Banach space, let A : D(A) ⊂ X → X be a linear operator which is the infinitesimal generator of a (C0)-
semigroup and let B : D ⊂ X → X be a nonlinear perturbation which is continuous on level sets of D with respect to a lower
semicontinuous (l.s.c.) functional ϕ. We discuss the existence of a nonlinear semigroup S providing mild solutions to the semilinear
abstract Cauchy problem

(SP; x) u′(t) = (A + B)u(t), t > 0; u(0) = x ∈ D

and satisfying a certain Lipschitz-like estimation and an exponential growth condition. Using the discrete schemes approximation,
it is proved that the combination of a subtangential condition and a semilinear stability condition in terms of a metric-like functional
is necessary and sufficient for the generation of such a semigroup S.
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1. Introduction

The aim of this paper is to study the generation of nonlinear semigroups associated with semilinear problems of
the form

(SP; x)

{
u′(t) = (A + B)u(t), t > 0;

u(0) = x ∈ D,

where A : D(A) ⊂ X → X is a linear operator which generates a (C0)-semigroup T = {T (t); t ≥ 0} on a real
Banach space (X, | · |) and B : D ⊂ X → X is a nonlinear perturbation which is continuous on level sets Dα of D
with respect to a l.s.c. functional ϕ, in terms of necessary and sufficient conditions. Here Dα = {x ∈ D; ϕ(x) ≤ α}

for α > 0 and it is supposed that the effective domain D(ϕ) = {x ∈ X; ϕ(x) < ∞} of ϕ is contained in D.
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This framework has been found useful for the treatment of a wide class of nonlinear evolution equations because of
its universality, with applications ranging from nonlinear diffusion and convection phenomena to muscle contraction or
population dynamics (see, for instance, [10,15,16] or [17]). It is therefore important for both theoretical and practical
reasons to treat problems of type (SP; x) through the use of perturbation arguments and obtain semigroup generation
results, which in concrete problems amount to validating the model and obtaining regularity properties of the solutions.

As problems of type (SP; x) may not necessarily admit strong or classical solutions, the weaker notion of a mild
solution, defined using the variation of constants formula, is employed throughout this paper.

Using the discrete schemes approximation, it is then proved that the generation of a nonlinear semigroup S on D
providing mild solutions to (SP; x) and satisfying an exponential growth condition in terms of the l.s.c. functional
ϕ together with a quasi-Lipschitz condition in terms of a metric-like functional V is assured by the coupling of two
necessary and sufficient conditions, namely a subtangential condition (ST) and a semilinear stability condition (S):

(ST) For x ∈ D and ε > 0 there is a pair (h, xh) ∈ (0, ε] × D such that

h−1
|T (h)x + h Bx − xh | ≤ ε and ϕ(xh) ≤ eah(ϕ(x) + (b + ε)h).

(S) For α > 0 there is an ω(α) ∈ R such that

lim inf
h↓0

h−1
[V (T (h)x + h Bx, T (h)y + h By) − V (x, y)] ≤ ω(α)V (x, y)

for all x, y ∈ Dα .

Here, a, b > 0. The above result is our main theorem, which is fully stated in Section 2. Section 3 is devoted to
showing the necessity of our subtangential and semilinear stability conditions and to indicating the relation between
condition (S) and some classical dissipativity assumptions. In Section 4, it is seen that the subtangential condition
holds uniformly on level sets of D with respect to ϕ and the construction of ε-approximate solutions is also indicated.
The local mild solution to (SP; x) is then obtained as a uniform limit of ε-approximate solutions by using an important
coupling estimate given in Section 5. The proof of the limiting result does not employ the classical method of Crandall
and Liggett, but rather the construction of a forward difference scheme and of certain auxiliary sequences of discrete
approximate solutions together with coupling estimates, and is given in Section 6. This method is specifically tailored
to the semilinear character of the problem under consideration. Finally, the global existence of the mild solution is
obtained via a classical argument.

We use the approach given in [8,3], papers to which our work is related. However, it is to be noted that the
construction of elements (zε

k) and (zε̂
k) in the proof of our Theorem 5.1 differs from those indicated in [8, Proposition

5.1] or [3, Theorem 6.1]. Consequently, the convergence estimations are somewhat simpler and some technicalities
may be avoided, particularly the refining argument indicated in the proof of [3, Theorem 6.1].

Stability conditions similar to (S) are used in [8] to treat semilinear Cauchy problems for V (x, y) = |x − y|,
while subtangential conditions of type (ST) are employed in [18] to treat time-dependent dissipative perturbations of
generators of (C0)-semigroups. In the above-mentioned papers, these conditions are global rather than local, i.e., the
l.s.c. functional ϕ is not employed.

In this regard, the l.s.c. functional ϕ is usually constructed having in mind the particularities of the system rather
than through a general technique, so that the estimations in terms of ϕ would correspond to a priori estimations,
energy estimations, total population size estimations or other types of estimations which insure the global existence
of the solutions together with their asymptotic properties. Other hints as to the expression of the functional ϕ for some
particular reaction–diffusion systems may be provided by the shape of the positively invariant regions, if any. See [16]
or [10] for nontrivial examples of functionals ϕ.

Metric-like functionals are used in [11–13] to introduce dissipativity-like conditions for nonlinear and continuous
operators. The use of such functionals makes possible the treatment of evolution equations which involve operators
that do not satisfy the classical dissipativity (or accretivity) conditions.

Another approach for treating problems of type (SP; x) is imposing compactness assumptions in place of
dissipativity-like assumptions (such as the semilinear stability condition (S)) and obtaining the existence of mild
solutions via a relative compactness argument instead of a discrete approximation one, but under these hypotheses
one may obtain local existence results only. See, for instance [1], where a certain set of contractivity assumptions
is required, on operator B, by means of the Hausdorff measure of noncompactness, or [2], where X is assumed to
be reflexive and the semigroup generated by A is assumed to be compact. See also [19] for a survey of existence
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results for initial value problems featuring both dissipativity and compactness approaches, or [6] for related results
concerning evolution equations in Hilbert spaces.

2. Main result

Let X be a real Banach space with norm | · | and let D be a subset of X . For w ∈ R, denote w+
= max{w, 0}.

