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a b s t r a c t

In this paper, we consider an integrated pest management model with disease in the pest
and a stage structure for its natural predator, which is subject to impulsive and periodic
controls. A nonlinear incidence rate expressed in an abstract form, is used to describe
the propagation of the disease, which is spread through the periodic release of infective
pests, the functional response of the mature predator also being given in an abstract,
unspecified form. Sufficient conditions for the local and global stability of the susceptible
pest-eradication periodic solution are found by means of Floquet theory and comparison
methods, the permanence of the system also being discussed. These stability conditions
are shown to be biologically significant, being reformulated as balance conditions for the
susceptible pest class.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional approach to pest control relied on the seasonal use of chemical pesticides, the response to pest resurgence
and pest outbreaks being an increase in the amount of pesticides sprayed, or in their toxicity. However, it has been observed
that persistent pesticide use increases the incidence of pesticide-resistant pest varieties and inflicts harmful effects on
humans through the accumulation of hazardous chemicals in their food chain. Further, pesticide pollution is also a major
threat to beneficial insects, which are sometimes more affected by pesticide spraying than target pests.
Integrated pest management (IPM) represents a systemic, holistic approach to reduce pest damage to tolerable levels,

without pesticide overuse. IPM strategies are conceived through an understanding of interactions between pests and the
environment, relying on precise pest identification and on continuous field observation. Pest control techniques with lower
environmental impact are then employed in order tominimize the damage caused to non-target organisms. Such techniques
include mechanical methods (erecting pest barriers or using pest traps), biological methods (breeding natural predators of
the pest, using biological insecticides such as Bacillus thuringiensis or entomopathogenic fungi, disrupting the reproductive
processes of the pest by releasing sterile pest individuals or spreading a disease in the pest population on the grounds that
infective pests are usually less damaging to the environment). Some examples of successful uses of biocontrol agents include
the use of the predatory arthropod Orius sauteri against the pest Thrips palmi Karny to protect eggplant crops in greenhouses
(Nagai and Yano [1]) and the use of the predatory mites Phytoseiulus persimilis and Neoseiulus californicus against the red
spider mite Tranychus urticae Koch in field-grown strawberries (Port and Scopes [2]). Baculoviruses have been found useful
to control the diamondback moth Plutella xylostella in cabbage farms (Grzywacz et al. [3], Sarfraz, Keddie and Dosdall [4]),
after it had been noticed that the diamondback moth became resistant to chemical pesticides in many areas (Roush [5]).
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Pesticides may still be used in an IPM strategy as a last resort, since they are, in many cases, the quickest way to contain
a pest outbreak, but the aim is to minimize their use, focusing on non-chemical controls instead, which are often more
cost-effective and self-sustainable.
Zero-tolerance policies may not be necessary for every pest, a key concept in this direction being the economic injury

level (EIL), which is defined in Stern et al. [6] as the lowest pest density which causes economic damage. In this regard,
the ultimate purpose of an IPM strategy is often not to drive the pest population to extinction, as this may not be cost-
effective or may damage the ecosystem, but to stabilize the pest population under EIL. A related threshold parameter is the
economic threshold (ET), usually defined as the lowest pest density at which control measures should be taken so that EIL
is not exceeded. Consequently, ET has a lower value than EIL (Tang and Cheke [7]).
The inherent discontinuity of human activities and the steep variation in the size of the pest population which occurs

immediately after successful control measures are implemented (releasing natural enemies of the pest, spraying pesticides,
releasing infective pest individuals) may be describedmathematically through the use of impulsive controls. These controls
may be employed according to a time-based strategy (time-dependent controls) or as soon as the size of the pest population
reaches ET (state-dependent controls).
The life cycle of many species has been found to consist in at least two stages, immature and mature, with significant

morphological and behavioral differences between them. To account for these differences, stage-structured models have
been proposed and analyzed in recent years. See Aiello and Freedman [8] for a single species model with a stage structure
and time delay, Wang [9] or Xiao and Chen [10] for a predator–prey model with a stage structure for the predator which
is treated via the theory of competitive systems, Kuang [11] or Arditi and Michalski [12] for general consistency criteria to
be satisfied by models describing stage-structured interactions, Liu, Chen and Agarwal [13] for a survey on the dynamics of
stage-structured population models with an emphasis on modelling issues.
Recently, many papers have been devoted to the analysis of mathematical models describing IPM strategies. See, for

instance, Tang and Cheke [14], Tang et al. [15] for predator–pest models which are impulsively controlled bymeans of state-
dependent controls, Liu, Zhi, Chen [16], Liu, Chen, Zhang [17], Su et al. [18] for predator–pest models which are impulsively
controlled bymeans of time-dependent controls, Georgescu andMoroşanu [19] for an SImodelwhich is subject to impulsive
biological and chemical controls, Xiao and van den Bosch [20] for an SI model with additional food resource. See also Tan
and Chen [7] for another SI model with additional food resource, Du et al. [21] for a predator–pest model with a stage
structure for the pest, Zhang, Chen and Nieto [22] for a single species epidemic model with stage structure, these models
being subject to time-dependent impulsive controls. However, very fewpapers have been devoted tomodelswhich combine
the release of natural predators of the pest, and of infective pest individuals. See Shi and Chen [23] for a 3-dimensional
predator–pest model with disease in the pest which features a bilinear rate of incidence and time-dependent impulsive
controls. The approach to biological control which we employ in our paper is to release both infective pest individuals and
natural predators of the given pest, in periodic pulses of a constant amount.
As far as disease transmission is concerned, bilinear and standard incidence rates have often been used in epidemic

models. See, for instance, Li, Smith andWang [24], Ebert, Lipsitch andMangin [25], Tudor [26], Rost andWu [27] for models
with bilinear incidence rates and Hethcote et al. [28], Arino et al. [29], De Leenheer and Smith [30], Gourley, Kuang and
Nagy [31] for models with standard incidence rates. Since the number of contacts between infectives and susceptibles may
saturate at higher densities of infective individuals due to crowding, and since multiple contacts may be required in certain
situations for disease transmission, these incidence rates may not necessarily describe accurately the spread of the disease,
an incidence rate of type g(I)S with g(I) = kI

1+αI being proposed in Capasso and Serio [32]. A more general incidence rate

of this type used in literature is the one for which g(I) = kI l

1+αIh
(Ruan and Wang [33], Liu, Levin and Iwasa [34]), where I l

measures the infection force of the disease and 1
1+αIh

measures the inhibitory effect caused by behavioral changes. Note that
if g(I) is decreasingwhen I is large, thismay be interpreted as the fact that susceptibles tend to reduce their social contacts if
the perceived number of infectives increases over a psychologically significant value. Very general incidence rates which are
not linear in S are also used in Derrick and van den Driessche [35] (g(S, I,N) = IΦ(S, I,N), where N = I+ S), Korobeinikov
and Maini [36] (g(S, I) = h1(I)h2(S)), Moghadas and Alexander [37] (g(S, I) = β(1+ f (I; ν))IS).
The interaction between pests and their natural predators fits the general framework of a predator–prey interaction. In

this regard, an abstract predation term of type PF(N, P), where P is the size of the predator class and N is the size of the
prey class, has been proposed by Yodzis [38]. Here, F(N, P) is the functional response of the predator, which represents the
number of prey individuals consumed by a single predator per unit area and unit time. Functional responses which depend
only on the size of the prey population (F(N, P) = h(N)) have been termed as prey-dependent in Arditi and Ginzburg [39],
while functional responses which depend also on the size of the predator population P have been termed as predator-
dependent, or in the particular case inwhich F(N, P) = h1(N/P), as ratio-dependent. Particular examples of prey-dependent
functional responses are h(N) = bN (Holling type I, Holling [40]), h(N) = aN

