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Abstract In order to study malaria transmission, we first propose a 6-dimensional de-
terministic ODE model which keeps track of both host (human) and vector
(mosquito) populations and uses standard incidence terms to model the trans-
mission of the disease. First, the stability of the equilibria is characterized in
terms of an explicitly determined basic reproduction number, obtained via the
next generation method. Then, to examine the effects of a randomly fluctuat-
ing environment, we introduce multiple perturbations of white noise type and
discuss the asymptotic behavior of the solutions of the corresponding stochastic
model around the steady states of the initial deterministic model.
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1. INTRODUCTION

Malaria is a disease caused by parasites of the genus Plasmodium, which
spread to humans through the bites of infected female Anopheles mosquitoes,
the vector of this disease. Although there are over 100 species of this genus,
only four of them (P. falciparum, P. malariae, P. ovale and P. vivax) are
known to infect humans.

The symptoms of malaria usually appear in 10-15 days after the infected
mosquito bite. The most severe form of this disease is caused by P. falciparum,
found worldwide in tropical and subtropical areas. Its symptoms, which are
initially mild and may include fever, headaches and muscular weakness can
worsen to severe blood loss, acute renal failure, generalized convulsions and
circulatory collapse, ending in coma and death. It is of paramount importance
that this form of malaria be treated within 24 h from the onset of clinical
symptoms.
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The other forms of malaria, although potentially causing significant health
damage, are not normally life-threatening. However, both P. vivax and P.
ovale have dormant stages in the human liver as parts of their life cycles,
which makes them difficult to eradicate. Relapses caused by these parasites
can occur months after exposure. P. vivax, found mostly in Asia and Latin
America, is probably the most prevalent human malaria parasite [1]. Latent
blood infections with P. malariae, found worldwide, can persist for a longer
timespan, often measured in years, but are very rarely lethal.

Although this disease is nowadays preventable and curable, its burden is
tremendous. In 2017, there were approximately 219 million cases of malaria
worldwide (down from an estimated total of 239 million in 2010), resulting in
approximately 435,000 deaths, most of those occurring on the African conti-
nent [2]. In the United States, about 1,700 new cases of malaria are diagnosed
each year, the vast majority being travelers and immigrants returning from
countries in sub-Saharan Africa and South Asia, where this disease is endemic.

As far as China is concerned, the endemicity of malaria is caused primarily
by P. falciparium and P. vivax, the main areas of endemicity being the jungles
and mountainous areas of Central and South China. Although the burden of
this disease is much lighter than in Africa, the incidence of malaria being
reduced to less than 6 cases per one million residents in 2010 due to intensive
eradication measures taken by the Chinese government [3], an increase in the
number of cases of imported malaria due to the growth of the Chinese overseas
travel has been reported [4].

In 2000, Ngwa and Shu [5] formulated and analyzed a deterministic ODE
model for endemic malaria involving human and mosquito populations of vari-
able sizes, sufficient conditions for the existence of the endemic and disease-
free equilibria, expressed in terms of the basic reproduction number, being
derived. Further, numerical simulations suggested that the endemic equilib-
rium is unique and globally stable whenever it exists. Also, a framework for
studying control strategies for malaria control has been proposed on the basis
of the above-mentioned analysis.

In 2006, Chitnis et al. [6] introduced an ODE model for the spread of malaria
in human and mosquito populations. In the absence of disease-induced death,
they proved that a supercritical (forward) bifurcation occurs at R0 = 1. How-
ever, it was observed from numerical simulations that for large values of the
disease-induced death rate, a subcritical (backward) bifurcation may occur at
R0 = 1 instead. Okosun et al. [7] proposed a deterministic model for the trans-
mission of malaria which employs a mass action incidence term. It has been
determined that a subcritical (backward) bifurcation may occur at R0 = 1,
necessary conditions for the optimal control of the disease being also deter-
mined. Further, the impact of a combined vaccination and treatment strategy
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on the the transmission of disease has been investigated from a numerical
viewpoint.

To account for the influence of randomly fluctuating environments, Liu
et al. [14] proposed and investigated from a stability viewpoint a two-group
stochastic SEIRmodel with infinite delays which also involves random changes
described by Brownian motions, related approaches being developed by Chang
et al. [12] and Liu et al. [13]. Also, Zhou et al. [15] et al. discussed the global
stability of a stochastic SIRS model with general nonlinear incidence rate by
means of constructing suitable Lyapunov functionals.