Also, for x0 ∈ X and r > 0 denote by B(x0; r) the closed ball with center x0 and radius r in X , that is, the set
{x ∈ X; |x − x0| ≤ r}. Let ϕ : X → [0, ∞] be a l.s.c. functional on X such that D ⊂ D(ϕ), where D(ϕ) is the
effective domain of ϕ. Given α > 0, we denote by Dα the level set {x ∈ D; ϕ(x) ≤ α}.

To define a dissipativity-type condition, we shall employ a metric-like functional V : X × X → [0, ∞) satisfying
the following properties:

(V1) There is an L > 0 such that

|V (x, y) − V (x̂, ŷ)| ≤ L(|x − x̂ | + |y − ŷ|) for all x, x̂, y, ŷ ∈ X.

(V2) V (x, x) = 0 for all x ∈ D.
(V3) For each α > 0 there are c1(α) > 0, c2(α) > 0 such that

c1(α)|x − y| ≤ V (x, y) ≤ c2(α)|x − y|

for all x, y in Dα .

We consider the semilinear problem (SP; x) mentioned in the introduction, where the operators A : D(A) ⊂ X →

X and B : D → X satisfy hypotheses (A) and (B) mentioned below:

(A) A generates a (C0)-semigroup T = {T (t); t ≥ 0} on X such that |T (t)x | ≤ ewt
|x | for all x ∈ X , t ≥ 0 and some

w ∈ R.
(B) The level sets Dα are closed and B : D → X is continuous on Dα for all α > 0.

It is then said that a function u ∈ C([0, ∞); X) is a mild solution to (SP; x) if u(t) ∈ D for t ≥ 0,
Bu(·) ∈ C([0, ∞); X) and the integral equality

u(t) = T (t)x +

∫ t

0
T (t − s)Bu(s)ds

is satisfied for each t ≥ 0.
Our main result can now be stated as follows:

Theorem 2.1. Let a, b > 0. Suppose that the operators A and B satisfy hypotheses (A) and (B), respectively, and
that the metric-like functional V satisfies (V1)–(V3). The following statements are then equivalent:

(I) There is a nonlinear semigroup S = {S(t); t ≥ 0} on D such that the following integral equality, quasi-Lipschitz
estimation and exponential growth condition are satisfied:
(M) S(t)x = T (t)x +

∫ t
0 T (t − s)BS(s)xds for all x ∈ D and t ≥ 0.

(QL) For all α > 0 and τ > 0 there is w1 = w1(α, τ ) ∈ R such that

V (S(t)x, S(t)y) ≤ ew1(α,τ )t V (x, y) for all x, y ∈ Dα and t ∈ [0, τ ].

(GC) ϕ(S(t)x) ≤ eat (ϕ(x) + bt) for all x ∈ D and t ≥ 0.
(II) The semilinear operator A + B satisfies the following subtangential and semilinear stability condition:

(ST) For all x ∈ D and ε > 0 there is (h, xh) ∈ (0, ε] × D such that

h−1
|T (h)x + h Bx − xh | ≤ ε and ϕ(xh) ≤ eah(ϕ(x) + (b + ε)h).

(S) For all α > 0 there is w = w(α) ∈ R such that

lim inf
h↓0

h−1
[V (T (h)x + h Bx, T (h)y + h By) − V (x, y)] ≤ w(α)V (x, y)

for all x, y ∈ Dα .
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In the first statement, condition (M) states that for all x ∈ D the function t 7→ S(t)x is a mild solution to (SP; x) on
[0, ∞), while condition (QL), apart from providing a quasi-Lipschitz estimate which characterizes the continuity of
the nonlinear semigroup S on level sets of D, assures also the uniqueness of a mild solution to (SP; x). In the second
statement, conditions (ST) and (S) replace the more usual coupling of a range condition and a quasidissipativity
condition.

In the rest of our paper, T can be any (C0)-semigroup satisfying condition (A). However, for computational
simplicity, we shall assume in the following that T is a (C0)-contraction semigroup. It is also to be noted that our
result does not hold in the case in which T generates an arbitrary (C0)-semigroup, that is, a semigroup which satisfies
|T (t)x | ≤ Cewt

|x | for all x ∈ X , t ≥ 0 and some w ∈ R, C ≥ 1. This happens because the standard renorming
technique which is used in the linear case does not work here, since our stability condition (S) is norm dependent.
Also, the iterative estimates employed in the proof of Theorem 6.1 would contain powers of C in the right-hand side,
a fact which would make them inoperant.

For A ≡ O and ϕ ≡ 0, conditions (ST) and (S) reduce to (ST′) lim infh↓0 h−1d(x + h Bx, D) = 0 for all
x ∈ D and to (S′) 〈Bx − By, x − y〉s ≤ w|x − y| for all x, y ∈ D, respectively. However, in view of the remarks
indicated after the statement of Lemma 4.2, condition (ST′) is equivalent to (ST′′) limh↓0 h−1d(x + h Bx, D) = 0
for all x ∈ D. Since under these circumstances B is continuous on D and (ST′′) holds, condition (S′) is equivalent to
(S′′) 〈Bx − By, x − y〉i ≤ w|x − y| for all x, y ∈ D (see, for instance, [9, Lemma 4.1]). It is then seen that our main
result, Theorem 2.1, contains as a particular case a well-known invariance result obtained by Martin [14, Theorem 5].

Also, our Theorem 2.1 may be regarded as a partial extension to the semilinear case of [12, Theorem 2.1], where
the continuous case is treated under a more general growth condition in terms of a so-called uniqueness function.
Moreover, it should be noted that in some situations it might be significantly easier to verify conditions of type (ST)
rather than the usual range conditions, which amount in many concrete problems to solving elliptic equations and
proving nontrivial elliptic estimates.