1+bN (Holling type II, Holling [40]), h(N) =
bN

1+hN2

(Holling type III, Holling [40]), h(N) = k(1− e−αN) (Ivlev [41]).
Differential models relying on the use of impulsively perturbed ordinary differential equations, provide an adequate

framework for many evolutionary processes. In this regard, a biological resource management model of predator–prey type
with continuous harvesting on predator and impulsive stocking on prey, has been considered in Jiao et al. [42] from the
viewpoint of finding a reasonable harvesting strategy. The model discussed in [42] also features a stage structure for the
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predator and a fixed delay caused by maturation. The existence of periodic solutions for ratio-dependent predator–prey
models has been investigated by Wang, Shen and Nieto in [43] and by Ding, Lu and Liu in [44] by means of coincidence
degree theory, the latter including a delay term due to the negative feedback of the prey population. Since environmental
parameters are naturally subject to fluctuation in time, the periodicity of the functional coefficients which appear in the
models employed in [43,44] represent away to incorporate the periodicity of the environment. Also, the existence of periodic
solutions for a single-species Lotka–Volterramodel withmultiple delays and impulsive perturbations, has been investigated
by Yan, Zhao and Nieto in [45], where it has been observed that, under appropriate linear periodic impulsive perturbations,
the perturbed systems retain the original periodicity and global attractivity of the unperturbed system. Similar results
have been obtained by Meng, Chen and Li [46] for an impulsively perturbed nonautonomous predator–prey model with
multiple delays. A discrete host–parasitoid model which involves parasitoid intergenerational survival rates and periodic
impulsive perturbations, extending the classical Nicholson and Baileymodel, has been analyzed in Tang, Xiao and Cheke [47]
and it is found that, under appropriate conditions, there are stable periodic solutions such that the maximal size of the
host population does not exceed a pre-specified threshold level. The optimal control of a three-dimensional food chain
via biological and chemical controls of a discontinuous nature, has been studied in Apreutesei [48] using the Pontrjagin
maximality principle, the purpose being to maximize the total population size at the end of a given interval [0, T ]. A similar
analysis has been performed in Apreutesei and Dumitriu [49] for a Lotka–Volterra model which is subject to a biological
control consisting of the discontinuous (but not impulsive) release of a top predator.
A theoretical study of superficial bladder cancer growth and of its treatment via pulsed immunotherapy with Bacillus

Calmette-Guérin has been studied in Bunimovich-Mendrazitsky, Byrne and Stone [50], with the purpose of finding
appropriate BCG instillation doses and rates of pulsing for successful treatment. The dynamics of a SIR model with pulsed
vaccination (the repeated application of vaccine over a defined age range) has been studied by Gao et al. in [51], where it
has been proved that the infection-free periodic solution is globally attractive, provided that the vaccination rate is large
enough. A related stability analysis has also been performed by Xiang, Li and Song in [52] for a nondelayed SEI model and
by Jiao, Meng and Chen in [53] for a stage-structured SI model.
The purpose of this paper is to construct an integrated pestmanagementmodelwhich relies on the simultaneous periodic

release of infective pest individuals and of natural predators, in a constant amount. An abstract incidence rate of type g(I)S is
employed to model the spread of the disease which is propagated through the release of infective individuals, the predation
of the susceptibles being also modeled by an abstract prey-dependent functional response h(S), under a few biologically
feasible assumptions upon g and h. A related predator–pest model of IPM has been discussed by Zhang, Georgescu and Chen
in [54]. The model discussed in [54] features a predator-dependent functional response in a particular form, as opposed
to our prey-dependent functional response, and two distinct sets of impulsive controls corresponding to periodic pesticide
spraying and periodic predators release, respectively. Comparatively, our model adds a stage structure for the predator, a
feature which does not appear in [54], and accounts for the use of a biocontrol agent, consisting of the periodic release of
infective pests, which is again not employed in [54], while also discussing stability and permanence problems which are
related to those treated in [54].
The rest of this paper is organized as follows: in Section 2, the main biological assumption on which the model relies

are formulated and the resulting impulsively perturbed differential model is introduced. In Section 3, the biological well-
posedness of the model is established and certain comparison and boundedness results for impulsive differential equations
are introduced, together with basic elements of Floquet stability. In Section 4, sufficient conditions for the local and
global stability of the susceptible pest-eradication periodic solution are established, their biological significance also being
discussed. In Section 5, the permanence of our system is analyzed. Further comments on the biological relevance of our
results are stated in Section 6, together with a few concluding remarks.

2. The model

In the following, we shall denote by S the size of the susceptible pest population, by I the size of the infective pest
population, by PJ the size of the immature predator population and by PM the size of the mature predator population. To
derive our mathematical model, the following assumptions are made.

(A1) The pests are either susceptible or infective. The disease is transmitted from infective pests to susceptible pests and
does not propagate to predators. Also, the disease is not vertically transmitted from infective pests to their offspring.

(A2) In the absence of infection, the intrinsic growth rate of the susceptible pest population is described by the logistic
function with intrinsic birth rate r and carrying capacity K .

(A3) The infective pests neither recover nor reproduce. They also do not damage crops or otherwise contribute to the total
size of the environment-supported pest population.

(A4) The incidence rate of the infection is nonlinear in I and given by g(I)S, where g is an abstract function satisfying certain
assumptions outlined below.

(A5) The life cycle of the predator consists in two stages, immature andmature, only themature predators having the ability
to hunt for prey and reproduce.

(A6) The functional response of the mature predator is described by the abstract function h satisfying certain assumptions
outlined below.
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(A7) Predators feed on susceptible pests only, and do not prey upon infective pests.
(A8) Predators and infective pests are released in an impulsive and periodic fashion, simultaneously and in the same amount

each time.

On the basis of the above assumptions, we formulate the following impulsively perturbed model with disease in the pest
and a stage structure for the predator, which describes the dynamics of the predator–pest interaction under consideration,
as follows.

S ′(t) = rS(t)
(
1−

S(t)
K

)
− g(I(t))S(t)− PM(t)h(S(t)), t 6= nT ;

I ′(t) = g(I(t))S(t)− dI I(t), t 6= nT ;
P ′J (t) = cPM(t)h(S(t))− (m+ dJ)PJ(t), t 6= nT ;
P ′M(t) = mPJ(t)− dMPM(t), t 6= nT ;
∆S(t) = 0, t = nT ;
∆I(t) = δI , t = nT ;
∆PJ(t) = δJ , t = nT ;
∆PM(t) = δM , t = nT .

(1)

Here, dI , dJ , dM > 0 are the death rates of the infective pest population and of the immature andmature predator population,
respectively, 1m is the mean length of the immature stage and c > 0 is a proportionality constant relating the reproductive
rate of themature predators to the amount of prey consumed. The constants δI , δJ , δM > 0 represent the amount of infective
pests, immature andmature predators, respectively, which are released each time and T > 0 is the release periodicity. Also,
1ϕ(t) = ϕ(t+)− ϕ(t) for ϕ ∈

{
S, I, PJ , PM

}
, n ∈ N∗, and g , h ∈ H , where

H =
{
f : R→ R; f (0) = 0, f ′(x) > 0 and f ′′(x) ≤ 0 for all x > 0

}
.