In this paper, we formulate a deterministic model of malaria transmission
which accounts for human and mosquito populations of variable sizes. The
model consists of a 6-dimensional system of nonlinear ODEs which keeps track
of 4 compartments for humans (leading to a SEIRS submodel) and of 2
compartments for mosquitoes (leading to a SI submodel), these submodels
being coupled via disease transmission terms involving the so-called standard
incidence rate. Our model is inspired by those considered in Ngwa and Shu [5],
Ngwa [8], Oduro et al. [9], Okosun et al. [10] and Rafikov [11]. The perturbing
influence of the environment is then accounted for by considering multiple
stochastic perturbations of white noise type and discussing the asymptotic
behavior of the solutions of the stochastic system.

This remaining part of this paper is organized as follows. In Section 2, we
introduce a deterministic model for the transmission of malaria. In Section
3, we propose the corresponding stochastic model and discuss the asymptotic
behavior of its solutions around the equilibria of the deterministic system.
Finally, in Section 4 we illustrate our theoretical results via numerical simula-
tions and give several concluding remarks.

2. A DETERMINISTIC MODEL

To introduce our model, the total host (human) population, denoted by Nh,
is divided into the following subpopulations:

Sh individuals who are susceptible to infection with malaria,

Eh individuals exposed to the malaria parasite who are not yet infective,

Ih individuals with malaria symptoms,

Rh recovered individuals.

The total vector (mosquito) population, denoted by Nv, is also divided into
the following subpopulations:

Sv susceptible mosquitoes;

Iv infective mosquitoes.
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Table 1 Parameters of the malaria model

Parameter Description

µh Natural death rate of humans

µv Natural death rate of mosquitoes

Λh Human birth rate

Λv Mosquito birth rate

ε Mosquito biting rate

φ Contact rate between mosquitoes and humans

β Probability of humans getting infected

λ Probability of mosquitoes getting infected

α1 Humans progression rate from exposed to infected

τ Proportion of effectively treated individuals

ψ Disease induced death reate

κ Relapse rate

b Spontaneous recovery rate

In view of the above compartment splitting, we can now state our deterministic
malaria model as seen below:



dSh
dt

= Λh − µhSh + κRh −
βεφIvSh
Nh

,

dEh
dt

=
βεφIvSh
Nh

− µhEh − α1Eh,

dIh
dt

= α1Eh − (ψ + µh)Ih − bIh,

dRh
dt

= bIh − µhRh − κRh,

dSv
dt

= Λv − µvSv −
λεφIhSv
Nh

,

dIv
dt

=
λεφIhSv
Nh

− µvIv,

(1)
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the biological significance of each parameter being given in Table 1. By a
straightforward argument, one can obtain the feasible set for (1) as seen below.

Theorem 2.1. The positively invariant set of model (1) is given by

D =

{
(Sh, Eh, Ih, Rh, Sv, Iv) ∈ R6

+|Nh ≤
Γh
µh
, Nv ≤

Γv
µv

}
.

By employing the next generation method exposed in [18] with the notations
therein, the basic reproduction number (reproduction ratio) R0 is given by

R0 = ρ(FV −1)

Here, ρ(A) denotes the spectral radius of a matrix A,

F =

 0 0 βεφ
0 0 0

0 λεφΛvµh
Λhµv

0


and

V =

 µh + α1 0 0
−α1 ψ + µh + b 0

0 0 µv

 .

As a result, the basic reproduction number R0 can be expressed in the form

R0 =
√
R0h ·R0v,

where

R0h = βεφα1µh
Λh(µh+α1)(ψ+µh+b) is the number of humans infected by a single

mosquito during its infectious period (the reproduction number of the
mosquito to human transmission);

R0v = λεφΛv
µ2
v

is number of mosquitoes infected by a single human during

the duration of his/her infectious period (the reproduction number of
the human to mosquito transmission),

both subreproduction numbers being computed assuming that all humans and
mosquitoes are susceptible. It can then be seen that the model has a disease-
free equilibrium regardless of the value of R0 and an endemic equilibrium if
and only if R0 > 1, whose stability can be determined via the results of [18].

Theorem 2.2. The disease-free equilibrium E0 = (S0
h, 0, 0, 0, S

0
v , 0) is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

Theorem 2.3. The unique endemic equilibrium E∗ = (S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
v , I
∗
v )

is locally asymptotically stable if R0 > 1.
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3. A STOCHASTIC MODEL

Since unforeseen environmental disturbances which have the potential to
perturb the steady states of the system may occur, it is meaningful to include
the effects of uncertainty into our deterministic model. We thereby consider
the following stochastic model

dSh =

(
Λh − µhSh + κRh −

βεφIvSh
Nh

)
dt+ σ1ShdB1(t),

dEh =

(
βεφIvSh
Nh

− µhEh − α1Eh

)
dt+ σ2EhdB2(t),

dIh = (α1Eh − (ψ + µh)Ih − bIh)dt+ σ3IhdB3(t),

dRh = (bIh − µhRh − κRh)dt+ σ4RhdB4(t),

dSv =

(
Λv − µvSv −

λεφIhSv
Nh

)
dt+ σ5SvdB5(t),

dIv =

(
λεφIhSv
Nh

− µvIv
)
dt+ σ6IvdB6(t),

(2)

where Bi(t)(i = 1, . . . , 6) are mutually independent standard Brownian mo-
tions defined over a complete probability space (Ω,F, P ) with a filtration
{Ft≥0} satisfying the usual conditions (i.e., it is right continuous and {F0}
contains all P -null sets). Here, σi(i = 1, . . . , 6) denote the intensities of the
perturbations.

