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GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL WITH
STAGE STRUCTURE FOR THE PREDATOR*

PAUL GEORGESCU!T AND YING-HEN HSIEH?

Abstract. The global properties of a predator-prey model with nonlinear functional response
and stage structure for the predator are studied using Lyapunov functions and LaSalle’s invariance
principle. It is found that, under hypotheses which ensure the uniform persistence of the system
and the existence of a unique positive steady state, a feasible a priori lower bound condition on
the abundance of the prey population ensures the global asymptotic stability of the positive steady
state. A condition which leads to the extinction of the predators is indicated. We also obtain results
on the existence and stability of periodic solutions. In particular, when (4.2) fails to hold and the
unique positive steady state E* becomes unstable, the coexistence of prey and predator populations
is ensured for initial populations not on the one-dimensional stable manifold of E*, albeit with
fluctuating population sizes.
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1. Introduction. In classical models of Lotka—Volterra type it is assumed that
all individuals of a single species have largely similar capabilities to hunt or reproduce.
However, the life cycle of most, if not all, animals and insects consists of at least two
stages, immature and mature, and the individuals in the first stage often can neither
hunt nor reproduce, being raised by their mature parents. Furthermore, immediately
recognizable morphological and behavioral differences may exist between these stages
and other adaptive stages, such as dormancy stages for immediate survival purposes.

To study this situation theoretically, stage-structured models have attracted much
attention in recent decades. Fundamental work towards a systematic approach to
stage-structured model formulation has been made by Gurney, Nisbet, and Blythe
[7], Nisbet and Gurney [27], and Nisbet, Gurney, and Metz [28]. Further progress has
been made by Aiello and Freedman, who proposed and studied in their often quoted
work [1] a single species model with stage structure and discrete delay, predicting the
global attractivity of the positive steady state and thereby suggesting that the stage
structure does not generate sustained oscillations, at least for a single species model.
General consistency criteria to be satisfied by models which describe stage-structured
ecological interactions have been laid out in Kuang [18] or Arditi and Michalski [2].
See also Liu, Chen, and Agarwal [24] for a recent survey on the dynamics of stage-
structured population models with an emphasis on modeling issues.

Predator-prey models with stage structure for the predator have received consid-
erable attention in recent years. See Wang [35] and Xiao and Chen [38] for global
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stability and persistence analysis of a stage-structured predator-prey model without
delay terms. See also Wang and Chen [36], Wang et al. [37], and Gourley and Kuang
[9] for stability analyses of staged predator-prey models with time delays due to ges-
tation of the predator and crowding of the prey.

Apart from analyzing the stability of their delayed model, Gourley and Kuang [9]
also discussed its oscillatory dynamics for a linear functional response of the mature
predator and observed that sustained oscillations took place only for a limited inter-
val of maturation delays. This happens since, for small delays, their model inherits
the properties of the nondelayed (of Lotka—Volterra type) system. However, if the
maturation delay is too long, then the highest possible recruitment rate to adulthood
drops below the adult death rate and the predator population dies out.

As far as the asymptotic behavior of predator-prey systems is concerned, it is
known from Poincaré-Bendixson theory that two-dimensional continuous time models
can approach either an equilibrium state or a limit cycle with any type of chaotic
behavior being excluded, while three- and higher-dimensional models can exhibit more
complex behavior. In this regard, staged models may provide in some situations a
richer dynamics which leads to a better understanding of the interactions within the
biological system under consideration. Such models may also incorporate meaningful
biological parameters, such as different death rates for mature and immature predators
and various delay effects.

In [36], [35], [38] the following predator-prey model with stage structure for the
predator has been considered:

(0) = a(t) (r = aslt) = {1 s palt)
.) {(0) = ki) = (D + ),

Yo (t) = Dyi(t) — daya(t).

Here z(t), y1(t), y2(t) are the densities of prey, respectively of immature and mature
predators at time ¢. It is assumed that in the absence of the predators the prey grows
according to a logistic law with intrinsic growth rate r and carrying capacity r/a,
while predators feed on prey only and do not count towards the carrying capacity.
It is also assumed that the immature predators are either raised by their parents or
consume a resource which is available in abundance and for which they do not have
to compete. As a consequence, neither crowding nor intraspecies competition terms
are added into the equation which models the growth of the immature predator class.
The function x +— bz /(1 + mz) represents the Holling type 2 functional (behavioral)
response of the mature predator, which describes how the consumption rate of the
predator depends on prey density, b being the search rate and m being the search rate
multiplied by the handling time; while the function x — kbx/(14+mz) is the associated
numerical (reproductive) response of the mature predator which quantifies the relation
between the numerical growth of the predator class and the prey consumption, with
k representing the conversion coefficient under the assumption that the reproduction
rate of the mature predators is directly proportional to the amount of prey consumed.
The constants d; and do represent the death rates of immature and mature predators,
and D denotes the rate at which immature predators become mature predators.
It was proved in Wang [35] that if the condition

kbrD
a+ mr

(1.2) d2(D +dy) <
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holds, then the system (1.1) is uniformly persistent and a unique positive steady state
E* = (z*,y7,y3) exists. Moreover, it is shown that if, in addition to (1.2), conditions