In these settings, the success of the IPM strategy will mostly be expressed in terms of stability properties for the
susceptible pest-eradication periodic solution. The global stability of the susceptible pest-eradication periodic solution
means that the IPM strategy is successful, irrespective of the initial sizes of the pest and predator populations, while its
local stability means that the IPM strategy is successful under favorable circumstances. Strictly speaking, the IPM strategy
is considered successful when the size of the susceptible predator population stabilizes under the EIL, but this persistence
level cannot be determined using our approach.
It is to be noted that ourmodel can also describe some situations apparently not covered by (1). Specifically, if the infective

pests do contribute towards the carrying capacity of the environment by damaging crops or by other means, then the first
equation in our model may be substituted by

S ′(t) = rS(t)
(
1−

S(t)+ αI(t)
K

)
− g(I(t))S(t)− PM(t)h(S(t)),

α being a constant which characterizes the fact that susceptible and infective pests have different capabilities to damage
the environment. This equation may be restated as

S ′(t) = rS(t)
(
1−

S(t)
K

)
−

(
g(I(t))+

αrI(t)
K

)
S(t)− PM(t)h(S(t)),

which again fits our framework, for g̃(I) = g(I)+ αr IK , although this time the limiting size of the infective pest population
is also of concern. Specifically, the global stability of the susceptible pest-eradication periodic solution would not suffice,
another requirement being that the average endemicity level be lower than a certain value which is determined knowing
the value of the EIL.

3. Preliminaries

In this section we shall introduce a few definitions and notations, together with some basic notions regarding Floquet
theory of impulsive differential equations and comparison estimations. A few properties of the periodic solution of a certain
impulsively perturbed differential equation will be determined, these findings being used in the next section to establish
the existence of the susceptible pest-eradication periodic solution of (1).
Let us denote by f = (f1, f2, f3, f4) the mapping defined by the right-hand sides of the first four equations in (1). Also

let V0 be the set of functions V : R+ × R4
+
→ R+ which are locally Lipschitz in the second variable, continuous on

(nT , (n + 1)T ] × R4
+
and for which the limits lim(t,y)→(nT+,x) V (t, y) = V (nT+, x) exist and are finite for x ∈ R4

+
and

n ∈ N∗.
For V ∈ V0, we define the upper right Dini derivative of V with respect to the system (1) at (t, x) ∈ (nT , (n+ 1)T )×R4

+

by

D+V (t, x) = lim sup
h↓0

1
h
[V (t + h, x+ hf (t, x))− V (t, x)] .
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We now indicate a comparison result for solutions of impulsive differential inequalities which allows us to estimate the
values of the solutions of (1). We suppose that a : R+ × R+ → R satisfies the following hypotheses.
(H) a is continuous on (nT , (n+ 1)T ]×R+ and the limits lim(t,y)→(nT+,x) a(t, y) = a(nT+, x) exist and are finite for x ∈ R+
and n ∈ N∗.

Lemma 3.1 ([55]). Let V ∈ V0 and assume that{
D+V (t, x(t)) ≤ a(t, V (t, x(t))), t 6= nT ;
V (t, x(t+)) ≤ ψ1n (V (t, x(t))), t = nT ,

(2)

where a : R+ × R+ → R satisfies (H) andψ1n : R+ → R+ are nondecreasing for all n ∈ N∗. Let r(t) be the maximal solution of
the impulsive Cauchy problemu

′(t) = a(t, u(t)), t 6= nT ;
u(t+) = ψ1n (u(t)), t = nT ;
u(0+) = u0

(3)

defined on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t) for all t ≥ 0, where x(t) is an arbitrary solution of (2).

Note that, under appropriate regularity conditions, the Cauchy problem (3) has a unique solution and, in that case,
the comparison function r becomes the unique solution of (3). We now indicate a result which provides boundedness
estimations for the solution of a system of differential inequalities.

Lemma 3.2 ([55]). Let the function u ∈ PC1(R+,R) satisfy the inequalities{u′(t) ≥ p(t)u(t)+ f (t), t 6= τk, t > 0;
u(τk+) ≥ dku(τk)+ hk, k ≥ 0;
u(0+) ≥ u0,

(4)

where p, f ∈ PC(R+,R), dk ≥ 0, hk and u0 are constants and (τk)k≥0 is a strictly increasing sequence of positive real numbers.
Then, for t > 0,

u(t) ≥ u0

( ∏
0<τk<t

dk

)
e
∫ t
0 p(s)ds +

∫ t

0

( ∏
0≤τk<t

dk

)
e
∫ t
s p(τ )dτ f (s)ds+

∑
0<τk<t

( ∏
τk<τj<t

dj

)
e
∫ t
τk
p(τ )dτhk.

In the above, PC(R+,R) (PC1(R+,R)) denotes the class of real piecewise continuous (real piecewise continuously
differentiable) functions defined onR+. For other results on impulsive differential equations, see Bainov and Simeonov [55].
First, it is easy to see that (1) has a unique solution for every initial set of data. Using Lemma 3.2, it is now possible to

prove that all solutions of (1), starting with strictly positive initial data, remain strictly positive and bounded on their whole
domains of existence.

Lemma 3.3. The set (R∗
+
)4 is an invariant region for the system (1).

Proof. Let us consider X = (S, I, PJ , PM) : [0, T0)→ R4 a solution for (1) defined on its maximal interval of existence and
starting with strictly positive S(0), I(0), PJ(0), PM(0). It follows that

S ′(t) ≥ S(t)
[
r
(
1−

S(t)
K

)
− g(I(t))− PM(t)h′(0)

]
, t 6= nT ;

I ′(t) ≥ −dI I(t), t 6= nT ;
P ′J (t) ≥ −(m+ dJ)PJ(t), t 6= nT ;
P ′M(t) ≥ −dMPM(t), t 6= nT

as long as X remains positive component-wise, since h ∈ H , which implies that h(x) ≤ h′(0)x for all x ≥ 0. By integrating
the above inequalities and accounting for the effect of impulsive perturbations which occur at t = nT , one obtains that

S(t) ≥ S(0)e
∫ t
0 p1(s)ds

I(t+) ≥ I(0)e−dI t(1+ δI)[
t
T ]

PJ(t+) ≥ PJ(0)e−(m+dJ )t(1+ δJ)[
t
T ]

PM ≥ PM(0)e−dM t(1+ δM)[
t
T ],

where

p1(t) = r
(
1−

S(t)
K

)
− g(I(t))− PM(t)h′(0),

on the interval on which X stays positive component-wise, so X is actually strictly positive on [0, T0). �
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Using the above positivity result, we may now show that all solutions of (1) are bounded and actually defined on R+.

Lemma 3.4. All solutions of (1) starting in (R∗
+
)4 are bounded and defined on R+.

Proof. Let us consider a solution (S(·), I(·), PJ(·), PM(·)) of (1) starting with initial data (S(0), I(0), PJ(0), PM(0)) ∈ (R∗+)
4

and define u1 : R+ → R+ by

u1(t) = cS(t)+ cI(t)+ PJ(t)+ PM(t).

One then sees that

u′1(t) = rcS(t)
(
1−

S(t)
K

)
− cdI I(t)− dJPJ(t)− dMPM(t), t 6= nT .

Let us denote D = min(cdI , dJ , dM). It follows that

u′1(t)+ Du1(t) ≤ (rc + D)S(t)−
rc
K
S2(t), t 6= nT . (5)

Since the right-hand side of (5) is bounded from above by C = K(rc+D)2

4rc , it follows that

u′1(t)+ Du1(t) ≤ C, t 6= nT ,

together with

u1(nT+) = u1(nT )+ cδI + δJ + δM .