Definition 3.1. Consider the n−dimensional stochastic differential equation

du(t) = A(t, u)dt+ B(t, u)dW (t) for t ≥ t0. (3)

Let V (t, u) ∈ C1,2 be a nonnegative continuously differentiable function, once
with respect to t and twice with respect to u. Then the differential operator L
applied to the function V (t, u) corresponding to the stochastic differential equa-
tions (3) with drift and diffusion coefficients A(t, u) and B(t, u), respectively,
is given by

LV (t, u) =
∂V (t, u)

∂t
+AT

∂V (t, u)

∂u
+

1

2
trace

[
BT ∂

2V (t, u)

∂2u
B

]
.

3.1. EXISTENCE OF THE GLOBAL AND
POSITIVE SOLUTION

Denote
R6

+ = {(x1, · · · , x6)|xi > 0, i = 1, 2, · · · , 6}.
First, we are concerned with the well-posedness of (2) in a biological sense,
which amounts to preservation of positivity and exclusion of blow-up.
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Theorem 3.1. For any given initial data in R6
+, the model (2) has a unique

global solution that will also remain in R6
+ with probability 1.

Proof One easily sees that the model (2) has a unique solution on [0, τ e),
where τ e is the explosion time. To show that this unique solution is global,
we only need to prove that τ e = ∞ a.s.. In fact, choose ε0 > 0 small enough
such that the components of the initial data Sh(0), Eh(0), Ih(0), Rh(0), Sv(0)
and Iv(0) all belong to (ε0,

1
ε0
, ). For each 0 < ε ≤ ε0, we define the stopping

time by

τ ε = inf {t ∈ [0, τ e) : min{Sh, Eh, Ih, Rh, Sv, Iv} < ε0 or

max{Sh, Eh, Ih, Rh, Sv, Iv} >
1

ε0

}
.

Since τ ε ≤ τ e a.s. and τ ε increases as ε → 0, it suffices to show that τ0 =
limε→∞ τ ε = +∞ a.s., which implies that τ e = +∞ a.s.

Suppose that this is not the case. Then there is a pair of constants T > 0
and δ ∈ (0, 1) such that P (τ0 ≤ T ) > δ. As a result, there is a pair of positive
constants ε1 ≤ ε0 and ρ such that P (τ ε ≤ T ) ≥ δ and P (Nh(t) ≥ ρ) = 1 for
all t ∈ [0, τ ε) and any positive ε ≤ ε1.

We define a function V : R6
+ → R+ as follows

V (Sh, Eh, Ih, Rh, Sv, Iv) = (Sh + 1− lnSh) + (Eh + 1− lnEh)

+ (Ih + 1− ln Ih) + (Rh + 1− lnRh)

+ (Sv + 1− lnSv) + (Iv + 1− ln Iv),

(4)

In what follows, we shall denote, whenever necessary,

V (Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Iv(t))
.
= V (t).

Also, for a, b ∈ R, we shall denote max(a, b) by a ∨ b and min(a, b) by a ∧ b.
Applying Itô lemma, we see that

dV = LV dt+ (1− 1

Sh
)σ1ShdB1(t) + (1− 1

Eh
)σ2EhdB2(t)

+ (1− 1

Ih
)σ3IhdB3(t) + (1− 1

Rh
)σ4RhdB4(t) + (1− 1

Sv
)σ5SvdB5(t)

+ (1− 1

Iv
)σ6IvdB6(t),
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where

LV =(1− 1

Sh
)

[
Λh − µhSh + κRh −

βεφIv
Nh

Sh

]
+ (1− 1

Eh
)

[
βεφIv
Nh

Sh − µhEh − α1Eh

]
+ (1− 1

Ih
) [α1Eh − (ψ + µh)Ih − bIh] + (1− 1

Rh
) [bIh − µhRh − κRh]

+ (1− 1

Sv
)

[
Λv − µvSv −

λεφIh
Nh

Sv

]
+ (1− 1

Iv
)

[
λεφIh
Nh

Sv − µvIv
]

+
1

2
σ2

1 +
1

2
σ2

2 +
1

2
σ2

3 +
1

2
σ2

4 +
1

2
σ2

5 +
1

2
σ2

6

≤(Λh + Λv + 4µh + α1 + κ+ ψ + b+ 2µv

+
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5 + σ2
6)) + 2(λεφ+

βεφ

ρ
+ 1)V

.
=k1 + k2V,

in which

k1 = Λh + Λv + 4µh + α1 + κ+ ψ + b+ 2µv +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5 + σ2
6)

and

k2 = 2(λεφ+
βεφ

ρ
+ 1).