* 2 w
(1.3)  2*(D+dy + da)(a+ 2maz”™ — mr) <D+d1+d2+m (e + 2maz mr))

14+ ma*
bysda(D + dy)
1+ ma*
by kb kbys
(1.4) a>b+ Y2 pag s T Y2 4, > D,
1+ max* a+mr 14+ mza*

are also satisfied, then the positive steady state E* = (xz*,y7,y3) is globally asymp-
totically stable. The proof uses the theory of competitive systems as developed in
Smith [33], with condition (1.3) being used to establish the local stability of E*.

More recently, Xiao and Chen [38] noted that condition (1.4) contradicts condition
(1.2), and showed that the positive steady state E* is globally asymptotically stable
if (1.2) and (1.3) hold, in addition to one of the following two conditions:

r+D+d;
2a '

Here z > 0 is the persistency constant for z, which satisfies z < liminf; . ().
The proof is again based on the theory of competitive systems and uses a result
given by Li and Muldowney in [23], which amounts to the fact that for competitive
and permanent systems which are defined on convex and bounded sets and have the
property of stability of periodic orbits, the local asymptotic stability of a unique
positive steady state implies its global asymptotic stability. Essentially, the proof in
[38] amounts to showing that the system (1.1) has the property of the stability of
periodic orbits under either (H1) or (H2), a fact which is established using a criterion
of Muldowney [26] and the theory of additive compound matrices.

Consider the conditions (1.3), (H1), and (H2). It is clear that if the inequality
x> (r+ D +dy)/(2a), which is required in (H2), can be weakened to z > r/(2a) and
either (H1) or (H2) can be modified to cover the case D +d; = r, then (H1) and (H2)
can be combined into a single condition z > r/(2a), where r/(2a) is the prey popula-
tion size at the inflection point of the logistic curve in a prey-only system. Moreover,
condition (1.3), which a priori ensures the local stability of the positive steady state,
was motivated by specifics of the method used for the proof, which roughly inputs
local asymptotic stability and outputs global asymptotic stability under certain as-
sumptions.

However, it is clear that once the global asymptotic stability of the positive steady
state is proved, then its local asymptotic stability is superseded anyway. Moreover, we
shall indicate in section 4 that in fact (1.3) is satisfied if * > r/(2a) (and consequently
if x > r/(2a)), and so there is no need to assume (1.3) separately.

In this article, we will study the global dynamics of (1.1) by constructing a suit-
able Lyapunov function and using LaSalle’s invariance principle rather than by using
the theory of competitive systems, as has been done in [35] and [38]. This will enable
us to obtain the global asymptotic stability of the positive steady state under weaker
hypotheses than those used in Xiao and Chen [38] and by a simpler method. In our
setting, the persistence condition z > r/(2a) used in [38] will appear in a natural
way as a monotonicity condition. We will also discuss in section 4 the existence of
periodic solutions, together with their stability. Finally, we will discuss the biologi-
cal significance of our results and indicate possible extensions to the study of more
comprehensive models in section 5.

(Hl)D+d1>randg>é; (H2) D+d; <r and z >
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2. The model and its well-posedness. In this section we analyze the global
existence of the solutions of (1.1) and their positivity properties.

Let us define n : [0,00) — R and f : [0,00) — [0,00) by n(z) = z(r — az) and
f(z) =bz/(14+ mz) for all z € [0,00). Using the newly defined functions n and f we
can rewrite (1.1) as

a' =n(x) - f(2)yz,
(2.1) Yy = kf(x)y2 — (D + di)y1,
Yy = Dy1 — days.

Note that n is strictly decreasing on [r/(2a), +00), while f is strictly increasing on
[0, 00).

First, it is easy to see that if 2(0), y1(0), y2(0) > 0, then x(t), y1(t), y2(t) > 0 on
their respective intervals of existence. For this purpose, we observe that the vector
(Ry, R, R3) points inside the closed set Q1 = [0,00)® at all points of 0Q;, where
Ry, Ry, Rs are the right-hand sides appearing in (1.1), and so Nagumo’s tangency
conditions are satisfied and ()1 is a positively invariant set for (1.1). See Pavel [29]
for further reference on flow invariance problems for ODEs and abstract ODEs.