By Lemma 3.2, it follows that

u1(t) ≤ u1(0+)e−Dt + C
∫ t

0
e−D(t−s)ds+

∑
0<nT<t

(cδI + δJ + δM)e−D(t−nT ), t > 0, (6)

which yields

u1(t) ≤ u1(0+)e−Dt +
C(1− e−Dt)

D
+ (cδI + δJ + δM)

eDT

eDT − 1
, t > 0. (7)

Since the limit for t →∞ of the right-hand side of (7) is

L =
C
D
+ (cδI + δJ + δM)

eDT

eDT − 1
<∞,

it follows that u1 is bounded on its domain. Consequently, S, I, PJ , PM are bounded and it follows, by an easy continuability
argument, that they are defined on the whole R+. �

We now introduce a few basic results regarding the Floquet theory for impulsive systems of ordinary differential
equations, which will be used in the next section to discuss the local stability of the susceptible pest-eradication periodic
solution. Let us consider the impulsive linear system{

X ′(t) = A(t)X(t), t 6= τk, t ∈ R;
∆X = BkX, t = τk, τk < τk+1, k ∈ Z (8)

under the following hypotheses.

(H1) A(·) ∈ PC(R,Mn(R)) and there is T > 0 such that A(t + T ) = A(t) for all t ≥ 0.
(H2) Bk ∈ Mn(R), det(In + Bk) 6= 0 for k ∈ Z.
(H3) There is q ∈ N∗ such that Bk+q = Bk, τk+q = τk + T for k ∈ Z.

Let Φ(t) be a fundamental matrix of X ′ = AX . Then there is a unique nonsingular matrix M ∈ Mn(R) such that
Φ(t+ T ) = Φ(t)M for all t ∈ R, which is called the monodromymatrix of (8) corresponding toΦ . Actually, all monodromy
matrices of (8) are similar and consequently they have the same eigenvalues λ1, λ2, . . . , λn, which are called the Floquet
multipliers of (8). Under these hypotheses, the following stability result holds, where by elementary divisors of a square
matrix Awe understand the characteristic polynomials of its Jordan blocks.

Lemma 3.5 ([55]). Suppose that conditions (H1)–(H3) hold. Then
(1) The system (8) is stable if, and only if, all Floquet multipliers λk, 1 ≤ k ≤ n satisfy |λk| ≤ 1 and if |λk| = 1, then to λk there
corresponds a simple elementary divisor.

(2) The system (8) is asymptotically stable if, and only if, all Floquet multipliers λk, 1 ≤ k ≤ n satisfy |λk| < 1.
(3) The system (8) is unstable if there is a Floquet multiplier λk such that |λk| > 1.
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To discuss the dynamics of the system (1) in the absence of susceptible pests, it becomes necessary to consider the
properties of the system{z ′(t) = a(t)− dz(t), t 6= nT ;

∆z(t) = δ, t = nT ;
z(0+) = z0,

(9)

a being a T -periodic PC(R+,R) function and d being a positive real constant. It will be seen that the system consisting in
the first two equations in (9) has a T -periodic solution to which all solutions of (9) starting with strictly positive z0 tend as
t →∞. The above-mentioned periodic solution will be labeled in what follows as z∗a;d,δ .

Lemma 3.6. The system consisting of the first two equations in (9) has a T-periodic solution z∗a;d,δ .With this notation, the following
properties are satisfied.

(1) z∗0;d,0 ≡ 0.

(2)
∫ T
0 z
∗

a;d,δ(t)dt =
1

d(1−e−dT )

(
δ +

∫ T
0 a(s)ds

)
.

(3) limt→∞
∣∣z∗a;d,δ(t)− za;d,δ(t)∣∣ = 0 for all solutions za;d,δ of (9) starting with strictly positive initial data.

(4) supt>0
∣∣∣z∗a1;d,δ(t)− z∗a2;d,δ(t)∣∣∣ ≤ (1+ T

1−e−dT

)
supt∈[0,T ] |a1(t)− a2(t)|.

Proof. First, it is easy to see that

z(t) = e−dt
(
z(0+)+

∫ t

0
a(s)edsds

)
, t ∈ (0, T ]

for any solution z of (9). The T -periodicity requirement for z∗a;d,δ then reads as

e−dT
(
z∗a;d,δ(0+)+

∫ T

0
a(s)edsds

)
+ δ = z∗a;d,δ(0+) (10)

which implies that

z∗a;d,δ(0+) =
e−dT

∫ T
0 a(s)e

dsds+ δ
1− e−dT

. (11)

Consequently, there is a unique T -periodic solution z∗a;d,δ of (9), given by

z∗a;d,δ(t) =
e−d(t−nT )

1− e−dT

(
z∗a;d,δ(0+)+

∫ t−nT

0
a(s)edsds

)
, t ∈ (nT , (n+ 1)T ]. (12)

z∗a;d,δ(0+) being defined by (11). From (11) and (12), it then easily follows that (1) and (2) hold. Let us now prove (3). To this
purpose, let za;d,δ(t) be a solution of (9) with strictly positive initial data. It is seen that Z = za;d,δ − z∗a;d,δ verifies the systemZ

′(t) = −dZ(t), t 6= nT ;
∆Z(t) = 0, t = nT ;
Z(0+) = za;d,δ(0+)− z∗a;d,δ(0+)

and consequently

Z(t) = e−dtZ(0+), for t > 0,

from which one easily obtains that (3) holds. To derive (4), let us define

W = z∗a1;d,δ − z
∗

a2;d,δ.

It is then seen thatW verifies the system
W ′(t) = (a1(t)− a2(t))− dW (t), t 6= nT ;
∆W (t) = 0, t = nT ;

W (0+) =
e−dT

1− e−dT

∫ T

0
(a1(s)− a2(s))edsds

and consequently

W (t) = e−dt
(
W (0+)+

∫ t

0
(a1(s)− a2(s))edsds

)
, for t > 0.
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This implies that

|W (t)| ≤ |W (0+)| + sup
t∈[0,T ]

|a1(t)− a2(t)|

from which (4) easily follows. �

4. Local and global stability results

First of all, it is seen that the long-term survival of the infective pest population and of the immature andmature predator
populations is assured by the pulsed supply of individuals which occurs for t = nT , n ∈ N∗, while the susceptible pest
population may be driven to extinction in certain circumstances, since a pulsed supply of susceptibles is not present. Also,
at least when the susceptible pest population (the only one which is not impulsively controlled) tends to extinction, it
is natural to expect that the solutions of (1) tend to a limiting periodic solution due to the forcing effects of the periodic
impulsive perturbations.
Using Lemma 3.6, we are able to study the existence and stability of the susceptible pest-eradication periodic solution

(0, I∗, P∗J , P
∗

M). To this purpose, it is seen first that when S = 0, the system (1) reduces to

I ′(t) = −dI I(t), t 6= nT ;
P ′J (t) = −(m+ dJ)PJ(t), t 6= nT ;
P ′M(t) = mPJ(t)− dMPM(t), t 6= nT ;
∆I(t) = δI , t = nT ;
∆PJ(t) = δJ , t = nT ;
∆PM(t) = δM , t = nT ,

(13)

which describes the dynamics of the system in the absence of the susceptible pest population. It then easily follows through
the use of Lemma 3.6 for a ≡ 0 and (d, δ) = (dI , δI), (d, δ) = (m+ dJ , δJ) respectively, that there are I∗ and P∗J which verify
the first and the fourth equation of (13) and the second and the fifth equation of (13), respectively, together with the T -
periodicity condition. The existence of P∗M which verifies the third and sixth equation of (13) together with the T -periodicity
condition, follows again from Lemma 3.6, for a = mP∗J and (d, δ) = (dM , δM). That is, with the notations of Lemma 3.6,

