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Abstract. If $\alpha\in(0,1)$ is given and $T_{1}=\{T_{1}(t);t\geq 0\},$ $T_{2}=\{T_{2}(t);t\geq 0\}$

are $C_{0}$-semigroups defined on a real Banach space (X, $|\cdot|$ ), we indicate sufficient
conditions for the existence of $x_{\alpha}\in X$ such that $|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|=O(t^{\alpha})$

and $|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|\neq o(t^{\alpha})$ as $t\rightarrow 0+$ , that is, for which the approxima-
tion rate $O(t^{\alpha})$ is sharp.

1. Introduction

Let $T_{1}=\{T_{1}(t);t\geq 0\}$ and $T_{2}=\{T_{2}(t);t\geq 0\}$ be $C_{0}$ -semigroups on a real
Banach space (X, $\cdot$ ). Since the pioneering paper of D. W. Robinson [1], many
works have been devoted to finding necessary and sufficient conditions so that
$||T_{1}(t)-T_{2}(t)||=O(t)$ as $t\rightarrow 0+$ ; we quote here only Desch and Schappacher [2],
Diekmann, Gyllenberg and Thieme [3], Piskarev and Shaw [4], who employed
various approaches in order to study this problem. However, the sharpness of
the approximation rates is not discussed there, and the nonoptimal case, that is,
the case in which $||T_{1}(t)-T_{2}(t)||=O(t^{\alpha}),$ $0<\alpha<1$ , has attracted much less
attention. Also, the condition in this case are sufficient only. A discussion on
the necessity may be found in Davies [5, Theorem 3.25].

First, we prove that the best possible nontrivial comparison rate in the oper-
$atorialnormforT_{1}andT_{2}ast\rightarrow 0+isO(t)$ , since if $||T_{1}(t)-T_{2}(t)||=o(t)$ , then
$T_{1}\equiv T_{2}$ ; see Lemma 1 below. Once seen that the best nontrivial comparison
rate in the operatorial norm for the semigroups $T_{1}$ and $T_{2}$ as $t\rightarrow 0+isO(t)$ , it
may be interesting to investigate the existence of elements which provide sharp
nonoptimal comparison rates, that is, if $\alpha\in(0,1)$ , the existence of $x_{\alpha}\in X$ such
that $|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|=O(t^{\alpha})$ and $|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|\neq o(t^{\alpha})$ as $t\rightarrow 0+$ . If
$T_{2}\equiv I$ , Davydov has proved in [6], as a consequence of his deep quantitative
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resonance principle, that the unboundedness of the infinitesimal generator $A_{1}$ of
the $C_{0}$-semigroup $T_{1}$ is a sufficient condition for the existence of such $x_{\alpha}$ . It is
also easy to see that in this case the unboundedness of $A_{1}$ is also a necessary
condition for the existence of such $x_{\alpha}$ .

In the following, using a condensation principle obtained by Davydov in [6],
we shall prove a general result which enables us to indicate sufficient conditions
for the existence of elements which provide sharp nonoptimal comparison rates,
that is, the existence of $x_{\alpha}\in X$ such that $|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|=O(t^{\alpha})$ and
$|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|\neq o(t^{\alpha})$ as $t\rightarrow 0+$ . Some examples for which our condi-
tions are satisfied are given in Section 4.

2. Preliminaries and notations

Throughout this paper, we denote by (X, $|\cdot|$ ) a real Banach space. Given a
continuous function $v$ : $(0,1$ ] $\rightarrow(0, \infty)$ such that $v(t)\rightarrow 0$ as $t\rightarrow 0+and$ a
$C_{0}$-semigroup $T=\{T(t);t\geq 0\}$ on $X$ , we define

$F_{v}^{T}=\{x\in X;\sup_{t\in(0,1]}\frac{|T(t)x-x|}{v(t)}<\infty\}$ .

Note that if $v(t)/t\rightarrow 0$ as $t\rightarrow 0+$ , then $F_{v}^{T}\subset\{x\in D(A)\backslash Ax=0\}$ , where $A$ is
the infinitesimal generator of $T$ , and so $F_{v}^{T}$ is not likely to verify the denseness
assumptions which will be used in the following. If $v(t)=t^{\alpha}$ with $\alpha\in(0,1$],
then $F_{v}^{T}$ is just the Favard class of fractional order $\alpha$ , defined as follows:

$F_{\alpha}^{T}=$ { $x\in X;|T(t)x-x|=O(t^{\alpha})$ as $t\rightarrow 0+$ }.
For further properties of the Favard classes, see Butzer and Berens [7].