To prove that Qo = (0,00) is also a positively invariant set for (1.1), suppose
that 2(0),y1(0),y2(0) > 0 and note first that < (yse®?) = Dyje®2® > 0, and so
t +— yo(t)ed?! is increasing. It follows that ya(t) > y2(0)e92* for all ¢ for which
y2(t) is well defined, and hence y, remains strictly positive. Also, %(yle(D"’dl)t) >0,
consequently, y1(t) > y1(0)e~(PT4)t and y; remains strictly positive. To prove that
x also remains strictly positive, suppose that z(tg) = 0 for some tg > 0. Then one
may find ¢7(0) and y2(0) > 0 such that the solution which starts at ¢ = 0 from
(0,91(0),92(0)) also reaches (0,y1(t0),y2(to)) at ¢ = tg. By the uniqueness property
of (1.1), this solution should coincide with the solution which starts at ¢ = 0 from
(2(0),y1(0),y2(0)), which is an obvious contradiction.

We shall now show that z,y1,ys are bounded on their intervals of existence,
which in turn will imply by a standard continuability argument that they are defined
on [0,00). Denote M; = max(r/a,x(0)) and d = min(dy, ds). Since ' < z(r — ax), it
follows that x(t) < M; for all ¢. That is, z is bounded and consequently defined on
[0,00). Let us consider the Lyapunov function

Uz, y1,y2) =+ (1/k)yr + (1/k)y2.
We now compute the time derivative of U along the solutions of (1.1). One then has

: d d
U=n(x)— zlyl - fy%

which implies
U+dU < (r+d)z.

Consequently,

M d
UG (0) (1), 92(0)) < U (), 0), 20))e* + ED (1 o=ty gor an g,
This implies that y1, y2 are also bounded and consequently defined on [0, c0). Finally,
we analyze the behavior of solutions which start with initial data (x;,y14,y2:) on the
boundary of (0, 00)3.
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If z; = 0, then (z(¢),y1(t),y2(t)) — (0,0,0) irrespective of the initial values
Yii, Y2i Z 0. If T; > 0 then ( ( ) ( ) (t)) — (’I”/CL 0 O) for Y1i = Y2i = 0, while
(z(t),y1(t), y2(t)) enters (0,00)3 (and stays there) otherwise.

3. Global dynamics of the model. In this section we perform a global sta-
bility analysis for the system (1.1) regarding both the stability of the boundary equi-
librium (r/a,0,0) (i.e., the case in which the predator classes tend to extinction) and
of the positive steady state (z*,y7,y5) (i.e., the case in which the coexistence of both
species is assured for all future time). As a result, we find sufficient conditions for the
stability of the equilibria and establish the existence of a threshold parameter.

Let us denote T' = do(D +dy)/D and xg = r/a. First, we give a condition for the
extinction of the predators.

THEOREM 3.1. Suppose that T > kf(xg). Then (x0,0,0) is globally asymptoti-
cally stable on (0,00)3.

Proof. Let us consider the Lyapunov function

U1($7y1ay2)=/$f(7)f_(7];($0) ]16 1+;D£d1y2.

We now compute the time derivative of Uy along the solutions of (1.1). One then has

0 = L) u(a) — o) + 1 (@i — (D + )
+ %D —l;dl (Dy1 — day2)
_f@) —flzo) oy 1 ooy — D+ di)ds
= LI )4 4 (ko) - P g

Since c is strictly increasing on [0, 00) and sgnn(z) = sgn(xg — x) for « € (0, 00), it is

seen that U1 < 0, with equality if and only if 2z = zo and either yo = 0 or T' = k(o).
In both cases, the only invariant subset M within the set M = {(z,y1,y2);z = zo} is
M = {(x0,0,0)}.

Since U; < 0 on (0,00)? and the only possible w-limit sets of (z(t),y1(t),y2(t))
on the boundary of (0, 00)3 are {(x,0,0)} and {(0,0,0)}, our conclusion follows from
LaSalle’s invariance principle (see [22]). O

We now attempt to analyze the existence of the positive steady state E* and the
uniform persistence of the system (1.1). We recall that the system (1.1) is said to
be uniformly persistent if there is 9 > 0 such that any solution of (1.1) which starts
with 2(0),y1(0), y2(0) > 0 satisfies

liminf x(t) > €9, liminf y;(t) > g9, liminf yo(t) > eo.
t—oo t—o0 t—o0

For other (weaker) types of persistence and criteria to establish the persistence of a
given system, see Butler, Freedman, and Waltman [4], Freedman, Ruan, and Tang
[6], and Hofbauer and So [11].

THEOREM 3.2. Suppose that T < kf(xo). Then the positive steady state E*
exists, is unique, and the system (1.1) is uniformly persistent.