I∗ = z∗0;dI ,δI , P∗J = z
∗

0;m+dJ ,δJ , P∗M = z
∗

mP∗J ;dM ,δM
. (14)

Furthermore, we may compute explicitly I∗, P∗J and P
∗

M . It is seen that

I∗(t) =
δI

1− e−dI T
e−dI (t−nT ), t ∈ (nT , (n+ 1)T ];

P∗J (t) =
δJ

1− e−(m+dJ )T
e−(m+dJ )(t−nT ), t ∈ (nT , (n+ 1)T ];

P∗M(t) = e
−dM (t−nT )

(
P∗M(0+)+

mδJ
1− e−(m+dJ )T

A(t − nT )
)
, t ∈ (nT , (n+ 1)T ],

where

A(t) =


t, dM = m+ dJ;
e(dM−(m+dJ ))T − 1
dM − (m+ dJ)

, dM 6= m+ dJ

and

PM(0+) =
1

1− e−dM T

[
e−dM T

mδJ
1− e−(m+dJ )T

A(T )+ δM

]
.

Having proven the existence of the susceptible pest-eradication periodic solution (0, I∗, P∗J , P
∗

M), we are now ready to
study its stability. In what follows, it will be observed that the susceptible pest-eradication periodic solution is locally
asymptotically stable, provided that the reproductive potential of the susceptible pest at small densities is less than a certain
value.

Theorem 4.1. The susceptible pest-eradication periodic solution (0, I∗, P∗J , P
∗

M) is locally asymptotically stable, provided that

rT ≤
∫ T

0
g(I∗(t))dt + h′(0)

∫ T

0
P∗M(t)dt (15)

and unstable, provided that the reverse inequality holds.
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Proof. To study the stability of the susceptible pest-eradication periodic solution (0, I∗, P∗J , P
∗

M), let us denote

S(t) = x(t), I(t) = y(t)+ I∗(t), PJ(t) = z1(t)+ P∗J (t), PM(t) = z2(t)+ P∗M(t), (16)

x, y, z1, z2 being understood as small amplitude perturbations. Substituting (16) into the first four equations of (1), one
obtains

x′(t) = rx(t)
(
1−

x(t)
K

)
− g(y(t)+ I∗(t))x(t)− (z2(t)+ P∗M(t))h(x(t)), t 6= nT ;

y′(t) = g(y(t)+ I∗(t))x(t)− dI(y(t)+ I∗(t)), t 6= nT ;
z ′1(t) = c(z2(t)+ P

∗

M(t))h(x(t))− (m+ dJ)z1(t), t 6= nT ;
z ′2(t) = mz1(t)− dMz2(t), t 6= nT .

(17)

By linearizing (17) around (0, 0, 0, 0), one obtains
x′(t) = rx(t)− g(I∗(t))x(t)− P∗M(t)h

′(0)x(t), t 6= nT ;
y′(t) = g(I∗(t))x(t)− dIy(t), t 6= nT ;
z ′1(t) = cP

∗

M(t)h
′(0)x(t)− (m+ dJ)z1(t), t 6= nT ;

z ′2(t) = mz1(t)− dMz2(t), t 6= nT .

(18)

The corresponding linearization of the jump conditions reads as

∆x(t) = ∆y(t) = ∆z1(t) = ∆z2(t) = 0, t = nT , (19)

and so a fundamental matrixΦL of (18) verifies

dΦL
dt
(t) =

r −
(
g(I∗(t))+ P∗M(t)h

′(0)
)

0 0 0
g(I∗(t)) −dI 0 0
cP∗M(t)h

′(0) 0 −(m+ dJ) 0
0 0 m −dM

ΦL(t). (20)

Consequently, a fundamental matrixΦL of (18) is

ΦL(t) =


ert−

(∫ t
0 g(I

∗(s))ds+h′(0)
∫ t
0 P
∗
M (s)ds

)
0 0 0

p21(t) e−dI t 0 0
p31(t) 0 e−(m+dJ )T 0
p41(t) 0 p43(t) e−dM t

 , (21)

where

p21(t) = e−dI t
∫ t

0
g(I∗(s))edI sers−(

∫ s
0 g(I

∗(τ ))dτ+h′(0)
∫ s
0 P
∗
M (τ )dτ)ds,

p31(t) = e−(m+dJ )t
∫ t

0
cP∗M(t)h

′(0)ers−(
∫ s
0 g(I

∗(τ ))dτ+h′(0)
∫ s
0 P
∗
M (τ )dτ)e(m+dJ )sds,

p41(t) = e−dM t
∫ t

0
medM sp31(s)ds,

p43(t) = e−dM t
∫ t

0
medM se−(m+dJ )sds.

As seen in Lemma 3.5, one may discuss the local stability of the susceptible pest-eradication periodic solution by analyzing
the eigenvalues of the monodromy matrix M = ΦL(T ). Note that, as seen in (19), the impulsive controls do not affect the
linearized system.
Since the eigenvalues ofM are

λ1 = e
rT−

(∫ T
0 g(I

∗(t))dt+h′(0)
∫ T
0 P
∗
M (t)dt

)
, λ2 = e−dI T , λ3 = e−(m+dJ )T ,

λ4 = e−dM T

and 0 < λ2, λ3, λ4 < 1, it follows that the susceptible pest-eradication periodic solution is locally stable provided that (15)
is satisfied, and unstable provided that the reverse inequality holds, which finishes the proof. �

We shall now observe that (15) can actually be rephrased as a balance condition for the susceptible pest class. Namely,
let us suppose that S approaches 0, and consequently that I approaches I∗, PJ approaches P∗J and PM approaches P

∗

M . Then rT

approximates the normalized (per-susceptible) number of newborn susceptible pests in a period T , while
∫ T
0 g(I

∗(t))dt



P. Georgescu, H. Zhang / Nonlinear Analysis: Real World Applications 11 (2010) 270–287 279

approximates the normalized loss of susceptible pests in a period due to their movement to the infective class and
h′(0)

∫ T
0 P
∗

M(t)dt approximates the normalized loss of susceptible pests in a period due to predation. If (15) is satisfied,
then if the susceptible population becomes scarce, the total loss of susceptible pests in a period due to new infections and
to predation is larger than the number of newborn susceptible pests in the same amount of time, so the susceptible pests
cannot escape extinction. Note that, although at first (15) does not appear to display a formal dependence of the size of the
juvenile pest population P∗J , which neither generates new infections nor predates on susceptible pests, phenomena which
are reflected in (15), it is easy to see from (13) that P∗M actually does depend upon P

∗

J . Also, it is seen that (15) does not display
any sort of dependence upon c , which does not appear in the reduced system (13). This is not unexpected, as the local stability
of the susceptible pest-eradication periodic solution relates only to the speed at which susceptible pests are removed from
the environment (to prey consumption, that is) and does not relate to the rate at which immature predators are born as a
result. It will be observed that a condition similar to (15), but describing the reproductive potential of the susceptible pest
population at larger population densities as well, will assure the global stability of the susceptible pest-eradication periodic
solution.

Theorem 4.2. The susceptible pest-eradication periodic solution (0, I∗, P∗J , P
∗

M) is globally asymptotically stable provided that

rT <
∫ T

0
g(I∗(t))dt + ch

∫ T

0
P∗M(t)dt, (22)

where

ch = min
0≤u≤MS

h′(u),

MS being an ultimate boundedness constant for S.