Thus

dV ≤(k1 + k2V ) + σ1(Sh − 1)dB1(t) + σ2(Eh − 1)dB2(t)

+ σ3(Ih − 1)dB3(t) + σ4(Rh − 1)dB4(t) + σ5(Sv − 1)dB5(t)

+ σ6(Iv − 1)dB6(t).

(5)

Integrating both sides of (5) from 0 to τ ε ∧ T and then taking expectation, it
is seen that

EV (τ ε ∧ T ) ≤ V (0) + k1(τ ε ∧ T ) + k2E

∫ τε∧T

0
V (t)dt

Using Gronwall inequality, we obtain

EV (τ ε ∧ T ) ≤ (V (0) + k1(τ ε ∧ T ))ek2(τε∧T )

Let Ωε = {τ ε ≤ T} for any positive ε ≤ ε1. Then, as seen above, P (Ωε) ≥ δ.
Note that for every ω ∈ Ωε, at least one of the components of V (τ ε) equals
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either ε or 1
ε . Then

V (Sh(τ ε, ω), Eh(τ ε, ω), Ih(τ ε, ω), Rh(τ ε, ω), Sv(τ ε, ω), Iv(τ ε, ω))

≥ min{ε+ 1− ln ε,
1

ε
+ 1 + ln ε}.

Consequently,

+∞ > (V (Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0)) + k1T )ek2T

≥ E(IΩε(ω)V (Sh(τ ε, ω), Eh(τ ε, ω), Ih(τ ε, ω), Rh(τ ε, ω), Sv(τ ε, ω),

Iv(τ ε, ω)))

> δmin{ε+ 1− ln ε,
1

ε
+ 1 + ln ε} → +∞(ε→ 0).

where IΩε(ω) is the indicator function of Ωε. Letting ε → 0 then leads to
a contradiction, as seen above. One consequently sees that τ0 = +∞, a.s.,
which implies that τ e = +∞, a.s.. This completes the proof.2

3.2. ASYMPTOTIC BEHAVIOR AROUND THE
DISEASE-FREE EQUILIBRIUM OF THE
DETERMINISTIC MODEL

Due to the stochastic perturbations, the disease-free equilibrium is no longer
a steady state for the system (2). It is then meaningful to investigate the
asymptotic behavior of the solutions of (2) around this equilibrium, and this
can be done provided that the strength of the perturbations does not exceed
a certain level.

Theorem 3.2. Let
(
Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Iv(t)

)
be a solution of the

system (2) starting in R6
+. Let us also denote

ξ1 = max{σ2
1,

1

2
σ2

2,
1

2
σ2

3,
1

2
σ2

4}, ξ2 = max{σ2
5,

1

2
σ2

6}.

If ξ1 < µh and ξ2 < µv, then

lim sup
t→+∞

1

t
E

∫ t

0
((Sh − S0

h)2 + E2
h + I2

h +R2
h)dτ ≤

σ2
1S

0
h

2
+ Λh

µh
C1

µh − ξ1

,

lim sup
t→+∞

1

t
E

∫ t

0
((Sv − S0

v)2 + I2
v )dτ ≤

σ2
5S

0
v

2
+ Λv

µv
C2

µv − ξ2

,

in which

C1 = (ψ + 2µh)S0
h, C2 = 2µvS

0
v .
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Proof. We start by proving the first inequality, which quantifies the dynamics
of the human compartments. First of all, let us define a functional V11 : R4

+ →
[0,∞) by

V11(Sh, Eh, Ih, Rh) =
1

2
(Sh − S0

h + Eh + Ih +Rh)2 (6)

Using Itô formula, we see that

dV11 =(Sh − S0
h + Eh + Ih +Rh)(dSh + dEh + dIh + dRh)

+ (
1

2
σ2

1S
2
h +

1

2
σ2

2E
2
h +

1

2
σ2

3I
2
h +

1

2
σ2

4R
2
h)dt.

(7)

Since Λh
µh

= S0
h, it follows that

dSh + dEh + dIh + dRh

=
[
−µh(Sh − S0

h)− (ψ + µh)Ih − µhEh − µhRh
]
dt

+ σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t).