3. The subtangential and semilinear stability conditions: Necessity

In this section we prove the implication from (I) to (II).
Let S = {S(t); t ≥ 0} be a nonlinear semigroup on D satisfying (M), (QL) and (GC). Let also x ∈ D and ε > 0. It is
easy to see that condition (M) implies that

lim
h→0

h−1
|S(h)x − T (h)x − h Bx | = 0 (3.1)

and consequently there is δε > 0 such that h−1
|S(h)x − T (h)x − h Bx | < ε for all h ∈ (0, δε]. Also, ϕ(S(h)x) ≤

eah(ϕ(x) + bh), so (ST) is satisfied with xh = S(h)x .
Let x, y ∈ Dα and τ > 0. Using (V1) and (QL) we remark that

h−1
[V (T (h)x + h Bx, T (h)y + h By) − V (x, y)] ≤ h−1(ew1(α,τ )h

− 1)V (x, y)

+ L(h−1
|S(h)x − T (h)x − h Bx | + h−1

|S(h)y − T (h)y − h By|)

for all h ∈ (0, τ ]. Passing to limit as h ↓ 0 in the above relation and using (3.1) we obtain that

lim inf
h↓0

h−1(V (T (h)x + h Bx, T (h)y + h By) − V (x, y)) ≤ lim inf
h↓0

h−1(ew1(α,τ )h
− 1)V (x, y),

and so (S) is satisfied with w(α) = lim infh↓0 w1(α, h). The implication from (I) to (II) is now completely proved.
We now make some remarks concerning the relation between (S) and some more usual dissipativity conditions. It

is easily seen that if x, y ∈ D(A) ∩ D, then

lim inf
h↓0

h−1
[V (T (h)x + h Bx, T (h)y + h By) − V (x, y)] = D+V (x, y)((A + B)x, (A + B)y),

where D+V (x, y)(ξ, η) is defined by

D+V (x, y)(ξ, η) = lim inf
h↓0

h−1(V (x + hξ, y + hη) − V (x, y)).

In view of the above equality, (S) may be interpreted as a dissipativity-like condition. Also, it may be seen that (S) is
satisfied if the following condition holds:
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(VQD) For all α > 0 there is w2(α) ∈ R such that

D−V (x, y)(Bx, By) ≤ w2(α)V (x, y) for all x ∈ Dα

(that is, B is “V -quasidissipative” on level sets of D with respect to α), where D−V (x, y)(ξ, η) is defined by

D−V (x, y)(ξ, η) = lim sup
h↑0

h−1(V (x + hξ, y + hη) − V (x, y)).

In the proofs of the above results, a crucial role is played by the estimations indicated in conditions (V3).

4. Construction of approximate solutions

We now prove the implication from (II) to (I), that is, our nonlinear semigroup generation theorem. In this section
we discuss the construction of approximate solutions for the Cauchy problem (SP; x). To this end, we employ [3,
Theorems 3.1 and 5.1] and [8, Lemmas 5.1 and 5.2], which read as follows.

Lemma 4.1 ([3, Theorem 3.1]). Suppose that condition (ST) is satisfied. Let x ∈ D, ε ∈ (0, 1), β > ϕ(x), M ≥ 0
and let r = r(x, β, ε) > 0 be chosen such that

|Bx − By| ≤ ε/4 and sup
s∈[0,r ]

|T (s)Bx − Bx | ≤ ε/4 for each y ∈ Dβ ∩ B(x, r), (4.1)

and

|By| ≤ M for each y ∈ Dβ ∩ B(x, r). (4.2)

We define

H(x, β, ε) = sup

{
τ > 0; τ(M + 1) + sup

s∈[0,τ ]

|T (s)x − x | ≤ r and eaτ (ϕ(x) + (b + ε)τ ) ≤ β

}
. (4.3)

Let h ∈ [0, H(x, β, ε)) and y ∈ D satisfying

|y − T (h)x | ≤ h(M + 1) and ϕ(y) ≤ eah(ϕ(x) + (b + ε)h). (4.4)

Then for each η > 0 with h + η ≤ H(x, β, ε) there is z ∈ Dβ ∩ B(x, r) satisfying

(1/η)|z − T (η)y − ηB(y)| ≤ ε and ϕ(z) ≤ eaη(ϕ(y) + (b + ε)η). (4.5)

Lemma 4.2 ([3, Theorem 5.1]). Suppose that condition (ST) is satisfied. Let x ∈ D, R > 0, β > ϕ(x) and let M > 0
be such that |By| ≤ M for y ∈ Dβ ∩ B(x, R). Let τ > 0 and ε0 ∈ (0, 1) be chosen so that

τ(M + 1) + sup
t∈[0,τ ]

|T (t)x − x | ≤ R and eaτ (ϕ(x) + (b + ε0)τ ) < β.

Then for each ε ∈ (0, ε0] there exist a sequence (tεi )
Nε

i=0 and a sequence (xε
i )

Nε

i=0 in Dβ ∩ B(x, R) such that

(i) tε0 = 0, xε
0 = x, tεNε

= τ ;
(ii) 0 < tεi+1 − tεi ≤ ε for 0 ≤ i ≤ Nε − 1;

(iii) |xε
i − T (tεi )x | ≤ tεi (M + 1) and ϕ(xε

i ) ≤ eatεi (ϕ(x) + (b + ε)tεi ) for 0 ≤ i ≤ Nε;

(iv) |xε
i+1 − T (tεi+1 − tεi )xε

i − (tεi+1 − tεi )Bxε
i | ≤ (tεi+1 − tεi )ε and ϕ(xε

i+1) ≤ ea(tεi+1−tεi )(ϕ(xε
i ) + (b + ε)(tεi+1 − tεi ))

for 0 ≤ i ≤ Nε − 1;
(v) xε

i ∈ Dβ ∩ B(x, R) for 0 ≤ i ≤ Nε;
(vi) For 0 ≤ i ≤ Nε−1 there is rε

i ∈ (0, ε] such that |By−Bxε
i | ≤ ε/4 for y ∈ B(xi , rε

i )∩Dβ , supt∈[0,rε
i ] |T (t)Bxε

i −

Bxε
i | ≤ ε/4 and (tεi+1 − tεi )(M + 1) + supt∈[0,tεi+1−tεi ] |T (t)xε

i − xε
i | ≤ rε

i .
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We note first that if we apply Lemma 4.1 with h = 0 and y satisfying (4.4) we obtain that for all 0 < η ≤ H(x, β, ε)

there is z ∈ Dβ ∩ B(x, r) satisfying (4.5), that is, the subtangential condition (ST) holds uniformly on level sets of
D with respect to ϕ. This uniformity result plays a very important role in various parts of our proof, including the
construction of approximate solutions and the proof of the coupling estimates leading to our limiting result. Actually,
for our argument, the uniformity of the subtangential condition is a prerequisite.