A functional $p$ on $X$ will be called a seminorm if it satisfies $ p(x+y)\leq$

$p(x)+p(y)$ and $p(\alpha x)\leq|\alpha|p(x)$ for all $x,$ $y\in X$ and $\alpha\in \mathbb{R}$ . If $p$ is a seminorm
on $X$ , we shall denote $||p||=\sup\{p(x);|x|\leq 1\}$ . It is easy to see that a seminorm
$p$ is continuous if and only if $||p||<\infty$ . Given a family $H$ of continuous seminorms
on $X$ , we denote

$\mathcal{N}_{H}=\{x\in X;\lim_{h\in H,||h||\rightarrow\infty}h(x)=0\}$ .

We now state Davydov’s condensation principle [6, Theorem 1], which plays
an important role in the proof of our result.

THEOREM A. Let $H$ be an unbounded family of continuous seminorms. As-
sume that $\mathcal{N}_{H}$ is dense in X. Then there exists an element $x\in X$ such that

$\sup_{h\in H}h(x)\leq 1$ and lim $suph(x)=1$ .
$h\in H,$ $||h||\rightarrow\infty$
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3. The existence of nonoptimal comparison rates

Given two $C_{0}$-semigroups $T_{1}=\{T_{1}(t);t\geq 0\}$ and $T_{2}=\{T_{2}(t);t\geq 0\}$ on $X$ ,
it is easy to show that the quantity $||T_{1}(t)-T_{2}(t)||$ cannot be arbitrarily small
as $t\rightarrow 0+$ , but still positive. More precisely, one obtains the following result:

LEMMA 1. Let $T_{1}=\{T_{1}(t);t\geq 0\}$ and $T_{2}=\{T_{2}(t);t\geq 0\}$ be $C_{0}$ -semigroups
on X. Then $||T_{1}(t)-T_{2}(t)||=o(t)$ as $t\rightarrow 0+if$ and only if $T_{1}(t)\equiv T_{2}(t)$ for
each $t\geq 0$ .

Proof. One implication is trivial. For the other, let us denote by $A_{1}$ and $A_{2}$ the
generators of $T_{1}$ , respectively of $T_{2}$ , and take $x\in D(A_{1})$ . From the estimation

$|\frac{T_{2}(t)x-x}{t}-A_{1}x|\leq\frac{||T_{1}(t)-T_{2}(t)||}{t}|x|+|\frac{T_{1}(t)x-x}{t}-A_{1}x|$ ,

one deduces that $x\in D(A_{2})$ and $A_{1}x=A_{2}x$ ; therefore, $A_{2}$ is an extension of $A_{1}$ .
In the same way we can prove that $A_{1}$ is an extension of $A_{2}$ , which yields that
$A_{1}\equiv A_{2}$ . Since a $C_{0}$-semigroup on $X$ is uniquely determined by its generator,
one obtains that $T_{1}(t)\equiv T_{2}(t)$ for each $t\geq 0$ , which finishes the proof. $\blacksquare$

We can now state our main result.

THEOREM 1. Let $w,$ $w_{1},$ $w_{2}$ : $(0,1$ ] $\rightarrow(0, \infty)$ be continuous functions and $T_{1}=$

$\{T_{1}(t);t\geq 0\},$ $T_{2}=\{T_{2}(t);t\geq 0\}$ be $C_{0}$ -semigroups satisfying

(C.1) $\lim_{t\rightarrow}\sup_{0+}\frac{||T_{1}(t)-T_{2}(t)||}{w_{1}(t)}>0$ ,

and

(C.2) $F_{w_{2}}^{T_{1}}\cap F_{w_{2}}^{T_{2}}$ is dense in $X$

(C.3) $\lim_{t\rightarrow 0+}w_{2}(t)=0$ , $\lim_{t\rightarrow 0+}\frac{w_{1}(t)}{w(t)}=+\infty$ and $\lim_{t\rightarrow 0+}\frac{w_{2}(t)}{w(t)}=0$ .