(8)

Substituting (8) into (7), we get

dV11 =
[
(Sh − S0

h + Eh + Ih +Rh)(−µh(Sh − S0
h)− (ψ + µh)Ih

−µhEh − µhRh) +
1

2
σ2

1S
2
h +

1

2
σ2

2E
2
h +

1

2
σ2

3I
2
h +

1

2
σ2

4R
2
h

]
dt

+ (Sh − S0
h + Eh + Ih +Rh)

· [σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)]

≤
[
−(µh − ξ1)((Sh − S0

h)2 + E2
h + I2

h +R2
h) + σ2

1S
0
h

2

+C1(Sh + Eh + Ih +Rh)] dt+ (Sh − S0
h + Eh + Ih +Rh)

· [σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)] ,

(9)

where C1 = (ψ + 2µh)S0
h and ξ1 = max{σ2

1,
1
2σ

2
2,

1
2σ

2
3,

1
2σ

2
4}.

Subsequently, we define V12 : R4
+ → R+ by

V12(Sh, Eh, Ih, Rh) = Sh + Eh + Ih +Rh. (10)

Using again Itô formula, we obtain

dV12 = [Λh − µhSh − (ψ + µh)Ih − µhEh − µRh] dt+ σ1ShdB1(t)

+ σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t).
(11)

Next, we define V13 : R4
+ → R+ by

V13 = V11 +
C1

µh
V12. (12)
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It follows from (9) and (11) that

dV13 ≤
[
−(µh − ξ1)((Sh − S0

h)2 + E2
h + I2

h +R2
h) + σ2

1S
0
h

2
+

Λh
µh
C1

]
dt

+ (Sh − S0
h + Eh + Ih +Rh +

C1

µh
)
[
σ1ShdB1(t) + σ2EhdB2(t)

+ σ3IhdB3(t) + σ4RhdB4(t)
]
.

Integrating both sides from 0 to t and then taking expectation, we see that

EV13(t)− V13(0) ≤ E
∫ t

0
−(µh − ξ1)((Sh − S0

h)2 + E2
h + I2

h +R2
h)dτ

+ (σ2
1S

0
h

2
+

Λh
µh
C1)t+ E

∫ t

0
(Sh − S0

h + Eh + Ih +Rh +
C1

µh
)

· [σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)].

Then

0 ≤ EV13(t) ≤V13(0)− (µh − ξ1)E

∫ t

0

(
(Sh − S0

h)2 + E2
h + I2

h +R2
h

)
dτ

+ (σ2
1S

0
h

2
+

Λh
µh
C1)t.

Since µh > ξ1, dividing both sides by t(µh − ξ1) and then letting t → ∞, we
have

lim sup
t→+∞

1

t
E

∫ t

0
((Sh − S0

h)2 + E2
h + I2

h +R2
h)dτ ≤

σ2
1S

0
h

2
+ Λh

µh
C1

µh − ξ1

.

Consequently, the first of the two desired inequalities is now proved. Let us
turn now our attention to the second one, which characterizes the dynamics
of the vector populations and will be established via a similar argument.

We define the functional V21 : R2
+ → [0,∞) by

V21(Sv, Iv) =
1

2
(Sv − S0

v + Iv)
2. (13)

It follows from the Itô formula that

dV21 =(Sv − S0
v + Iv)(dSv + dIv) + (

1

2
σ2

5S
2
v +

1

2
σ2

6I
2
v )dt. (14)

Since Λv
µv

= S0
v , we obtain that

dSv + dIv =
(
−µv(Sv − S0

v)− µvIv
)
dt+ σ5SvdB5(t) + σ6IvdB6(t). (15)
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Substituting (15) into (14), we obtain

dV21 =((Sv − S0
v + Iv)(−µh(Sv − S0

v)− µvIv) +
1

2
σ2

5S
2
v +

1

2
σ2

6I
2
v )dt

+ (Sv − S0
v + Iv)(σ5SvdB5(t) + σ6IvdB6(t))

≤(−(µh − ξ2)((Sv − S0
v)2 + I2

v ) + σ2
5S

0
v

2
+ C2(Sv + Iv))dt

+ (Sv − S0
v + Iv)(σ5SvdB5(t) + σ6IvdB6(t)).

(16)

Here C2 = 2µvS
0
v and ξ2 = max{σ2

5,
1
2σ

2
6}. We then define V22 : R2

+ → R+ by

V22(Sv, Iv) = Sv + Iv. (17)

Applying Itô formula, we obtain

dV22 =

(
µv(

Λv
µv
− Sv)− µvIv

)
dt+ σ5SvdB5(t) + σ6IvdB6(t). (18)

Next, we define V23 : R2
+ → R+

V23 = V21 +
C2

µv
V22 (19)

From (16) and (18), we obtain

dV23 ≤
(
−(µv − ξ2)((Sv − S0

v)2 + I2
v ) + σ2

5S
0
v

2
+

Λv
µv
C2

)
dt

+ (Sv − S0
v + Iv +

C2

µv
)(σ5SvdB5(t) + σ6IvdB6(t)).