Using the above-defined sequences (tεi )
Nε

i=0 and (xε
i )

Nε

i=0, one may define an approximate solution uε : [0, τ ) → X
as a piecewise continuous function by

uε(t) = T (t − tεi )xε
i + (t − tεi )Bxε

i for t ∈ [tεi , tεi+1), 0 ≤ i ≤ Nε − 1. (4.6)

Lemma 4.3 ([7, Lemma 5.2]). Let (sn)n≥0 be a strictly increasing sequence in [0, ∞) and let (yn)n≥0 be a sequence
in D. The following identity holds:

yn = T (sn − s0)y0 +

n−1∑
k=0

(sk+1 − sk)T (sn − sk+1)Byk

+

n−1∑
k=0

T (sn − sk+1)[yk+1 − T (sk+1 − sk)yk − (sk+1 − sk)Byk].

Lemma 4.4 ([7, Lemma 5.1]). Let ε > 0, M > 0 and let (sn)n≥0 ⊂ [0, ∞) be a strictly increasing sequence in
[0, ∞), (yn)n≥0 be a sequence in D such that |Byn| ≤ M and

|yn+1 − T (sn+1 − sn)yn − (sn+1 − sn)Byn| ≤ (sn+1 − sn)ε

for n ≥ 0. If sn ↑ s as n → ∞, then the sequence (yn)n≥0 is convergent in X.

5. Coupling estimates

A first step towards the estimation of the difference of two approximate solutions uε and u ε̂ corresponding to
different error parameters ε and ε̂ is represented by the following lemma, which may be interpreted as a natural
extension of the subtangential condition, since two base data y and ŷ are involved, instead of a single one.

Lemma 5.1. Let x, x̂ ∈ D and assume that ε, ε̂, β, M = M(x, x̂, β, ε, ε̂), r = r(x, β, ε), r̂ = r(x̂, β, ε̂) are chosen
such that

|By − Bx | ≤ ε/4 and |By| ≤ M for y ∈ Dβ ∩ B(x, r), (5.1)

|By − Bx̂ | ≤ ε̂/4 and |By| ≤ M for y ∈ Dβ ∩ B(x̂, r̂), (5.1′)

ε, ε̂ ∈ (0, 1/3), β > max{ϕ(x), ϕ(x̂)} (5.2)
sup

s∈[0,r ]

|T (s)Bx − Bx | ≤ ε/4, sup
s∈[0,r̂ ]

|T (s)Bx − Bx | ≤ ε̂/4. (5.3)

Let h ∈ [0, H(x, β, ε)), ĥ ∈ [0, H(x̂, β, ε̂)) and y, ŷ ∈ D be chosen so that

|y − T (h)x | ≤ h(M + 1), ϕ(y) ≤ eah(ϕ(x) + (b + ε)h) (5.4)

and

|ŷ − T (ĥ)x̂ | ≤ ĥ(M + 1), ϕ(ŷ) ≤ eaĥ(ϕ(x̂) + (b + ε̂)ĥ), (5.4′)

where H(x, β, ε), H(x̂, β, ε̂) are defined as in (4.3). Then for each δ > 0 and each η > 0 satisfying h+η ≤ h(x, β, ε)

and ĥ + η ≤ h(x̂, β, ε̂) there exist z ∈ Dβ ∩ B(x, r) and ẑ ∈ Dβ ∩ B(x̂, r̂) such that

|z − T (η)y − ηBy| < 2ηε; (5.5)
|ẑ − T (η)ŷ − ηB ŷ| < 2ηε̂; (5.5′)
ϕ(z) ≤ eaη(ϕ(y) + (b + ε)η); (5.6)
ϕ(ẑ) ≤ eaη(ϕ(ŷ) + (b + ε̂)η), (5.6′)
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and the elements z, ẑ satisfy

V (z, ẑ) ≤ eω(β)+η
[V (y, ŷ) + η(L(ε + ε̂) + δ)]. (5.7)

Proof. First of all, we note that y ∈ D ∩ B(x, r) (and similarly ŷ ∈ D ∩ B(x̂, r̂)), since

|y − x | ≤ |y − T (h)x | + |T (h)x − x | ≤ h(M + 1) + |T (h)x − x | ≤ r.

We inductively construct sequences (sn)n≥0, (xn)n≥0, (x̂n)n≥0 such that the following properties (i), (ii) and (vi)
through (viii)′ are satisfied for all n ≥ 0, while properties (iii) through (v) are satisfied for n ≥ 1.

(i) s0 = 0, x0 = y, x̂0 = ŷ;
(ii) 0 < sn < sn+1 and limn→∞ sn = η;

(iii) |xn − T (sn − sn−1)xn−1 − (sn − sn−1)Bxn−1| ≤ (sn − sn−1)ε;
(iii)′ |x̂n − T (sn − sn−1)x̂n−1 − (sn − sn−1)Bx̂n−1| ≤ (sn − sn−1)ε̂;
(iv) ϕ(xn) ≤ ea(sn−sn−1)(ϕ(xn−1) + (b + ε)(sn − sn−1));

(iv)′ ϕ(x̂n) ≤ ea(sn−sn−1)(ϕ(x̂n−1) + (b + ε̂)(sn − sn−1));
(v) V (T (sn − sn−1)xn−1 + (sn − sn−1)Bxn−1, T (sn − sn−1)x̂n−1 + (sn − sn−1)Bx̂n−1) ≤ ew(β)+(sn−sn−1)[V (xn−1,

x̂n−1) + (sn − sn−1)δ];
(vi) |xn − T (sn)x0| ≤ sn(M + 1);

(vi)′ |x̂n − T (sn)x̂0| ≤ sn(M + 1);
(vii) ϕ(xn) ≤ ea(sn+h)(ϕ(x) + (sn + h)(b + ε));

(vii)′ ϕ(x̂n) ≤ ea(sn+ĥ)(ϕ(x̂) + (b + ε̂)(sn + ĥ));
(viii) xn ∈ B(x, r) ∩ D;

(viii)′ x̂n ∈ B(x̂, r̂) ∩ D.