Proof. Let us consider the Lyapunov function

1 1D+dy

Pt D

Ua(x,y1,12) = Y2.
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We now compute the time derivative of U, along the solutions of (1.1). One then has

Us = £ (kS () — (D + di)ya) + 3 22

k D
(70 - P2 ) e

T < kf(xo), then Us is positive in all strictly positive points of a vicinity of (zg, 0, 0),
and so (zg,0,0) is unstable. Since the only invariant subsets on the boundary of
(0,00)3 are {(z0,0,0)} and {(0,0,0)} and their stable manifolds are also contained
in the boundary of (0, 00)3, it follows from a result of Hofbauer and So [11] that the
system (1.1) is uniformly persistent. Also see Margheri and Rebelo [25] for a slightly
different approach towards showing the persistence of dynamical systems based on a
result of Fonda [5], which establishes necessary and sufficient conditions for a given
compact set S to be a uniform repeller.
To show the existence of E*, we need to find positive solutions for the system

(Dy1 — day2)

bx*
* . L [ S, Q)
2 (- ar®) - =0,
(3.1) b e Dadyr =0
TREp— (D +di)y; ;

Dy — day; = 0.
After some algebraic manipulations, one obtains

(D + dy)ds . x(r—ax*)k . x*(r—ax*)kD
WW=""n.7 > Y=

T WkD—m(D +dy)dy (D +dy) (D + dy)ds

Since dao(D +dy)/D < kbr/(a+ mr), it follows that bkD/((D + dy)dz2) > (a+mr)/r,
and so z* < r/a. From the above, it also follows that bkD/((D + dy)dz) > m, and
hence z* > 0. Consequently, x*, y;, y5 are all well defined and positive. We also
remark that since the system (1.1) is uniformly persistent, it follows that there is an
x > 0 such that liminf;_ . z(t) > z. O

From Theorems 3.1 and 3.2, combined with the remark about the behavior of the
solutions starting on the boundary of [0, 00)? which was made at the end of section 2, it
also follows that (0,0, 0) is an unstable equilibrium and its stable manifold consists of
the positive quadrant {(0, y14, ¥2i); Y14, y2; > 0}. That is, our model predicts that the
predator and the prey cannot simultaneously face extinction, with the sole exception
of the case in which the size of the initial prey populations equals zero, justified by
the fact that the predators feed on prey only and do not consume other resource, and
therefore in the absence of prey they are condemned to extinction.

Having established the existence and uniqueness of the positive steady state E*,
we now turn our attention to its stability. For this purpose, we employ a condition on
the persistence constant x, which ensures that the size of the prey population remains
ultimately higher than a certain value.

THEOREM 3.3. Suppose that T < kf(zo) and z > r/(2a). Then the positive
steady state E* is globally asymptotically stable on (0, 00)3.

Proof. Since z > r/(2a), it is seen that there is tg > 0 such that z(t) > r/(2a)
for all ¢ > tg and also that x* > r/(2a). Let us consider the Lyapunov function

‘ — f(z* 1 (Y7 —yrf 1D 4dy [¥2 75— o
Us(z,y1,y2) :/ MdT—l—f/ T dr+ — +dy oY,
z* y

f() k Jy: T k D v T

(3.2) "
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It is easily seen that Us(x,y1,y2) > 0 and Us(x,y1,y2) = 0 if and only if x = z*,
Y1 = Y5, y2 = y5. We now compute the time derivative of Us along the solutions of
(1.1). One obtains that

= PO (0 — pae) + 22 k(s — (D + duyyn)
hn

f(x)
%#M (Dy1 — day2)
N R _D+%*<Nﬂmﬁ v ﬂm_)
"y e T i e g T T F@
L D4dy f@) Dtdy, Didy,
k@) T kD @Y%

Since f(z*) = (D + dy)dz/(kD), this yields

L J@ - f") Dtd (@) i v @)
Vs =n@) =0 ky4ﬂm@m+mm+ﬂm 9
D+dy , (f(z*)
* k1%<f@>‘0
1 * _ x*
— <5 (n(e) = () (F o) - Fa)

P\ @) eyl f@)
From the AM-GM inequality, it is clear that

f@) v wn | f@)

+ 2 > 3,
f@) sy vy fl2)
with equality if and only if
fl@) 2y _ sy _ fla") _

f@)ysn vyl flo) ’

that is, = z* and y1/y7 = y2/v5.
If 2(t) > r/(2a) for t > tg, then since n is strictly decreasing on [r/(2a), c0) and
f is strictly increasing on [0, 00), it follows that

with equality if and only if z = x*. This implies that Ug < 0, with equality if and
only if = o™ and y1/y7 = y2/y5;. We now find the invariant subsets M within the
set

Y1 Y2
M = {($»y1792)§$ = $*77 = } .
yi o Y
Since = z* on M and consequently z' = n(z*) — f(z*)ys, it follows that 2/ =
f(@*)(y2 — y3), and so yo = y5. This implies y; = y7, and consequently the only

invariant set in M is M = {(z,y},vy5)}. From LaSalle’s invariance principle one then
obtains the desired conclusion. a
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4. The local stability of the positive steady state and the existence of
the periodic solutions. Suppose now that T' < kf(z¢) and consequently that the
system (1.1) is persistent and the positive steady state E* exists and is unique. As
seen in Wang [35] and Xiao and Chen [38], it is possible to study the local stability of
the positive steady state and the existence of the periodic solutions together with their
orbital stability by using a result on the behavior of three-dimensional competitive
systems established by Zhu and Smith in [39].