Proof. First, let us recall that

I∗ = z∗0;dI ,δI , P∗J = z
∗

0;m+dJ ,δJ , P∗M = z
∗

mP∗J ;dM ,δM
.

Let ε1 > 0 be small enough, so that

z∗0;dI ,δI (t) ≥ ε1, z∗0;m+dJ ,δJ (t) ≥ ε1, z∗m(z∗0;m+dJ ,δJ−ε1);dM ,δM
(t) ≥ ε1 for all t > 0

and

η = rT −
(∫ T

0
g(z∗0;dI ,δI (t)− ε1)+ ch

∫ T

0

(
z∗m(z∗0;m+dJ ,δJ−ε1);dM ,δM

(t)− ε1

)
dt
)
< 0.

It is seen that I ′(t) ≥ −dI t , and so by Lemma 3.1, I(t) ≥ z̃0;dI ,δI (t), where z̃0;dI ,δI is the solution of (9) with the same initial
data at 0+ as I(0+). As any such solution becomes close to I∗ = z∗0;dI ,δI , there is n1 ∈ N such that I(t) ≥ z∗0;dI ,δI (t)− ε1 for
t ≥ n1T . Similarly, there is n2 ≥ n1 ∈ N such that PJ(t) ≥ z∗0;m+dJ ,δJ (t)− ε1 for t ≥ n2T . One then obtains that

P ′M(t) = mPJ(t)− dMPM(t)
≥ m(z∗0;m+dJ ,δJ (t)− ε1)− dMPM(t),

so there is n3 ≥ n2 ∈ N such that

P∗M(t) ≥ z
∗

m(z∗0;m+dJ ,δJ
−ε1);dM ,δM

(t)− ε1 for t ≥ n3T .

It follows that

S ′(t) ≤ rS(t)− g(z∗0;dI ,δI (t)− ε1)S(t)− S(t)ch

[
z∗m(z∗0;m+dJ ,δJ−ε1);dM ,δM

(t)− ε1

]
for t ≥ n4T , n4 ≥ n3.

By integrating the above inequality on (n4 + (l− 1)T , n4 + lT ], l ∈ N∗, it follows that

ln(S((n4 + l)T ))− ln(S((n4 + (l− 1))T )) ≤ rT − ch

∫ T

0

[
z∗m(z∗0;m+dJ ,δJ−ε1);dM ,δM

(t)− ε1

]
dt

and consequently

S((n4 + l)T ) ≤ S(n4T )elη → 0 as l→∞. (23)

Also,

S ′(t)
S(t)
= r

(
1−

S(t)
K

)
− g(I(t))− PM(t)

h(S(t))
S(t)

≤ r
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so

S(t) ≤ S((n+ l− 1)T+)er(t−(n+l−1)T ), t ∈ ((n+ l− 1)T , (n+ l)T ],

which implies that

S(t) ≤ S((n+ l− 1)T )erT , t ∈ ((n+ l− 1)T , (n+ l)T ]. (24)

Consequently, it follows from (23) and (24) that S(t)→ 0 as t →∞.
We now need prove that I(t) − I∗(t) → 0, PJ(t) − P∗J (t) → 0, PM(t) − P∗M(t) → 0 as t → ∞. To this purpose, let

0 < ε2 <
dI
g ′(0) . Then there is n5 ≥ n4 ∈ N so that 0 < S(t) < ε2 for t ≥ n5T . One obtains that

I ′(t) = g(I(t))S(t)− dI I(t)
≤ −(dI − ε2g ′(0))I(t) for t ≥ n5T , t 6= nT .

Consequently, there is n6 ≥ n5 ∈ N so that

z∗0;dI ,δI (t)− ε1 ≤ I(t) ≤ z
∗

0,dI−ε2g ′(0),δI
(t)+ ε1 for t ≥ n6T . (25)

It then follows that

P ′J (t) = cPM(t)h(S(t))− (m+ dJ)PJ(t)
≤ ch(ε2)M − (m+ dJ)PJ for t ≥ n6T , t 6= nT ,

so there is n7 ≥ n6 ∈ N so that

z∗0;m+dJ ,δJ (t)− ε1 ≤ PJ(t) ≤ z
∗

ch(ε2)M;m+dJ ,δJ (t)+ ε1 for t ≥ n7T . (26)

One then has

P ′M(t) = mPJ(t)− dMPM(t)

≤ m
(
z∗ch(ε2)M;m+dJ ,δJ (t)+ ε1

)
− dMPM(t)

so there is n8 ≥ n7 ∈ N such that

z∗m(z∗0;m+dJ ,δJ−ε1);dM ,δM
(t)− ε1 ≤ PM(t) ≤ z∗m(z∗ch(ε2)M;m+dJ ,δJ+ε1);dM ,δM

+ ε1, for t ≥ n8T . (27)

Using (25)–(27) and noting that

I∗ = z∗0;dI ,δI , P∗J = z
∗

0;m+dJ ,δJ , P∗M = z
∗

mP∗J ;dM ,δM
,

the conclusion follows. �

First, let us note that a good candidate for an ultimate boundedness constant MS is K + ε, ε being an arbitrary positive
value. Also, although (22) has a somewhat theoretical value, its interpretation is also transparent. While (15) stresses the
fact that the susceptible pests cannot reproduce fast enough when they are scarce, (22) embeds the fact that the susceptible
pests are depleted faster than they are born for larger population sizes as well. Moreover, if δI = δm = 0, it follows that
P∗J = z

∗

0;m+dJ ,0
≡ 0, P∗M = z

∗

0;dM ,0
≡ 0. Consequently, it follows that (0, I∗, 0, 0) is globally asymptotically stable provided

that

rT <
∫ T

0
g(I∗(s))ds, (28)

which is in line with the results obtained in Georgescu and Moroşanu [19], where impulsive perturbations of a SI model
are studied (no predation, that is). A similar validation of our results against the results obtained in [19] can be performed
supposing that h ≡ 0, the case in which the equations for the pest and predator populations decouple, the reduced system
which describes the dynamics of the pest population then being a particularization of the model studied in [19]. In this
situation, the stability condition (22) also reduces to (28).
It is also to be noted that, while the local stability condition (15) does not depend upon c , the global stability condition

(22) does, since ch does depend upon the boundedness constant for S, which in turn depends upon PM (and consequently
upon PJ and c). This means that while a predator with a low c may stabilize (1) locally, it does not necessarily stabilize it
globally.
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5. The permanence of the system

In this section, we shall study the permanence of (1). For this purpose, we introduce the following definition.

Definition 5.1. The system (1) is said to be permanent (uniformly persistent) if there are m, M > 0 such that for each
solution of (1) with strictly positive initial data S(0), I(0), PJ(0), PM(0), it follows that there is T0 > 0 such that m ≤
S(t), I(t), PJ(t), PM(t) ≤ M for all t ≥ T0. Here, T0 may depend upon the initial data, butm andM do not.

In biological terms, if (1) is permanent, then pests (both susceptible and infective) and predators (both immature and
mature) will coexist, none of them facing extinction or growing indefinitely.

Theorem 5.1. The system (1) is permanent, provided that

rT >
∫ T

0
g(I∗(t))dt + h′(0)

∫ T

0
P∗M(t)dt. (29)

Proof. It has already been observed that, given ε1 > 0 small enough, one may find nε1 ∈ N such that

I(t) ≥ z∗0;dI ,δI (t)− ε1 > 0

PJ(t) ≥ z∗0;m+dJ ,δJ (t)− ε1 > 0

PM(t) ≥ z∗m(z∗0;m+dJ ,δJ−ε1);dM ,δM
− ε1 > 0

for t large enough, so I(t), PJ(t), PM(t) ≥
ε1
2 for t large enough. Also, we know that S, I , PJ , PM are bounded, by Lemma 3.4.