It is easy to see from our hypotheses, by setting s0 = 0, x0 = y, x̂0 = ŷ, that (i) and (vi) through (viii)′ are satisfied
for n = 0. Suppose now that (sn)N

n=0, (xn)N
n=0 and (x̂n)N

n=0 have been constructed in such a way that properties (i) and
(iii) through (viii)′ hold.

Let hN be the supremum of the positive numbers ξ such that sN + ξ ≤ η and

e−w(β)ξ V (T (ξ)xN + ξ BxN , T (ξ)x̂N + ξ Bx̂N ) ≤ V (xN , x̂N ) + ξδ. (5.8)

It is seen from (ST) that hN > 0. Let hN ∈ (hN /2, hN ) and set sN+1 = sN + hN . Since ϕ(xN ) < β and ϕ(x̂N ) < β,
one may apply Lemma 4.1 and construct xN+1, x̂N+1 ∈ D such that

|xN+1 − T (sN+1 − sN )xN − (sN+1 − sN )BxN | ≤ (sN+1 − sN )ε; (5.9)
|x̂N+1 − T (sN+1 − sN )x̂N − (sN+1 − sN )Bx̂N | ≤ (sN+1 − sN )ε̂ (5.9′)

and

ϕ(xN+1) ≤ ea(sN+1−sN )(ϕ(xN ) + (b + ε)(sN+1 − sN )); (5.10)
ϕ(x̂N+1) ≤ ea(sN+1−sN )(ϕ(x̂N ) + (b + ε̂)(sN+1 − sN )), (5.10′)

that is, (iii), (iii)′, (iv), (iv)′ are satisfied for n = N + 1. From (5.8), it is seen that (v) is satisfied for n = N + 1 and
using the estimations in (iv) and (iv)′ one may obtain by using an easy induction argument that (vii) and (vii)′ are also
satisfied for n = N + 1. From (5.1), (5.9) and (vi) for n = N one may see that

|xN+1 − T (sN+1)x0| ≤ (sN+1 − sN )M + |xN − T (sN )x0| + (sN+1 − sN )ε

≤ sN+1(M + 1)

and similarly |x̂N+1 − T (sN+1)x̂0| < sN+1(M + 1), so (vi) and (iv)′ are also satisfied for n = N + 1. Also, (vii) and
(vii)′ easily imply that xN+1, x̂N+1 ∈ Dβ . One then has

|xN+1 − x | ≤ |xN+1 − T (sN+1)x | + |T (sN+1 + h)x − x |

≤ (sN+1 + h)(M + 1) + |T (sN+1 + h)x − x | ≤ r(x, β, ε)
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and similarly x̂N+1 ∈ B(x̂, r̂), so (viii) and (viii)′ are satisfied for n = N + 1. From Lemma 4.4, one may see that
sequences (xn)n≥0 and (x̂n)n≥0 are convergent in X to z and to ẑ, respectively. We now prove that limn→∞ sn = η.

Suppose by contradiction that limn→∞ sn < η. From (vii) and (vii)′, it is seen that ϕ(z) < β and ϕ(ẑ) < β. Using
(S), one finds ξ ∈ (0, η − s) such that

e−ω(β)ξ V (T (ξ)z + ξ Bz, T (ξ)ẑ + ξ Bẑ) ≤ |z − ẑ| + (1/2)ξδ. (5.11)

Let N ≥ 1 such that s − sn ≤ ξ/2 for all n ≥ N and let ξn = s − sn + ξ . Then sn + ξn = s + ξ < η and
hn < 2hn < 2(s − sn) < ξn . It then follows from (5.8) that

e−ω(β)ξn V (T (ξn)xn + ξn Bxn, T (ξn)x̂n + ξn Bx̂n) > V (xn, x̂n) + ξnδ

and passing to limit as n → ∞ in the above relation one obtains that

e−ω(β)ξ V (T (ξ)z + ξ Bz, T (ξ)ẑ + ξ Bẑ) ≥ V (z, ẑ) + ξδ,

which contradicts (5.11). We then infer from the above that limn→∞ sn = η.
Using Lemma 4.3, (5.1), (5.3) and (4.3) one may deduce (5.5) (and similarly (5.5′)). Estimations (5.6) and (5.6′)

may be deduced from (vii) and (vii)′. �

By the above lemma, it is also seen that condition (S) is equivalent to its seemingly stronger form

(S′′′) For α > 0 there is ω(α) ∈ R such that

lim sup
h↓0

h−1
[V (T (h)x + h Bx, T (h)y + h By) − V (x, y)] ≤ ω(α)V (x, y)

for all x, y ∈ Dα .

We are now ready to establish our key estimation of the difference between two approximate solutions corresponding
to different error parameters ε and ε̂.

Theorem 5.1. Let x ∈ D, R > 0, ε0 ∈ (0, 1/3) and β > ϕ(x). Let M > 0 and τ > 0 be such that |By| ≤ M for
y ∈ Dβ ∩ B(x, R), τ(M + 1) + supt∈[0,τ ] |T (t)x − x | ≤ R and eaτ (ϕ(x) + (b + ε0)τ ) < β. Let ε, ε̂ ∈ (0, ε0) and

suppose that for ε, ε̂ there are sequences (tεi )
Nε

i=0, (xε
i )

Nε

i=0, and (t ε̂i )
Nε̂

i=0, (x ε̂
i )

Nε̂

i=0, respectively, with the properties given
in Lemma 4.2.