Integrating both sides from 0 to t and then taking expectation, we see that

EV23(t)− V23(0) ≤ E
∫ t

0

(
−(µv − ξ2)((Sv − S0

v)2 + I2
v

)
dτ

+ (σ2
5S

0
v

2
+

Λh
µh
C2)t

+ E

∫ t

0
(Sv − S0

v + Iv +
C2

µv
)(σ5SvdB5(t) + σ6IvdB6(t)).

Then

0 ≤ EV23(t) ≤V23(0)− (µh − ξ2)E

∫ t

0

(
(Sv − S0

v)2 + I2
v

)
dτ

+ (σ2
5S

0
v

2
+

Λv
µv
C2)t.
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Noting that µv > ξ2, dividing both sides by t(µv−ξ2) and then letting t→∞,
we have

lim sup
t→+∞

1

t
E

∫ t

0
((Sv − S0

v)2 + I2
v )dτ ≤

σ2
5S

0
v

2
+ Λv

µv
C2

µv − ξ2

.

This completes the proof.

3.3. ASYMPTOTIC BEHAVIOR AROUND THE
ENDEMIC EQUILIBRIUM OF THE
DETERMINISTIC MODEL

Due to the same stochastic perturbations, the endemic equilibrium is not
a steady state for the system (2) either. By using an argument which is
essentially similar to the one displayed in the previous Subsection, we now
investigate the asymptotic behavior of the solutions of (2) around the en-
demic equilibrium. Again, this happens provided that the perturbations do
not exceed certain strength limitations.

Theorem 3.3. Let us define

ξ3 = max{σ2
1, σ

2
2, σ

2
3, σ

2
4}, ξ4 = max{σ2

5, σ
2
6}

Assume that

ξ3 < µh and ξ4 < µv.

Then for any given initial data in R6
+, the corresponding solution of (2) sat-

isfies

lim sup
t→+∞

1

t
E

∫ t

0
((Sh − S∗h)2 + (Eh − E∗h)2 + (Ih − I∗h)2 + (Rh −R∗h)2)dτ

≤
σ2

1S
∗
h

2 + σ2
2E
∗
h

2 + σ2
3I
∗
h

2 + σ2
4R
∗
h

2 + Λh
µh
C3

µh − ξ3

;

lim sup
t→+∞

1

t
E

∫ t

0
((Sv − S∗v)2 + (Iv − I∗v )2)dτ ≤

σ2
5S
∗
v

2 + σ2
6I
∗
v

2 + Λv
µv
C4

µv − ξ4

,

in which

C3 = (ψ + 2µh)(S∗h + E∗h + I∗h +R∗h), C4 = 2µv(S
∗
v + I∗v ).

Proof. Define the functional V31 : R4
+ → [0,∞),

V31(Sh, Eh, Ih, Rh) =
1

2
(Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)2. (20)
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Using Itô formula, we obtain

dV31 =(Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)

· (dSh + dEh + dIh + dRh)

+ (
1

2
σ2

1S
2
h +

1

2
σ2

2E
2
h +

1

2
σ2

3I
2
h +

1

2
σ2

4R
2
h)dt,

(21)

where

dSh + dEh + dIh + dRh

= [µh(Λh − µhSh − (ψ + µh)Ih − µhEh + µhRh] dt

+ σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)

=
[
− µh(Sh − S∗h)− µh(Eh − E∗h)− (ψ + µh)(Ih − I∗h)

− µ(Rh −R∗h)
]
dt+ σ1ShdB1(t) + σ2EhdB2(t)

+ σ3IhdB3(t) + σ4RhdB4(t).

Therefore

dV31 =

[
(Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)

· (−µh(Sh − S∗h)− µh(Eh − E∗h)− (ψ + µh)(Ih − I∗h)

− µ(Rh −R∗h)) +
1

2
σ2

1S
2
h +

1

2
σ2

2E
2
h +

1

2
σ2

3I
2
h +

1

2
σ2

4R
2
h

]
dt

+ (Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)

·
(
σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)

)
.

Consequently,

dV31 ≤
[
− (µh − σ2

1)(Sh − S∗h)2 − (µh − σ2
2)(Eh − E∗h)2

− (ψ + µh − σ2
3)(Ih − I∗h)2 − (µh − σ2

4)(Rh −R∗h)2 + σ2
1S
∗2
h + σ2

2E
∗2
h

+ σ2
3I
∗2
h + σ2

4R
∗2
h + (2µhEh + (ψ + 2µh)I∗h + 2µhR

∗
h)Sh

+ (2µhS
∗
h + (ψ + 2µh)I∗h + 2µhR

∗
h)Eh + (ψ + 2µh)(S∗h + E∗h +R∗h)Ih

+ (2µhS
∗
h)Rh

]
dt+ (Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)

·
(
σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)

)
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≤
[
− (µh − ξ3)

(
(Sh − S∗h)2 + (Eh − E∗h)2 + (Ih − I∗h)2 + (Rh −R∗h)2

)
+ C3(Sh + Eh + Ih +Rh) + σ2

1S
∗2
h + σ2

2E
∗2
h + σ2

3I
∗2
h + σ2

4R
∗2
h

]
dt

+ (Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)

· (σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)),

where ξ3 = max{σ2
1, σ

2
2, σ

2
3, σ

2
4} and C3 = (ψ + 2µh)(S∗h + E∗h + I∗h +R∗h).