It now remains to prove that S(t) ≥ m̃ for some m̃ > 0 and t large enough.
Letm1 > 0 and ε3 > 0 small enough, so thatm1 <

dI
g ′(0) and

0 < ξ = rT −
(∫ T

0
g(z∗0;dI−g ′(0)m1,δI (t)+ ε3)dt + h

′(0)
∫ T

0

[
z∗m(zcMh(m1);m+dJ ,δJ+ε3);dM ,δM

(t)+ ε3
]
dt
)
.

We shall prove that one cannot have S(t) ≤ m1 for all t > 0. For this purpose, we give a contrasting argument. Suppose that
S(t) ≤ m1 for all t > 0. One then has

I ′(t) = g(I(t))S(t)− dI I(t) ≤ −(dI − g ′(0)m1)I(t) for t 6= nT .

Consequently, there is n9 ∈ N such that

I(t) ≤ z∗0;dI−g ′(0)m1,δI + ε3 for t ≥ n9T .

Also,

P ′J (t) = cPM(t)h(S(t))− (m+ dJ)PJ(t)
≤ cMh(m1)− (m+ dJ)PJ(t) for t 6= nT .

This yields that there is n10 ∈ N such that

PJ(t) ≤ z∗cMh(m1);m+dJ ,δJ (t)+ ε3 for t ≥ n10T .

One then has

P ′M(t) = mPJ(t)− dMPM(t)

≤ m
(
z∗cMh(m1);m+dJ ,δJ (t)+ ε3

)
− dMPM(t), for t ≥ n10T , t 6= nT ,

so there is n11 ≥ n10 ∈ N such that

PM(t) ≤ z∗m(z∗cMh(m1);m+dJ ,δJ+ε3);dM ,δM
(t)+ ε3 for t ≥ n11T .

It then follows that

S ′(t) = rS(t)
(
1−

S(t)
K

)
− g(I(t))S(t)− PM(t)h(S(t))

≥ S(t)
[
r − g(z∗0;dI−g ′(0)m1,δI + ε3)+

(
z∗m(z∗cMh(m1);m+dJ ,δJ+ε3);dM ,δM

(t)+ ε3

)
h′(0)

]
for t ≥ n11T .
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Integrating the above inequality on ((n11 + l− 1)T , (n11 + l)T ], l ∈ N∗, one obtains that

ln(S((n11 + l− 1)T ))− ln(S((n11 + l)T )) ≥ rT −
(∫ T

0

(
g(z∗0;dI−g ′(0)m1,δI )(t)+ ε3

)
dt

+ h′(0)
∫ T

0

(
z∗m(z∗cMh(m1);m+dJ ,δJ+ε3);dM ,δM

(t)+ ε3

)
dt
)

and consequently

S((n11 + l)T ) ≥ S(n11T )elξ →∞ as l→∞, (30)

which contradicts the boundedness of S. It then follows that there is t1 > 0 such that S(t1) > m1.
If S(t) ≥ m1 for all t ≥ t1, then (1) is persistent and there is nothing left to prove. Otherwise, S(t) < m1 for some t ≥ t1,

and let us denote t2 = inf {t > t1, S(t) < m1}. Then S(t) > m1 for t ∈ (t1, t2) and S(t2) = m1. By a similar argument, one
may construct (tn)n≥2 with the following properties

(1) S(tn) = m1 for all n ≥ 2;
(2) S(t) < m1 for t ∈ (t2n, t2n+1), n ≥ 1;
(3) S(t) > m1 for t ∈ (t2n−1, t2n), n ≥ 1,

describing the fact that S oscillates aboutm1.
We now show that T = sup {t2k+1 − t2k, k ∈ N∗} <∞. Otherwise, there is (kj)j≥1 such that t2kj+1− t2kj > j; t2kj ≥ n11T .

Consequently, in a way similar to the derivation of (30), one may deduce that

S(t2k+1) ≥ S(t2kj)e
jξ−2rT ,

which is a contradiction, as ejξ →∞ for j→∞ and S(t2kj+1) = S(t2kj) = m1. It then follows that

S ′(t) = rS(t)
(
1−

S(t)
K

)
− g(I(t))S(t)− PM(t)h(S(t))

≥ S(t)
[
−r
M
K
− g(M)−Mh′(0)

]
. (31)

Let us denote

m2 = e
−

[
r 2MK +g(M)+Mh

′(0)
]
Tm1 for t ∈ (t2n, t2n+1).

It then follows from (31) that S(t) ≥ m2 for t ∈ (t2n, t2n+1), which implies that S(t) ≥ m2 for all t ≥ t1. �

This time, the meaning of (29) (which is the reverse of (15)) is that when the susceptible pests are scarce, the normalized
number of newborn susceptible pests exceeds the total normalized loss of susceptible pests due to new infections and due
to predation. Consequently, susceptible pests are able to escape extinction.
For 2-dimensional impulsively perturbed systems such as those studied in Georgescu, Zhang and Chen [56] or Georgescu

and Zhang [57], it has been observed that the stability of the susceptible pest-eradication periodic solution, which was
lost when (15) has been substituted with its reverse inequality, the permanence condition (29), is actually transferred to
a newly emerging nontrivial periodic solution which emerges via a supercritical bifurcation. It is expected that the same
phenomenon holds for a larger class of impulsively perturbedmodels currently in use, including certain higher-dimensional
models.

6. Biological interpretations of the stability results and concluding remarks

Comparing (22) and (15), one notes that a predatorwhich is voracious enough at small prey densities (h′(0) large enough)
can always stabilize the susceptible pest-eradication periodic solution locally, but in order to be able to stabilize it globally,
the predator should be voracious at large prey densities as well, when saturation occurs.
Also, from Lemma 3.6 it is seen that∫ T

0
P∗M(t)dt =

1
dM
(
1− e−dM T

) (δM + ∫ T

0
mP∗J (t)dt

)

=
1

dM
(
1− e−dM T

) (δM + m(
m+ dJ

) (
1− e−(m+dJ )T

)δJ) , (32)
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so (22) can be rephrased as

rT <
∫ T

0
g(I∗(t))dt + ch

1
dM
(
1− e−dM T

) (δM + m(
m+ dJ

) (
1− e−(m+dJ )T

)δJ) , (33)

where ch can be taken, for instance, as

ch = min
0≤u≤K

h′(u).