Let P = Pε ∪ Pε̂, Pε = {tε0 , tε1 , . . . , tεNε
}, Pε̂ = {t ε̂0 , t ε̂1 , . . . , t ε̂Nε̂

}. Let s0 = 0 and define a new partition (sk)
N
k=0 of

[0, τ ] by sk = min{P \ {s0, s1, . . . , sk−1}} for k ≥ 1. Then there is a double sequence (zk, ẑk)
N
k=0 such that

(i) if sk = tεi , then zk = xε
i ; if sk = t ε̂j , then ẑk = x ε̂

j ;

(ii)
∑k

u=q |zu − T (su − su−1)zu−1 − (su − su−1)Bzu−1| < 2ε + 4ε
∑

tεu ∈{sq ,...,sk }
(tεu − tεu−1) for 1 ≤ q ≤ k;

(ii)′
∑k

u=q |ẑu − T (su − su−1)ẑu−1 − (su − su−1)Bẑu−1| < 2ε̂ + 4ε̂
∑

t ε̂u ∈{sq ,...,sk }
(t ε̂u − t ε̂u−1) for 1 ≤ q ≤ k;

(iii) ϕ(zk) ≤ eask (ϕ(x) + (b + ε)sk);
(iii)′ ϕ(ẑk) ≤ eask (ϕ(x) + (b + ε̂)sk);
(iv) V (zk, ẑk) ≤ ew(β)+sk [2L(ε + ε̂)sk + ηk(ε, ε̂)], where ηk(ε, ε̂) = 4L(ε

∑
tεu ∈{s1,...,sk }

(tεu − tεu−1) +

ε̂
∑

t ε̂u ∈{s1,...,sk }
(t ε̂u − t ε̂u−1)).

Proof. Let z0 = ẑ0 = x . From our hypotheses, it is easy to see that (i), (iii), (iii)′ and (iv) hold for k = 0. Suppose
now that the finite sequence (zk, ẑk)

l−1
k=0 has been constructed in such a way that (i) through (iv) hold for 0 ≤ k ≤ l −1.

Let i, j be such that tεi−1 < sl ≤ tεi , t ε̂j−1 < sl ≤ t ε̂j . We first prove that

|zl−1 − T (sl−1 − tεi−1)xε
i−1| ≤ (sl−1 − tεi−1)(M + 1) (5.12)

and

ϕ(zl−1) ≤ ea(sl−1−tεi−1)(ϕ(xε
i−1) + (b + ε)(sl−1 − tεi−1)). (5.13)
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If sl−1 = tεi−1, the above relations are trivially satisfied. Suppose now that sl−1 > tεi−1. Then tεi−1 = sp for some
p < l − 1. One sees that

|z p+1 − T (sp+1 − sp)xε
i−1| ≤ |z p+1 − T (sp+1 − sp)xε

i−1 − (sp+1 − sp)Bxε
i−1| + (sp+1 − sp)|Bxε

i−1|

< 2(sp+1 − sp)ε + M(sp+1 − sp) < (M + 1)(sp+1 − sp),

from which we deduce that z p+1 ∈ B(xε
i−1, rε

i−1) and so |Bz p+1 − Bxε
i−1| < ε/4. Similarly,

|z p+k − T (sp+k − sp)xε
i−1| ≤ |z p+k − T (sp+k − sp+k−1)z p+k−1 − (sp+k − sp+k−1)Bz p+k−1|

+ (sp+k − sp+k−1)(|Bxε
i−1| + |Bz p+k−1 − Bxε

i−1|)

+ |T (sp+k − sp+k−1)z p+k−1 − T (sp+k − sp)xε
i−1|

< 2(sp+1 − sp)ε + (sp+1 − sp)/4 + |z p+k−1 − T (sp+k−1 − sp)xε
i−1|

+ M(sp+k − sp+k−1)

for p + k ≤ l − 1. By an induction argument one deduces that

|z p+k − T (sp+k − sp)xε
i−1| < (M + 1)(sp+k − sp)

for p + k ≤ l − 1 and so (5.12) is proved. By a similar argument it is seen that the exponential estimate (5.13) holds.
It may also be seen that

|ẑl−1 − T (sl−1 − t ε̂j−1)x ε̂
j−1| ≤ (sl−1 − t ε̂j−1)(M + 1) (5.12′)

and

ϕ(ẑl−1) ≤ ea(sl−1−t ε̂j−1)(ϕ(x ε̂
j−1) + (b + ε̂)(sl−1 − t ε̂j−1)). (5.13′)

Note that from the exponential estimates (5.13) and (5.13′) one may get respectively that

ϕ(zl−1) ≤ easl−1(ϕ(x) + (b + ε)sl−1)

and

ϕ(ẑl−1) ≤ easl−1(ϕ(x) + (b + ε̂)sl−1).

One may then apply Lemma 5.1 for x = xε
i−1, x̂ = x ε̂

j−1, y = zl−1, ŷ = ẑl−1, h = sl−1 − tεi−1, ĥ = sl−1 − t ε̂j−1, η =

sl+1 − sl , δ = L(ε + ε̂) and find yl ∈ Dβ ∩ B(xε
i−1, rε

i−1), ŷl ∈ Dβ ∩ B(x ε̂
j−1, r ε̂

j−1) such that

|yl − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1| ≤ 2(sl − sl−1)ε; (5.14)
|ŷl − T (sl − sl−1)ẑl−1 − (sl − sl−1)Bẑl−1| ≤ 2(sl − sl−1)ε̂; (5.14′)

V (yl , ŷl) ≤ ew(β)+(sl−sl−1)[V (zl−1, ẑl−1) + (sl − sl−1)2L(ε + ε̂)]

and

ϕ(yl) ≤ ea(sl−sl−1)(ϕ(zl−1) + (b + ε)(sl − sl−1)); (5.15)

ϕ(ŷl) ≤ ea(sl−sl−1)(ϕ(ẑl−1) + (b + ε̂)(sl − sl−1)). (5.15′)

We now define elements zl and ẑl by zl =

{
yl , if sl < tεi
xε

i , if sl = tεi
, and by ẑl =

{
ŷl , if sl < t ε̂j
x ε̂

i , if sl = t ε̂j
, respectively, and attempt to prove

that (ii) is satisfied for k = l. It is seen that
l∑

u=q
|zu − T (su − su−1)zu−1 − (su − su−1)Bzu−1| =

l−1∑
u=q

|zu − T (su − su−1)zu−1 − (su − su−1)Bzu−1|

+ |zl − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1|

< 2ε(sl−1 − sq−1) + 4ε
∑

tεu ∈{sq ,...,sl−1}

(tεu − tεu−1)

+ |zl − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1|.
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If sl < tεi , then

|zl − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1| < 2ε(sl − sl−1)

and ∑
tεu ∈{sq ,...,sl−1}

(tεu − tεu−1) =

∑
tεu ∈{sq ,...,sl }

(tεu − tεu−1)

and so (ii) is satisfied for k = l. Suppose now that sl = tεi . One then has

|zl − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1| = |xε
i − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1|

≤ |yl − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1| + |yl − xε
i |

≤ 2(sl − sl−1)ε + |yl − T (sl − tεi−1)xε
i−1 − (sl − tεi−1)Bxε

i−1|

+ |x ε̂
i − T (sl − tεi−1)xε

i−1 − (sl − tεi−1)Bxε
i−1|.