Define also V32 : R4
+ → R+,

V32(Sh, Eh, Ih, Rh) = Sh + Eh + Ih +Rh. (22)

Applying Itô formula again, we see that

dV32 = [Λh − µhSh − (ψ + µh)Ih − µhEh + µhRh] dt+ σ1ShdB1(t)

+ σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)

Next, we define V33 : R4
+ → R+,

V33 = V31 +
C3

µh
V32. (23)

Using Itô formula again, we obtain

dV33 =− (µh − ξ3)

[
(Sh − S∗h)2 + (Eh − E∗h)2 + (Ih − I∗h)2 + (Rh −R∗h)2

]
dt

+ (σ2
1S
∗2
h + σ2

2E
∗2
h + σ2

3I
∗2
h + σ2

4R
∗2
h +

Λh
µh
C3)dt

+ (Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h +
C3

µh
)

·
(
σ1ShdB1(t) + σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)

)
.

Integrating both sides from 0 to t and then taking the expectation, we obtain

EV33(t)− V33(0)

≤ E
∫ t

0

[
− (µh − ξ3)((Sh − S∗h)2 + (Eh − E∗h)2 + (Ih − I∗h)2

+ (Rh −R∗h)2

]
dτ +

(
σ2

1S
∗
h

2 + σ2
2E
∗
h

2 + σ2
3I
∗
h

2 + σ2
4R
∗
h

2 +
Λh
µh
C3

)
t

+ E

∫ t

0

(
Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h +

C3

µh

)(
σ1ShdB1(t)

+ σ2EhdB2(t) + σ3IhdB3(t) + σ4RhdB4(t)
)
.
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Then

0 ≤ EV33(t) ≤V33(0)− (µh − ξ3)E

∫ t

0

[
(Sh − S∗h)2 + (Eh − E∗h)2

+ (Ih − I∗h)2 + (Rh −R∗h)2

]
dτ

+
(
σ2

1S
∗
h

2 + σ2
2E
∗
h

2 + σ2
3I
∗
h

2 + σ2
4R
∗
h

2 +
Λh
µh
C3

)
t

Noting that µh > ξ3, dividing both sides by t(µh− ξ3) and and letting t→∞,
we have

lim sup
t→+∞

1

t
E

∫ t

0
((Sh − S∗h)2 + (Eh − E∗h)2 + (Ih − I∗h)2 + (Rh −R∗h)2)dτ

≤
σ2

1S
∗
h

2 + σ2
2E
∗
h

2 + σ2
3I
∗
h

2 + σ2
4R
∗
h

2 + Λh
µh
C3

µh − ξ3

.

We now turn our atention to the second estimation. We further define V41 :
R2

+ → [0,∞),

V41 =
1

2
(Sv − S∗v + Iv − I∗v )2. (24)

It follows from the Itô formula that

dV41 = (Sv − S∗v + Iv − I∗v )(dSv + dIv) + (
1

2
σ2

5S
2
v +

1

2
σ2

6I
2
v )dt, (25)

where

dSv + dIv =

(
µv(

Λv
µv
− S∗v)− µvI∗v

)
dt+ σ5SvdB5(t) + σ6IvdB6(t)

= (−µv(Sv − S∗v)− µv(Iv − I∗v )) dt+ σ5SvdB5(t)

+ σ6IvdB6(t).

Therefore,

dV41 =

(
−µv(Sv − S∗v)2 − µv(Iv − I∗v )2 − 2µv(Sv − S∗v)(Iv − I∗v ) +

1

2
σ2

5S
2
v

+
1

2
σ2

6I
2
v

)
dt+ (Sv − S∗v + Iv − I∗v )(σ5SvdB5(t) + σ6IvdB6(t))

≤
(
−(µv − σ2

5)(Sv − S∗v)2 − (µv − σ2
6)(Iv − I∗v )2 + 2µv(SvI

∗
v + S∗vIv)

+ σ2
5S
∗2
v + σ2

6I
∗2
v

)
dt+ (Sv − S∗v + Iv − I∗v )

· (σ5SvdB5(t) + σ6IvdB6(t))
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≤
(
−(µv − ξ4)((Sv − S∗v)2 + (Iv − I∗v )2) + C4(Sv + Iv) + σ2

5S
∗2
v

+ σ2
6I
∗2
v

)
dt+ (Sv − S∗v + Iv − I∗v )(σ5SvdB5(t) + σ6IvdB6(t)).