It is easy to see that the Jacobian of the system (1.1) at (x,y1,y2) is given by

r—2ax — WW 0 - 1+I)fnz
Jay(m,y1,y2) = kel —(D+d M
QT Y1, Y (Ttmaz)Z Y2 (D +di) T+ma
0 D —dy

Using the equilibrium relations (3.1), one finds that the characteristic equation of the
system (1.1) at E* is given by

(4.1) M+ [D +dy +dy + 2 (2a - ”m”)] A2
1+ max*
r—az*

1+ ma*

rm +a

— do(D +dy) = 0.
1+ max* 2( + 1)

+ z* <2a >(D+d1+d2)>\+
Consequently, by the classical Routh-Hurwitz theorem, all roots of (4.1) have negative

real parts if

« rm—+a « _ rm—+a
(4.2) [D—!—dl—I—dg—I—x (2a_1+mx*)]x <2a 1—|—mx*>(D+d1+d2)

r—az*

——dy (D +d
14+ ma* 2(D +du),

and if the reverse of the above inequality is satisfied, then two of the characteristic
roots have positive real parts. Note that since (r — az*)/(1 + ma*)d2(D + dy) > 0,
there is always a negative real root of (4.1). It is also important to note that (4.2) is
satisfied if 2* > r/(2a). Toward this goal, we remark that if * > r/(2a), one has

v (20(1 +ma”) — (rm o+ a) = 2" (20m (o* — 5) +a) > 0" > 7 —an’

and

rm—+a

D+dy+d * 2a —
[+1+ 2+x<a T

>:| (D +dy + dg) > 4d2(D + dl),

from which (4.2) results immediately. It then follows that all equilibria E* with z* >
r/(2a) are locally asymptotically stable. Moreover, a quick inspection of our argument
shows that E* is also stable for some z* < r/(2a), provided that z* > r/(2a)—¢/(2m),
where

2 do (D +d
(4.3) ¢1+i,1%k1)ﬂigi¢L§W.
mr mr mr (D + dy + dg) 2a

In particular, this shows that the inequality (4.2), which has been a priori assumed in
Xiao and Chen [38] (stated under the equivalent form (1.3)), does actually follow if
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either (H1) or (H2) are assumed, since > r/(2a) implies * > r/(2a), and so there
is no need to assume (4.2) separately. Also, it is perhaps interesting to remark that
while the inequality > r/(2a) ensures the global stability of E*, a somewhat similar
but weaker estimate z* > r/(2a) ensures its local stability. We do not know, however,
whether or not the inequality z > r/(2a) is sharp, that is, if r/(2a) is the smallest
constant C' with the property that x > C ensures the converge of the respective
solution of (1.1) to E*, under the condition kf(r/a) > T.
Consider now

1 0 0
C=10 -1 0], S=10,00) % (—00,0] x [0,00).
0 0 1
One then has
r—2ax — (1+7Z:Lz)2 Y2 0 - l-il-)fnx
CJay (@, y1,y2)C = —kﬁyz —(D +dy) —ﬁlﬁfm
0 -D —dy

It is then seen that the matrix C'J(1.1)(2,y1,y2)C has negative off-diagonal entries for
(z,y1,y2) € S, and so the system (1.1) is competitive on S. By the previously estab-
lished persistence and boundedness results, it follows that (1.1) is point dissipative.
It is also easy to see that (1.1) is irreducible in S.

Since (1.1) has a unique equilibrium point E* = (z*, y7, y3) and

r—ax*
1+ ma*

it follows from Theorem 1.2 in Zhu and Smith [39] that either E* is stable, or, if it
is unstable, there is at least one but no more than finitely many periodic orbits and
at least one of these is orbitally asymptotically stable. Also, if E* is stable but not
globally stable, then since (1.1) is a three-dimensional competitive system, it follows
from Theorem 4.1 in Smith [34, Chapter 3] that (1.1) has a periodic orbit which is
necessarily orbitally unstable. Moreover, if E* is hyperbolic and unstable with a two-
dimensional unstable manifold, it follows from Theorem 4.2 in Smith [34, Chapter 3]
that the w-limit of any orbit of (1.1) which does not start on the stable manifold of
E* is a nontrivial periodic orbit. Summarizing the above discussion, one obtains the
following result.

THEOREM 4.1. Suppose that T < kf(xzo) and that E* is not globally asymptoti-
cally stable.