Also,

|yl − T (sl − tεi−1)xε
i−1 − (sl − tεi−1)Bxε

i−1| ≤

l−1∑
u=p

|zu+1 − T (su+1 − su)zu − (su+1 − su)Bzu |

+

l−1∑
u=p

(su+1 − su)|Bzu − Bxε
i−1|

+

l−1∑
u=p

(su+1 − su)|T (sl − su+1)Bxε
i−1 − Bxε

i−1|,

where zu =

{
yl , if u = l
zu , p ≤ u ≤ l − 1 , which yields

|yl − T (sl − tεi−1)xε
i−1 − (sl − tεi−1)Bxε

i−1| ≤ (5/2)ε(sl − tεi−1)

and therefore

|zl − T (sl − sl−1)zl−1 − (sl − sl−1)Bzl−1| ≤ 2(sl − sl−1)ε + 4(sl − tεi−1),

from which we infer that (ii) is also satisfied in this case. Condition (ii)′ follows in the same manner. Summarizing
the above proof, we observe that we have also proved that |yl − xε

i | ≤ 4ε(sl − tεi ) and |ŷl − x ε̂
i | ≤ 4ε̂(sl − t ε̂i ), from

which (iv) follows by an easy induction argument.
A construction related to ours was performed in [20, Theorem 3] by means of a procedure which uses a maximum

principle in ordered metric spaces rather than our supremum technique. �

6. The existence of the mild solution

As indicated in Section 4, for a given error parameter ε > 0 one may define an approximate solution uε : [0, τ ) →

X by

uε(t) = T (t − tεi )xε
i + (t − tεi )Bxε

i for t ∈ [tεi , tεi+1), 0 ≤ i ≤ Nε − 1, (6.1)

the sequences (ti )
Nε

i=0, (xi )
Nε

i=0 and the positive real number τ being given by Lemma 4.2. Using our key estimate for
the difference between two approximate solutions uε and u ε̂ corresponding to different error parameters ε and ε̂ given
in Theorem 5.1, we obtain the uniform convergence of (uε)ε>0 as ε ↓ 0 on compact subintervals in [0, τ ). The local
mild solution on [0, τ ) is then defined as being the uniform limit of (uε)ε>0.

Theorem 6.1. Let x ∈ D, R > 0, ε0 ∈ (0, 1/3) and β > ϕ(x). Let M > 0 and τ > 0 be such that
|Bx | ≤ M for y ∈ Dβ ∩ B(x, R), τ(M + 1) + supt∈[0,τ ] |T (t)x − x | ≤ R and eaτ (ϕ(x) + (b + ε0)τ ) < β.
Let ε ∈ (0, ε0) and suppose that the sequences (ti )

Nε

i=0 and (xi )
Nε

i=0 have been constructed with the properties given
by Lemma 4.2. Let uε : [0, τ ) → X be the approximate solution given by (4.6). Then there is a continuous function
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u : [0, τ ) → X such that supt∈[0,τ ) |uε(t) − u(t)| → 0 as ε ↓ 0. Moreover, u is a mild solution to (SP; x) on [0, τ )

satisfying (QL) and (GC).

Proof. Let ε, ε̂ ∈ (0, ε0). Let t ∈ [0, τ ) and let k ≥ 1 be such that t ∈ [sk−1, sk), where (sk)
n
k=0 is defined as in

Theorem 5.1. Let i, j be such that tεi−1 ≤ sk−1 < sk ≤ tεi , t ε̂j−1 ≤ sk−1 < sk ≤ t ε̂j . One then has

V (uε(t), u ε̂(t)) ≤ V (zk−1, ẑk−1) + L(|T (t − tεi−1)xε
i−1 + (t − tεi−1)Bxε

i−1 − zk−1|

+ |T (t − t ε̂j−1)x ε̂
j−1 + (t − t ε̂j−1)Bx ε̂

j−1 − ẑk−1|)

≤ V (zk−1, ẑk−1) + L(M + 1)(sk−1 − tεi−1) + L(M + 1)(sk−1 − t ε̂j−1).

It is then seen that

V (uε(t), u ε̂(t)) ≤ ew(β)+sk−1

2L(ε + ε̂) + 4L

ε
∑

tεu ∈{s1,...,sk }

(tεu − tεu−1) + ε̂
∑

t ε̂u ∈{s1,...,sk }

(t ε̂u − t ε̂u−1)


+ L(M + 1)(tk−1 − tεi−1) + L(M + 1)(tk−1 − t ε̂j−1)

≤ 6Lew(β)+τ (ε + ε̂)τ + L(M + 1)(ε + ε̂).

It now follows from (V2) and (V3) that (uε)ε>0 converges to a function u(·) uniformly on [0, τ ). Define now γε = tεi
for t ∈ [tεi , tεi+1) and vε : [0, τ ) → X by

vε(t) = T (t)x +

∫ t

0
T (t − s)Buε(γε(s))ds. (6.2)

It is easily seen that vε is continuous on [0, τ ). For t ∈ [tεi , tεi+1), with the help of Lemma 4.3, one obtains that

uε(t) − vε(t) =

i−1∑
k=0

T (t − tεk+1)[x
ε
k+1 − T (tεk+1 − tεk )xε

k − (tεk+1 − tεk )Bxε
k ]

−

i−1∑
k=0

∫ tεk+1

tεk

[T (t − s)Bxε
k − T (t − tεk+1)Bxε

k ]ds −

∫ t

tεi

[T (t − s)Bxε
i − Bxε

i ]ds (6.3)

and so

|uε(t) − vε(t)| ≤ (5/4)tε. (6.4)

Also,

|uε(γε(t)) − uε(t)| = |xε
i − T (t − tεi )xε

i + (t − tεi )Bx i
ε|

≤ (t − tεi )M + |T (t − tεi )xε
i − xε

i | ≤ ε (6.5)

for t ∈ [tεi , tεi+1), i = 0, . . . Nε − 1. It is also seen that

ϕ(uε(γε(t))) = ϕ(xε
i ) ≤ eatεi (ϕ(x) + (b + ε)tεi ). (6.6)

Since uε(γε(t)) and u(t) belong to Dβ for each t ∈ [0, τ ), the continuity of B on Dβ asserts that

Buε(γε(t)) → Bu(t) as ε → 0, uniformly on [0, τ ). (6.7)

From (6.2), (6.4), (6.5) and (6.7) it is seen that (M) is satisfied, while from (6.6) and the lower semicontinuity of ϕ it
is seen that (GC) is satisfied. Estimation (QL) will be proved through the use of the next lemma, which also insures
the uniqueness of the mild solution to (SP; x).