Here, ξ4 = max{σ2
5, σ

2
6} and C4 = 2µv(S

∗
v + I∗v ).

We then define V42 : R2
+ → R+,

V42 = Sv + Iv. (26)

Using Itô formula, we obtain

dV42 = (Λv − µvSv − µvIv) dt+ σ5SvdB5(t) + σ6IvdB6(t).

Next, we define V43 : R2
+ → R+,

V43 = V41 +
C4

µv
V42 (27)

and we obtain the following inequality

dV43 ≤
(
−(µv − ξ4)((Sv − S∗v)2 + (Iv − I∗v )2) + σ2

5S
∗2
v + σ2

6I
∗2
v +

Λv
µv
C4

)
dt

+ (Sv − S∗v + Iv − I∗v +
C4

µh
)(σ5SvdB5(t) + σ6IvdB6(t)).

(28)

Integrating both sides from 0 to t and then taking the expectation yields

EV43(t) ≤ V43(0)− (µv − ξ4)E

∫ t

0

(
(Sv − S∗v)2 + (Iv − I∗v )2

)
dτ

+ (σ2
5S
∗
v

2 + σ2
6I
∗
v

2 +
Λv
µv
C4)t.

Since we assumed that µv > ξ4, dividing both sides by t(µv − ξ4) and letting
t→∞, we obtain

lim sup
t→+∞

1

t
E

∫ t

0
((Sv − S∗v)2 + (Iv − I∗v )2)dτ ≤

σ2
5S
∗
v

2 + σ2
6I
∗
v

2 + Λv
µv
C4

µv − ξ4

.

This completes the proof.

4. NUMERICAL SIMULATIONS AND
CONCLUDING REMARKS

In this section, we shall give several numerical simulations meant to illus-
trate and complement our theoretical findings. The concrete values of the
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Table 2 Concrete values for each parameter of the deterministic malaria model

Parameter Estimated value Reference

φ 0.502 [16]

ε 0.2 [16]

β 0.8333 [17]

λ 0.09 [16]

µh 0.04 estimated

µv 0.1429 [17]

κ 0.0014 estimated

α1 0.0588 [16]

Λh 0.4 estimated

Λv 20, 200 estimated

ψ 0.05 [19]

b 0.005 [20]

parameters which appear in the deterministic model (1) are given in Table 2,
together with the references used for these values. If we choose Λv = 20, then

R0 =
√
R0h ·R0v ≈ 0.6811,

which implies that malaria can be eradicated, as shown in Figure 1, even
though the dynamics of both infective human and mosquito populations start
with acute spikes.

If we choose Λv = 200, then

R0 =
√
R0h ·R0v ≈ 2.1537,

which implies that malaria can not be eradicated and there exist endemic
steady states in human and mosquito populations, although at low population
sizes, as shown in Figure 2.

In this regard, if we choose σ1 = 0.18, σ2 = 0.18, σ3 = 0.18, σ4 = 0.10,
σ5 = 0.25, σ6 = 0.15, then ξ1 = 0.0324 < µh, ξ2 = 0.0625 < µv, ξ3 = 0.0324 <
µh and ξ4 = 0.0625 < µv, so that the hypotheses of Theorems 3.2 and 3.3 are
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Fig. 1. Dynamics of the infected human and mosquitoes populations of the deterministic
model with R0 < 1

satisfied. Figures 3 and 4 then illustrate the asymptotic behavior around the
disease-free and the endemic equilibrium of the deterministic model, respec-
tively.

In this paper, in order to investigate malaria transmission, we first propose
a 6-dimensional model which consists of a combination of a SEIRS model
for the human population and a SI model for the mosquito population, stan-
dard incidence terms being used for both human to mosquito and mosquito to
human transmission. The basic reproduction number of this model is deter-
mined via the next generation approach, the stability of the equilibria being
then expressed in terms of this number, understood as a threshold parameter.

To consider the influence of a randomly fluctuating environment, multi-
ple stochastic perturbations of white noise type are considered. The well-
posedness of the model in a biological sense is first investigated, then the
asymptotic behavior of the solutions of the stochastic model around the steady
states of the deterministic model is investigated in terms of estimations involv-
ing averaged expectation. Finally, numerical simulations are given in order to
illustrate our theoretical findings.
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Fig. 2. Dynamics of the infected human and mosquito populations for the deterministic
model with R0 > 1
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Fig. 3. Dynamics of the infected human and mosquito populations for the stochastic model
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Fig. 4. Dynamics of the infected human and mosquito populations for the stochastic model
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