Then there exists $x\in X$ such that

$|T_{1}(t)x-T_{2}(t)x|\leq w(t)$ for all $t\in(O, 1$ ] and $\lim_{t\rightarrow}\sup_{0+}\frac{|T_{1}(t)x-T_{2}(t)x|}{w(t)}=1$ .

Proof. Let $H=\{h_{t}; t\in(O, 1]\}$ be a family of continuous seminorms on $X$ defined
as follows:

$h_{t}(x)=\frac{|T_{1}(t)x-T_{2}(t)x|}{w(t)}$ for each $t\in(O, 1$ ] and $x\in X$ .

IFbrom (C.1), there exist $\epsilon_{0}>0$ and $(t_{n})_{n\geq 1},$ $ t_{n}\rightarrow 0+asn\rightarrow\infty$ such that
$||T_{1}(t_{n})-T_{2}(t_{n})||\geq\epsilon_{0}w_{1}(t_{n})$ , which implies that $||h_{t_{n}}||\geq\epsilon w_{1}(t_{n})/w(t_{n})$ for all
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$n\in N$ . Then (C.3) yields that $H$ is unbounded. Also, since there exists $M>0$

such that $||T_{1}(t)||,$ $||T_{2}(t)||\leq M$ for all $t\in(0,1$], one sees that 1 $h_{t}||\leq 2M/w(t)$

for all $t\in(0,1$], and so 1 $h_{t}||$ may diverge $to+\infty$ only if $t\rightarrow 0+$ .
Let $x\in F_{w_{2}}^{T_{1}}\cap F_{w_{2}}^{T_{2}}$ . Then $|T_{1}(t)x-x|=O(w_{2}(t)),$ $|T_{2}(t)x-x|=O(w_{2}(t))$

as $t\rightarrow 0+$ , and this implies that $|T_{1}(t)x-T_{2}(t)x|\leq Cw_{2}(t)$ for $ t\in(0, \delta$], $\delta>0$

small enough and some $C\in \mathbb{R}$ . We have then $h_{t}(x)\leq Cw_{2}(t)/w(t)$ for $ t\in(0, \delta$].
Therefore, condition (C.3) implies that $\lim_{t\rightarrow 0+}h_{t}(x)=0$ . Since

$\{x\in X;\lim_{t\rightarrow 0+}h_{t}(x)=0\}\subseteq\{x\in X;\lim_{||h_{t}||\rightarrow\infty}h(x)=0\}$ ,

we infer that $F_{w_{2}}^{T_{1}}\cap F_{w_{2}}^{T_{2}}\subseteq \mathcal{N}_{H}$ , and so $\mathcal{N}_{H}$ is dense in $X$ . From Theorem $A$ , the
conclusion follows. $\blacksquare$

REMARK 1. Let us define $H=\{h_{t}; t\in(O, 1]\}$ by

$h_{t}(x)=\sup_{\epsilon\in(0,t]}\frac{|T_{1}(s)x-T_{2}(s)x|}{w(t)}$ for $x\in X$ .

If we suppose, in addition to (C.1), (C.2) and (C.3), that $w_{2}$ is increasing, then
by the same argument we obtain the existence of $x\in X$ such that

$\sup_{0<s\leq t}|T_{1}(s)x-T_{2}(s)x|\leq w(t)$ for all $t\in(O, 1$ ] and $\lim_{t\rightarrow}\sup_{0+}h_{t}(x)=1$ .

For $w(t)=t^{\alpha},$ $w_{1}(t)=t^{\beta},$ $w_{2}(t)=t^{\gamma},$ $0\leq\beta<\alpha<\gamma\leq 1$ , we obtain the
following result, which addresses the problem mentioned in the introduction:

COROLLARY 1. Let $\alpha\in(0,1)$ and let $T_{1}=\{T_{1}(t);t\geq 0\},$ $T_{2}=\{T_{2}(t);t\geq 0\}$

be $C_{0}$ -semigroups on $X$ such that

$(C.1)^{\prime}\lim_{t\rightarrow}\sup_{0+}\frac{||T_{1}(t)-T_{2}(t)||}{t^{\beta}}>0$ for some $\beta$ with $ 0\leq\beta<\alpha$ ,

$(C.2)^{\prime}F_{\gamma}^{T_{1}}\cap F_{\gamma}^{T_{2}}$ is dense in $X$ for some $\gamma$ with $\alpha<\gamma\leq 1$ .