1. If either (4.2) or its reverse is satisfied, then E* is hyperbolic and there is at
least a montrivial periodic orbit. The w-limit of any orbit with positive initial
data is either E* or a nontrivial periodic orbit.

2. If (4.2) is satisfied (which happens in particular when x* > r/(2a)), then the
positive equilibrium E* is locally asymptotically stable and there is at least a
periodic orbit which is necessarily orbitally unstable.

3. If the reverse of (4.2) is satisfied, then the positive equilibrium E* is unstable
with a two-dimensional unstable manifold and there is at least one but no more
than finitely many periodic orbits and at least one of these is orbitally asymp-
totically stable. Any solution which does not start on the one-dimensional
stable manifold of E* converges to a nontrivial periodic orbit.

Unfortunately, we are not able to study analytically whether or not the periodic
solutions mentioned in parts 2 and 3 above are unique.

det J(ll)(x*7yray;) = d2(D + dl) < Oa
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5. Concluding remarks. First, we discuss the biological significance of our
results. From the above results, we know that T = do(D + d1)/D is a threshold
parameter for the stability of the system and that the numerical response of the
mature predator plays a major role in the long-term behavior of the system (1.1). More
precisely, Theorem 3.1 indicates that if the numerical response of the mature predator
for the prey at carrying capacity is lower than the threshold value T, i.e., if few mature
predators introduced in a predator-free ambient with prey at carrying capacity cannot
reproduce fast enough, the predator classes tend to extinction. Moreover, we can
define the basic reproduction number of the system by Ry = kf (xo)%dlé, and
then the condition T' > kf(x) is equivalent to Ry < 1. This basic reproduction
number has a clear biological interpretation: the first term in Ry, kf(xg), gives the
mean number of newborn predators per mature predator; the second term, ﬁ,
gives the probability that an immature predator will survive to adulthood; and the
third term, é, is simply the average lifespan of a mature predator. Subsequently, the
product of these three terms yields the mean number of offspring by every predator,
which is precisely the biological meaning of a basic reproduction number. A similar
threshold condition for the coexistence of a predator-prey system had previously been
formulated and explained by Pielou [30], among others, but had not been termed a
“basic reproduction number” to the best of our knowledge.

Furthermore, if the numerical response of the mature predator for the prey at
carrying capacity is higher than the threshold value 7" and also the prey population
ultimately remains higher than another value > r/(2a), that is, if the prey is always
abundant enough, it is seen from Theorem 3.3 that the system tends to a positive
steady state. We also note that if the death rate d; of the immature predator is
negligible compared to the rate D at which the immature predators become mature
predators, then the inequality T' < kf(xo) becomes a very simple comparison between
the death rate of the mature predators and their reproductive rate. Moreover, the
stage structure affects the capability of the predator species to survive and become
persistent, since it is now (D + d;)/D times easier for the predator species to become
extinct, as can be seen from Theorem 3.1. This means that if it takes too much for
the immature predators to mature, or the through-stage death rate of the immature
predator is high (that is, D is small compared to d; ), then the total number of offspring
produced during the adult stage will not be enough to compensate the total loss of
immature predators and the predator classes will tend to extinction.

However, the situation where Ry > 1 (or T' < kf(x)) but z < r/(2a) is more
complicated. When z* > r/(2a), we know that E* is locally asymptotically stable,
but we do not know of its global properties. This is similar for the case z* < r/(2a),
and (4.2) holds (see Theorem 4.1). Moreover, the precise conditions for the existence
and uniqueness of the periodic orbits, namely when E* is not globally stable, are
unknown under part 3 of Theorem 4.1. Therefore, we proceed to investigate further
by using numerical simulations.

We use the following parameter values for all numerical simulations below: k& =1,
b=1,m=1,D=1,d; =0.1, and dy = 0.2. For case 1 (see Figure 5.1), we let r =1
and a = 2, and subsequently o = = = 0.5, Ry = Lﬁbﬁm = 1515 > 1, and
xr* > -, Since x* > r/(2a), the positive steady state E* is locally asymptotically
stable. Numerical simulations of trajectories starting at various initial populations
seem to indicate that the stability is also global for the parameter values we used.
Note that, in all the figures below, the black dot located on the z-axis is E{, while
the other black dot is E*. For case 2 (see Figure 5.2), we let r = 1 and a = 1 so
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Ma

M

F16. 5.1. Simulation for case 1 with Ro = 1.515 > 1 and x* > 5-. All trajectories approach E*.

that zop = = =1, Ryp = 2.273 > 1, ¥ < 5, and (4.2) holds. Since (4.2) holds, we
know that the positive equilibrium E* is locally asymptotically stable. Numerical
simulations indicate that its stability is global. It is interesting to note that we are
unable to find parameter values under which E* satisfies (4.2), and hence it is locally
asymptotically stable but not globally stable.