From (33), it can be seen that, by releasing enough juvenile or mature predators each time (δJ or δM large enough) one may
always stabilize (1) irrespective of the nonlinear force of infection g or of the functional response of the predator h. However,
the use of thismeasure alonemay be regarded as a ‘‘brute force’’ approach andmay not necessary be cost-effective. Also, (33)
implies that if the release periodicity T is small enough, the susceptible pest-eradication periodic solution again becomes
globally asymptotically stable.
From Lemma 3.6, it is seen that∫ T

0
g(I∗(t))dt ≥ c̃g

∫ T

0
I∗(t)dt = c̃g

δI

dI
(
1− e−dI T

) ,
where

c̃g = min
0≤u≤M

g ′(u),

so (1) can also be stabilized by releasing enough infective pest individuals as well, or by releasing pest individuals which
are infected with a disease which spreads quickly (with large c̃g ). Further, it can be observed that (15) and (22) feature a
continuous dependence upon δI , δJ and δM , establishing the fact that small perturbations or irregularities in the application
of controls will not impair the validity of the IPM strategy.
As an example to illustrate the utility of our results, it is easy to see that a system which fits into our framework is

S ′(t) = rS(t)
(
1−

S(t)
K

)
− βI(t)S(t)− PM(t)

aS(t)
1+ bS(t)

, t 6= nT ;

I ′(t) = βI(t)S(t)− dI I(t), t 6= nT ;

P ′J (t) = cPM(t)
aS(t)

1+ bS(t)
− (m+ dJ)PJ(t), t 6= nT ;

P ′M(t) = mPJ(t)− dMPM(t), t 6= nT ;
∆S(t) = 0, t = nT ;
∆I(t) = δI , t = nT ;
∆PJ(t) = δJ , t = nT ;
∆PM(t) = δM , t = nT ,

(34)

forwhich g(I) = βI ,β > 0, leading to the standard incidence rate g(I)S = βIS and h(S) = aS
1+bS , a, b > 0, that is, h describes

a Holling type II functional response of the mature predator PM . Since

I∗ = z∗0;dI ,δI , P∗J = z
∗

0;m+dJ ,δJ , P∗M = z
∗

mP∗J ;dM ,δM
,

it follows that∫ T

0
g(I∗(t))dt = β

δI

dI
(
1− e−dI T

) .
Also, it has already been observed that∫ T

0
P∗M(t)dt =

1
dM
(
1− e−dM T

) (δM + m(
m+ dJ

) (
1− e−(m+dJ )T

)δJ) .
We note that h′(x) = a

(1+bx)2
, h′′(x) = − 2ab

(1+bx)3
< 0 for x > 0 and, as previously mentioned, a candidate for an ultimate

boundedness constant MS is K + ε, ε being an arbitrary positive value. It is then seen from Theorems 4.1, 4.2 and 5.1 that
the following result holds

Theorem 6.1. The following statements hold.
(1) If

rT ≤ β
δI

dI
(
1− e−dI T

) + a 1
dM
(
1− e−dM T

) (δM + m(
m+ dJ

) (
1− e−(m+dJ )T

)δJ) , (35)

then the susceptible pest-eradication periodic solution (0, I∗, P∗J , P
∗

M) is locally asymptotically stable.
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Fig. 1. g(I) = βI and h(S) = aS
1+bS . For r = 5, dI = 0.5, dJ = 0.4, dM = 0.3, m = 2, c = 1, T = 4, δI = 0.3, δJ = 0.2, δM = 0.5, K = 10, a = 2, b = 3,

β = 0.5, the susceptible pest-eradication periodic solution is unstable and (1) is persistent, with a smaller persistency constant.

(2) If

rT > β
δI

dI
(
1− e−dI T

) + a 1
dM
(
1− e−dM T

) (δM + m(
m+ dJ

) (
1− e−(m+dJ )T

)δJ) , (36)

then the susceptible pest-eradication periodic solution (0, I∗, P∗J , P
∗

M) is unstable and (1) is permanent.
(3) If

rT < β
δI

dI
(
1− e−dI T

) + a
(1+ bK)2

1
dM
(
1− e−dM T

) (δM + m(
m+ dJ

) (
1− e−(m+dJ )T

)δJ) , (37)

then the susceptible pest-eradication periodic solution (0, I∗, P∗J , P
∗

M) is globally asymptotically stable.

To illustrate our mathematical findings and facilitate their interpretation, we proceed to investigate further by using
numerical simulations. For this purpose, we again particularize g(I) = βI and h(S) = aS

1+bS . For r = 5, dI = 0.5, dJ = 0.4,
dM = 0.3, m = 2, c = 1, T = 4, δI = 0.3, δJ = 0.2, δM = 0.5, K = 10, a = 2, b = 3, β = 0.5, it is seen that (36) holds and
it consequently follows from Theorem 6.1 that the susceptible pest-eradication periodic solution (0, I∗, P∗J , P

∗

M) is unstable.
The behavior of the trajectory starting with S(0) = 6, I(0) = 2, PJ(0) = 1, PM(0) = 1 is depicted in Fig. 1, where the time
series for S, I , PJ , PM are provided, together with three dimensional representations t vs S vs I and t vs PJ vs PM , respectively;
the value of the persistency constant appears to be small. If the value of a is changed to 1 and the other parameters are kept
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Fig. 2. g(I) = βI and h(S) = aS
1+bS . For r = 5, dI = 0.5, dJ = 0.4, dM = 0.3, m = 2, c = 1, T = 4, δI = 0.3, δJ = 0.2, δM = 0.5, K = 10, a = 1, b = 3,

β = 0.5, the susceptible pest-eradication periodic solution is unstable and (1) is persistent, with a larger persistency constant.

constant (i.e. the predator is assumed to be less voracious), then (36) holds again, and consequently (1) is persistent, with a
larger persistency constant. Also, the trajectory seems to tend to a nontrivial periodic solution. See Fig. 2 for details.
If the value of r is changed to 1 this time, and the other parameters are kept constant (i.e. the intrinsic growth rate

of the susceptible pest population is smaller), then (35) is satisfied and the susceptible pest-eradication periodic solution
(0, I∗, P∗J , P

∗

M) becomes locally asymptotically stable. The behavior of the trajectory starting with S(0) = 6, I(0) = 2,
PJ(0) = 1, PM(0) = 1 for the new value of r is depicted in Fig. 3.
In this paper, an impulsively perturbed differentialmodel describing an integrated pestmanagement strategy is proposed

and analyzed. To limit the growth of the pest population, natural predators are released in an impulsive and periodic fashion,
in a constant amount each time. The life cycle of the predators is assumed to consist of two stages, immature and mature,
only themature predators being able to hunt for prey and reproduce. The functional response of themature predator is given
in an abstract, unspecified form, its reproductive rate being assumed to be proportional to the amount of prey consumed.
Also, infective pests are released simultaneously with the predators, with the purpose of spreading disease in the pest

population, on the grounds that infective pests have a drastically lower damaging potential. A nonlinear incidence rate is
used to describe disease transmission, while it is assumed that the disease does not spread to predators. It is found that the
IPM strategy can always succeed, provided that enough resources are allotted (the amount of infective prey δI and of the
immature and mature predators δJ and δM released each time are large), the controls are used often enough (T is small),
the predators are voracious enough (the derivative of h is large) or the disease spreads quickly (the derivative of g is large).
Any of these requirements alone assures the success of the IPM strategy, even though a combination of them is usually
required in concrete situations. If the susceptibles can reproduce fast enough when they are scarce, it is shown that all pest
and predator populations persist in the long term, with population sizes stabilizing above a strictly positive value.



286 P. Georgescu, H. Zhang / Nonlinear Analysis: Real World Applications 11 (2010) 270–287

Fig. 3. g(I) = βI and h(S) = aS
1+bS . For r = 5, dI = 0.5, dJ = 0.4, dM = 0.3, m = 2, c = 1, T = 4, δI = 0.3, δJ = 0.2, δM = 0.5, K = 10, a = 2, b = 3,

β = 0.5, the susceptible pest-eradication periodic solution is stable.

Finally, several directions for further study include investigating whether or not a nontrivial periodic solution emerges
when the following threshold equality holds

rT =
∫ T

0
g(I∗(t))dt + h′(0)

∫ T

0
P∗M(t)dt, (38)

as it is the case for several related 2-dimensional models, and investigating controllability results for models with more
infectious stages.
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