Then there exists $x_{\alpha}\in X$ such that

$|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|=O(t^{\alpha})$ and $|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|\neq o(t^{\alpha})$ as $t\rightarrow 0+$ .

4. Examples and concluding remarks

We now indicate some situations in which $(C.1)^{\prime}$ and $(C.2)^{\prime}$ are satisfied.
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EXAMPLE 1. Conditions $(C.1)^{\prime}$ and $(C.2)^{\prime}$ are satisfied in their strongest forms,
that is, with $\beta=0$ , respectively $\gamma=1$ , if $T_{1}$ is a uniformly continuous semigroup
and $T_{2}$ is a $C_{0}$-semigroup which is not uniformly continuous. In this situation,
lim $supt\rightarrow 0+||T_{2}(t)-T_{1}(t)||>0$ . Also, $F_{1}^{T_{1}}\cap F_{1}^{T_{2}}=F_{1}^{T_{2}}\supset D(A_{2})$ , where $A_{2}$ is
the infinitesimal generator of $T_{2}$ , and so $F_{1}^{T_{1}}\cap F_{1}^{T_{2}}$ is dense in $X$ .

As a consequence of Corollary 1, we then obtain the following result.

COROLLARY 2. Let $\alpha\in(0,1)$ and let $T_{1}=\{T_{1}(t);t\geq 0\},$ $T_{2}=\{T_{2}(t);t\geq 0\}$

be a uniformly continuous semigroup, respectively a $C_{0}$ -semigroup which is not
uniformly continuous. Then there exists $x_{\alpha}\in X$ such that

$|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|=O(t^{\alpha})$ and $|T_{1}(t)x_{\alpha}-T_{2}(t)x_{\alpha}|\neq o(t^{\alpha})$ as $t\rightarrow 0+$ .

For $T_{1}\equiv I$ , we obtain Davydov’s result on the existence of nonoptimal ap-
proximation rates for $C_{0}$-semigroups which are not uniformly continuous ([6,
Corollary]).

Actually, condition $(C.1)^{\prime}$ states that $T_{1}(t)$ and $T_{2}(t)$ may have different
regularities as $t\rightarrow 0+$ , but it is not necessary for $T_{1}$ to be uniformly continuous
to satisfy (C.1) ; it suffices, for instance, to be analytic.

LEMMA 2. Let $T_{1}=\{T_{1}(t);t\geq 0\}$ be a uniformly bounded analytic semigroup
and let $T_{2}=\{T_{2}(t);t\geq 0\}$ be a $C_{0}$ -semigroup such that $||T_{1}(t)-T_{2}(t)||\rightarrow 0$ as
$t\rightarrow 0+$ . Then $T_{2}$ is analytic.

Proof. Since $T_{1}$ is analytic, using [8, Theorem 2.5.6], there exist $\xi\in \mathbb{C}$ with
$|\xi|=1$ and $k,$ $\delta>0$ such that $|(\xi I-T_{1}(t))x|\geq(1/k)x$ for all $x\in X$ and
$t\in(O, \delta]$ . Since $|(\xi I-T_{2}(t))x|\geq|(\xi I-T_{1}(t))x|-|T_{1}(t)x-T_{2}(t)x|\geq(1/2k)|x|$

for $t>0$ small enough, we conclude using the same theorem that $T_{2}$ is analytic.
$\blacksquare$

EXAMPLE 2. As seen from the preceding lemma, condition $(C.1)^{\prime}$ is satisfied
with $\beta=0$ if $T_{1}=\{T_{1}(t);t\geq 0\}$ is a uniformly bounded analytic semigroup,
while $T_{2}=\{T_{2}(t);t\geq 0\}$ is a uniformly bounded $C_{0}$-semigroup which is not
analytic.