We also consider case 3 (see Figure 5.3), where r = 3 and a = 2, and subsequently
rg = - = 1.5, Ry = 2.727 > 1, and 2* < -, but (4.2) does not hold. From part
3 of Theorem 4.1, we know the positive equilibrium E* is unstable and there exists
an orbitally asymptotically stable periodic orbit. Our simulation shows that this
orbitally stable periodic orbit is unique and its orbital stability appears to be global.
We summarize our stability results in Table 5.1. The three cases described by the
last three rows of the table are illustrated with Figures 5.1-5.3, respectively. We note
that, biologically, when (4.2) fails to hold and E* becomes unstable, the coexistence
of prey and predator populations is still ensured for initial populations not on the
one-dimensional stable manifold of E*, albeit with fluctuating population sizes.

We now continue with a few comments regarding the a priori estimate z > r/(2a),
which was used to establish the global asymptotic stability of the positive steady state.

Let 0 <! < r/a. It is seen that

x* > 1< bkDl < (1+ml)(D + dy)ds,
from which it is easy to infer that
>l kf(l) <T.

Since x > [ necessarily implies that x* > [ (though this condition is only necessary
and is not sufficient), it is seen that in order to have the inequality x > I satisfied, it
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FIG. 5.2. Simulation for case 2 where Ro = 2.273 > 1, 2* < 5, and (4.2) holds. All trajectories
approach E*.

Ya

FiG. 5.3. Simulation for case 3 where Ry = 2.727 > 1 and x* < g5, but (4.2) does not hold.
E* 1s unstable, and all trajectories approach an orbitally stable periodic orbit.
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TABLE 5.1
Asymptotic states of the system. “NE” denotes monexistent, “NA” denotes mot applicable,
“NI” denotes no influence, “OASLC” denotes orbitally asymptotically stable limit cycle, “GAS”
and “LAS” denote globally and locally asymptotically stable, respectively, and “(1)” denotes the
conclusion from the simulation result.

Ry Eo x* z (4.2) E* (z,91,y2) —
<1 GAS NE NI NA NE Eo
T T *
>4 >g-  YES GAS E
-1 unstable > - < o-  YES LAS E*®
T T 1
<gz <g. YES LAS Ex(M
<4 < g NO  unstable OASLC™)

is necessary that kf(I) < T. Note that this inequality alone does not suffice to
establish that z > [. Again, this inequality has a certain biological interpretation. In
order to have the prey population ultimately staying above a certain level [, one needs
as a prerequisite that the numerical response of the predator for prey at density [ be
lesser than the threshold value T'. Particularizing I = r/(2a), it is seen that in order
to obtain that z > r/(2a), one needs the inequality kf(r/(2a)) < T satisfied.

Also, it is perhaps fitting to give sufficient conditions here which ensure the va-
lidity of our boundedness estimate z > r/(2a). From the first equation in (1.1), one
obtains

(14 ma)a'(t) = x(t) [(r — az(t)) (1 + ma(t)) — by2(t)]
which implies
(14+ma)z’ >z [(r—b(M +¢)) + z(rm — a) — ama?]

for ¢ large enough, where J\ZI is an ultimate upper bound for ys and € > 0 is an
arbitrary constant. If r —b(M +¢) > 0, it follows that lim inf; 2 (t) > x2, where zo
is the positive root of

(r —b(M +¢€)) + z(rm — a) — amz? = 0.

From the above relations, one may deduce that > r/(2a) whenever the following
conditions are satisfied:

r—b(M +¢) >0, a—|—\/(a—rm)2+4(r—b(1\7f—|—5))am>2mr.

Since ¢ > 0 was arbitrary, a set of conditions which ensures that z > r/(2a) is
therefore

(5.1) r>bM, a+ \/(a —rm)2 4+ 4(r — bM)am > 2mr.

However, it is difficult to give a clear biological interpretation of the inequalities
(5.1), and we would like to point out that our a priori estimate x > r/(2a) is easier
to interpret and represents a theoretical device readily adaptable for the study of
other systems of a certain structure, in connection with monotonicity properties. For
explicit estimations of type (5.1), this sort of adjustment may not be transparent.
Note that, from the discussions in section 2 on the boundedness of the solutions of
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system (1.1), an ultimate upper bound for ys is M = kmax(r/a,z(0))(r +d)/d, where
d = min(dy,ds). See also [38] for a numerical example regarding the feasibility of the
condition z > r/(2a).

Since the mature predator functional response f depends only on the size of the
prey population z, our model (1.1) may be called, following the terminology given
in Huisman and DeBoer [13], prey-dependent. By the same terminology, a system in
which the mature predator functional response f is a function of the prey-to-predator
ratio z/y is called ratio-dependent (or, more generally, predator-dependent). It is
also easy to see that our model can be thought as a stage-structured version of the
classical predator-prey model given below:

m'—rw(lfi) o b
o K 1—|—mxy’
(5.2)

- bx _d

Y 1—|—mwy Y.