Lemma 6.1. Suppose that the semilinear stability condition (S) holds. Let α > 0 and x, y ∈ Dα . Let u(·) and v(·) be
mild solutions to (SP; x) and to (SP; y), respectively, which satisfy (GC). Then

V (u(t), v(t)) ≤ eω(β)t V (x, y) (6.8)
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for τ > 0, β > eaτ (α + bτ) and all t ∈ [0, τ ).

Proof. Let t ∈ [0, τ ). Using the definition of a mild solution to (SP), one sees that

h−1
[V (u(t + h), v(t + h)) − V (u(t), v(t))]

≤ h−1
[V (T (h)u(t) + h Bu(t), T (h)u(t) + h Bv(t)) − V (u(t), v(t))]

+ h−1L
∫ t+h

t
|T (t + h − s)Bu(s) − Bu(t)|ds

+ h−1L
∫ t+h

t
|T (t + h − s)Bv(s) − Bv(t)|ds (6.9)

for 0 < h < τ − t . We note that

ϕ(u(s)) ≤ eas(ϕ(u(0)) + bs) ≤ β

and so u(s) ∈ Dβ for s ∈ [0, τ ). Similarly, it is seen that v(s) ∈ Dβ for s ∈ [0, τ ). Passing to the inferior limit in
(6.9) as h ↓ 0 and using the continuity of B on Dβ we obtain that

D+V (u(t), v(t)) ≤ ω(β)V (u(t), v(t)) for t ∈ [0, τ )

from which we infer that (6.8) holds. �

From the above lemma we infer that (QL) is satisfied with w1(α, τ ) = w(β). Using (V2) and Lemma 6.1, one also
obtains that the mild solution to (SP; x) given by Theorem 6.1 is unique. The global existence of the mild solution to
(SP; x) and its semigroup property now follow from a classical continuability argument (see, for instance, [3, Theorem
6.2] or [8, Proposition 5.2]). Theorem 6.1 is then completely proved. �

7. An example

In this section we discuss a simple example which can be treated in an operator theoretic fashion within the
framework described above. See also [4,5,18] for related constructions.

Our purpose is to study the positivity of the solutions to the semilinear initial value problem∂u
∂t

(t, x) =
∂2u
∂x2 (t, x) + g(u(t, x)), t ≥ 0, x ∈ R;

u(0, x) = u0(x), x ∈ R,

where g : R → R is a locally Lipschitzian and bounded function for which g(0) = 0 and u0 is a nonnegative initial
datum such that u0(x) → 0 as |x | → ∞.

Let X = C0(R) = {u ∈ C(R); u(x) → 0 as |x | → ∞}, endowed with the classical supremum norm, defined by
‖u‖ = supx∈R |u(x)|, let V : X × X → R, V (u, v) = ‖u − v‖ and let ϕ : X → R, ϕ(u) = ‖u‖.

Let A : D(A) ⊂ X → X , Au = u′′, where D(A) = {u ∈ C2(R); u, u′, u′′
∈ X}. It is easy to see that A generates

a positivity-preserving contraction semigroup T = {T (t); t ≥ 0} on X , given by

(T (t)u)(x) =
1

√
4π t

∫
∞

−∞

e−
(x−y)2

4t u(y)dy.

Let D = {u ∈ C0(R); u(x) ≥ 0 for all x ∈ R} and let B : D → X , (Bu)(x) = g(u(x)). It is also easy to see that B is
a locally Lipschitzian operator on D. With the above notation, our problem can be rewritten as a semilinear problem
in X , of the form

(SP; u0) u
′(t) = (A + B)u(t), t > 0; u(0) = u0 ∈ D,

where u(t) = u(t, ·). Since T is a contraction semigroup on X , it is seen that

h−1(‖T (h)u + h Bu − T (h)v − h Bv‖ − ‖u − v‖) ≤ w(α)‖u − v‖

for all h > 0 and u, v ∈ Dα , where w(α) is the Lipschitz constant of B on Dα , which implies that (S) is satisfied.
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Let u ∈ D and ε > 0. Then there is a δ > 0 such that |t | ≤ δ implies |g(t)| ≤ ε. Also, since g is bounded on R,
there is η > 0 such that infx∈R g(u(x)) + δ/(2h) ≥ 0 and ‖T (h)u − u‖ ≤ δ/2 for all h ∈ (0, η).

Fix x ∈ R. If u(x) ≤ δ, then

h−1
[(T (h)u)(x) + hg(u(x))] ≥ g(u(x)) ≥ −ε.

If u(x) > δ, then

h−1
[(T (h)u)(x) + hg(u(x))] = h−1

[(T (h)u)(x) − u(x)] + h−1
[u(x) + g(u(x))]

≥ −h−1
‖T (h)u − u‖ + h−1δ + g(u(x))

≥ (2h)−1δ + g(u(x)) ≥ 0.

Let us define uh : R → R by uh(x) = [(T (h)u)(x)+ hg(u(x))]+ for x ∈ R. Then uh ∈ D, ‖T (h)u+ h Bu−uh‖ ≤ ε

and |uh(x)| ≤ |(T (h)u)(x) + hg(u(x))| ≤ ‖u‖ + h‖g‖ for x ∈ R, which implies that (ST) is also satisfied. In view
of the above, it is seen that there is a nonlinear semigroup S = {S(t); t ≥ 0} on D associated with (SP), which means
that for any nonnegative initial datum u0 ∈ C0(R) the function t 7→ S(t)u0 is a nonnegative mild solution to (SP; u0).
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