EXAMPLE 3. Let $T_{1}=\{T_{1}(t);t\geq 0\},$ $T_{2}=\{T_{2}(t);t\geq 0\}$ be $C_{0}$-semigroups
and let $w_{1}$ : $(0,1$ ] $\rightarrow(0, \infty)$ be a continuous function. One may see that condition
(C.1) is satisfied if $F_{w_{1}}^{T_{1}}\neq F_{w_{1}}^{T_{2}}$ . Namely, suppose that $F_{w_{1}}^{T_{1}}\neq F_{w_{1}}^{T_{2}}$ and fix
$x\in F_{w_{1}}^{T_{1}}\backslash F_{w_{1}}^{T_{2}}$ . Then there are $\delta>0$ small enough and $M\geq 0$ such that
$|T_{1}(t)x-x|/w_{1}(t)\leq M$ for $ t\in(0, \delta$], and lim $supt\rightarrow 0+(|T_{2}(t)x-x|/w_{1}(t))=$
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$+\infty$ . Since

$\frac{||T_{2}(t)-T_{1}(t)|||x|}{w_{1}(t)}\geq\frac{|T_{2}(t)x-x|}{w_{1}(t)}-\frac{|T_{1}(t)x-x|}{w_{1}(t)}$ ,

(C.1) is satisfied.
The noncoincidence condition $F_{w_{1}}^{T_{1}}\neq F_{w_{1}}^{T_{2}}$ is not implied by the noncoinci-

dence of $T_{1}$ and $T_{2}$ , since if $w_{1}$ : $(0,1$ ] $\rightarrow(0, \infty)$ is a continuous function such
that $\{t/w_{1}(t);0<t\leq 1\}$ is bounded, $A_{2}=A_{1}+B$ , where $A_{2}$ is the generator
of $T_{2},$ $A_{1}$ is the generator of $T_{1}$ and $B$ is a linear and bounded operator on $X$ ,
then $||T_{2}(t)-T_{1}(t)||=O(t)$ as $t\rightarrow 0+$ ($see[8$ , Corollary 3.1.3]), from which we
easily obtain that $F_{w_{1}}^{T_{1}}=F_{w_{1}}^{T_{2}}$ . Note that in this case one has $F_{\beta}^{T_{1}}=F_{\beta}^{T_{2}}$ for all
$\beta\in[0,1]$ .

We now conclude with a result concerning the existence of nonoptimal ap-
proximation rates for families of semigroups.

THEOREM 2. Let $(T_{n})_{n\geq 0}$ be a sequence of $C_{0}$ -semigroups, at least one not
being uniformly continuous, and assume that there exist $M,$ $w\in \mathbb{R}$ such that
$||T_{n}(t)||\leq Me^{wt}$ for all $t\geq 0$ and $ n\in$ N. Assume also that $T_{n}(t)x\rightarrow T_{0}(t)x$

as $ n\rightarrow\infty$ for every $x\in X$ and $t\geq 0$ . Then for each $\alpha\in(0,1)$ there exists
$(x_{n}^{\alpha})_{n\geq 0}$ such that $x_{n}^{\alpha}\rightarrow x_{0}^{\alpha}$ as $n\rightarrow\infty,$ $\sup_{n\geq 0}|T_{n}(t)x_{n}^{\alpha}-x_{n}^{\alpha}|=O(t^{\alpha})$ , and
$\sup_{n\geq 0}|T_{n}(t)x_{n}^{\alpha}-x_{n}^{\alpha}|\neq o(t^{\alpha})$ as $t\rightarrow 0+$ .

Proof. Let $\mathcal{X}=$ { $x=(x_{n})_{n>0}$ ; $x_{n}\rightarrow x_{0}$ as $ n\rightarrow\infty$ } be the Kisy\’{n}ski space con-
sisting of all the sequences which are convergent to their first component. We en-
dow $X$ with the supremum norm and define $\mathcal{T}:\mathcal{X}\rightarrow \mathcal{X}$ by $\mathcal{T}=\{(T_{n}(t))_{n\geq 0}$ ; $ t\geq$

$0\}$ . By botter-Kato’s theorem (see [8, Theorem 3.4.2]), $\mathcal{T}$ is a $C_{0}$-semigroup
on $\mathcal{X}$ , since the convergence of $T_{n}(t)x$ to $T(t)x$ as $ n\rightarrow\infty$ is actually uniform
on compact t-subintervals of $[0, \infty$ ). It is easy to see that $\mathcal{T}$ is not uniformly
continuous, and the use of Corollary 2 yields now the desired result. $\blacksquare$
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