It is therefore not surprising that, as is easily seen from (3.2), our model inherits
the structure which generates the so-called paradox of enrichment, formulated by
Hairston, Smith, and Slobodkin [10] and by Rosenzweig [32], which states that in-
creasing the carrying capacity of the environment will cause an increase in the sizes of
the predator classes at equilibrium but not in that of prey. Also, since the left-hand
side of (4.2) is a decreasing function of the carrying capacity r/a while the right-hand
side of (4.2) is an increasing function of the same variable, it is seen that an increase
in the carrying capacity may destabilize an otherwise stable positive equilibrium.

It has already been noted that all prey equilibria z* for which z* > r/(2a)
are locally asymptotically stable; that is, high prey equilibrium densities are stable.
Moreover, it can also be observed that low prey equilibrium densities are unstable,
since the limit of the left-hand side of (4.2) as «* tends to 0 is also 0, while the same
limit of the right-hand side of (4.2) is positive.

Note that, by the Rosenzweig-MacArthur graphical stability criterion, any equi-
librium of (5.2) with 2* > r/(2a) — 1/(2m) is stable, while any equilibrium of (5.2)
with * < r/(2a) — 1/(2m) is unstable. Furthermore, by Theorem 3.2 in Kuang [20],
one may prove that if z > r/(2a), then (z*,y*) is globally asymptotically stable. One
may then expect a stability threshold for (1.1) which is sharper than r/(2a). Unfor-
tunately, this result does not carry out nicely for our system (1.1) (see (4.3)). Note
also that the equilibria of (1.1) with z* close to r/(2a) — 1/(2m) are unstable, as the
left-hand side of (4.2) becomes arbitrarily small, while the right-hand side remains
above a strictly positive lower bound.

It has also been observed in this study that, for the most part of the parameter
space, the dynamical outcome does not depend on the initial population sizes and
the prey and predator species cannot face extinction simultaneously. These are hall-
marks of prey-dependent models, as opposed to ratio-dependent models; as seen, for
instance, in Jost, Arino, and Arditi [14] or in Beretta and Kuang [3], mutual extinc-
tion may occur for ratio-dependent models, together with other rich dynamics, and
the behavior of the system may depend on the initial population sizes (see also Kuang
[19]). In this regard, it is believed that prey-dependent predator-prey models are more
appropriate for situations in which predation involves a random or no search process,
while ratio-dependent predator-prey models are more appropriate for situations in
which predation involves a thorough search process. See, for instance, Kuang and
Beretta [21].
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Our considerations may be easily extended to systems of the form

a’ = n(z) — f(2)g(y2),
(5.3) vy = kf(x)g(y2) — crh(yr),
Yo = cah(y1) — c3r(y2),

to encompass different types of functional responses from the mature predator and
possible nonlinearities in the behavior of species, including nonlinearity in the preda-
tion process, under appropriate monotonicity assumptions on the functions f, g, h,r.
Some examples of f and n which fit into our framework are f(x) = ma®, 0 <c¢ <1,
flz) = m(l — e °*), m,c > 0, f(z) = ba?/(1 + maP), 0 < p < 1 and n(z) =
z(r —azx)/(1 +ex), € > 0, n(z) = re(l — (z/(r/a))?), 0 < ¢ < 1, provided that
the threshold value T' and the minimal value r/(2a) for z are modified accordingly.
Another simple extension is to a model in which predators pass through p > 2 life
stages, as long as the consumption of prey occurs only in the last stage. Note that
the last form of n(x) given above is the Richards model, a generalized logistic-type
model (which simplifies to the logistic model when ¢ = 1) often used to model growth
of biological populations [31] or severity of disease outbreak [12].

The function n need not be monotone on its whole domain but only on [Z, +00),
Z being the persistency constant of the prey for the system under consideration. In
this situation, condition liminf; ., x(t) > Z is used to restrict n to its monotonicity
domain. See Georgescu and Hsieh [8] for a related argument concerning the global
stability of the endemic equilibrium for the propagation of a virus in vivo, with the
remark that in [8] there is no need to impose any a priori lower bound condition,
since the function which corresponds to n is monotone on the whole feasibility domain.
Finally, regarding our construction of a Lyapunov function, we mention that functions
of type V (z1, x2,23,24) = Z?zl a;(z;—x} Inx;), to which our function Us relates, have
also been found useful for the study of SEIR epidemiological models. See Korobeinikov
[15] and Korobeinikov and Maini [16] for details. In this regard, global stability results
for models which incorporate nonlinear incidence rates of a very general form have
recently been obtained by Korobeinikov and Maini in [17].
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