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Solutions and marking scheme

2
Problem 1. Let (z,,),>1 be the sequence defined by z; € (0,1) and x,,.; = z, — x—\/"_ for all n > 1.
= n
Find the values of o € R for which the series Z x, is convergent.
n=1
Solution:
72
By induction we deduce that =, € (0,1) for all n > 1. Let n > 1. From x, — x,41 = \/—TL
n
Tn+1 T, .
for all n > 1 we deduce that 1 — = —— and since 0 < — Vn > 1 we deduce
G v f
that lim —% — = 0 and hence lim =% = 1. Now let n > 1. By the recurence relation we have
n—00 \/_ n—oo T,
_— _InT % In | - which implies that
Tn+1 T TnLn+1 Tn+1 \/ﬁ
11 .
lim == = lim — = 1.
n— 00 \/_ﬁ n—00 Tp41

1 1
Since lim (1 + —+---+ ) = 00 by the Stolz-Cesaro lemma it follows that

n—00 \/§ v/n—1

lim In =1.
n—oo | + \[‘i‘ +—m

Now if we use that, again by the Stolz-Cesaro lemma

ﬁ Vntl—vn Vi 1

lim = lim ——— = lim ————— = -
L o
we get lim 2= = 2 and hence lim —* = 27%. By the comparison criterion for the positive series it
n—o00 n n—00 —&

n2

follows that the series Zx is convergent if and only if the Z—a is convergent that is if and only

n=1 =

1f0‘>1 a > 2.



Marking scheme:

I) Proving that (2,,),>1 18 CONVErgent. .............o.iiiiiii e 1p

IT) Proving that T, — 0. ... 2p

IIT) Proving that there exists a constant ¢; > 0 such that x,, < C\/—l_ .......................... 3p
n

IV) Proving that there exists a constant ¢y > 0 such that x,, > C\/—Z_ .......................... 3p
n

V) COnCIUSION. .« e e e 1p

1
First remark: Using the Stolz-Cesaro lemma to prove that z,, ~ T generates 6p, since it replaces
n

parts III and IV from the previous mentioned mark scheme.

Second remark: Using the Stolz-Cesaro lemma without arguing that the denominator is increasing
and unbounded generates only 5p.

1

Third remark: Claiming that x, ~ 7 without a proof will only generate 1p, which is not additive
n

with V.

Problem 2. Let A, B € M, (R) two real, symmetric matrices with nonnegative eigenvalues. Prove
that A* + B® = (A + B)? if and only if AB = O,,.

Solution (Author): If AB = O, then
AB =0, = (AB)" = BTA” = BA
therefore A and B commute and
(A+ B)? = A+ B*+ 3AB(A+ B) = A> + B>

Assume now that A% + B = (A + B)3. Since the trace operator is linear and invariant under
cyclic permutations it follows that

Tr(ABA) + Tr(BAB) = 0. (1)

We recall that a real, symmetric matrix M has nonnegative eigenvalues \q, ..., \, i.e. M is positive
semidefinite if and only if M can be decomposed as a product M = QTQ for some real matrix Q.
Moreover, if for such a matrix Tr M = 0 then M = O,,. Let U,V € M,,(R) such that A = UTU and
B = VTV. Then, using the symmetry of A and B we get

ABA=AVTVA=(VAT(VA)  BAB=BUTUB = (UB)T(UB)

so Tr(ABA) > 0 and Tr(BAB) > 0. From (1) it follows that we must have Tr(ABA) = Tr(BAB) =0
and therefore ABA = BAB = O,,.
In particular, for every x € R™ we have

|V Az||> = 2T (VAT (VA)z = 2T ABAz = 0
so VA = 0O,. Again, for every x € R"
|ABz||* = 2T(AB)Y(AB)z = 2" VT (VA)ABz = 0

and, finally, we find AB = O,,.



Alternative solution (2). For every z € R” we have, on account of B being positive semidefinite
< Bx,z >> 0 and equality holds only for = € ker B. But then (ABA)T = ABA and

< ABAxz,x >=< BAz, Az >> 0

so ABA is positive semidefinite and Tr(ABA) > 0. In the same manner we get BAB as positive
semidefinite and Tr(ABA) > 0 which leads to Tr(ABA) = Tr(BAB) = 0 and, next, to ABA =
BAB = O,. Finally, for every x € R™ we have

0 =< BABx,x >=< ABx,Br >
which implies Bx € ker A, Vo € R", which concludes the proof.

Marking scheme:

[) AB=0,= (A+ B)? = A3+ B3 2p
1) Tr(ABA) 4 Tr(BAB) = 0 oo\ 2p
II1) ABA = BAB = Oy« oo e 4p
IV) Conclusion AB = O oo 2p

Problem 3. For every n > 1 define z,, by

1
1
xn:/ln(1+x+x2+...+x")-ln dr, n>1.
o _
a) Show that z,, is finite for every n > 1 and lim x, = 2.
n—o0
b) Calculate lim L(2 — Tp).
n—oo Inn
Solution. a) For all n > 1 and = € [0,1),
1 9 1
>1 and 0<In(l4+z+z°+...+2") - -In <Inn-ln .
11—z 11—z 11—z
1
Since In dz is convergent (to 1, by a direct computation), it follows that the sequence is
—

0
well-defined.

1
Next, the sequence of functions f,(z) =In(1+x+2z*+... +2")-In .
—x

satisfies:

0< fulz) < fuia(z), forallz €[0,1)and n > 1,

1 — gt 1 1
lim f,(x) = lim (ln SRR ) = In? T for all x € [0,1).

n
n—o0 n—o0 1—=x 1—=x —x

It follows by the Lebesgue-Beppo-Levi theorem (of monotone convergence) that

dex =2

1 1 1
lim z, = lim fo(z)de = / In® 7
0

n—o0 n—o0 J — X

(the last equality follows by an elementary computation).
b) From (a),

1 1 — gt 1

1 1
2—9En—/0 (ln21_x—ln - .lnl—a:) dx—/oln(l—:c”“)-ln(l—x)dx

3




and with the change of variable y = 2"*1, it follows that

1 ! 1 )
23, — In(1—y)-1 (1— m). w1y,
T n+1/0 n(l—y)-In Y y y

By shifting the index, for convenience, it follows that

n n—1
lim —(2—=x,) = li 2 — Xy
nggolnn( ) nggoln(n—l)( Tn-1)
—1 1 I
— Tim 2 -limi-lim—/ln(l—y)-ln(l—yi>-yi_1dy
n—o0 n n—>ooln(n—1) n—)oolnn 0

1 1 1

In(1 — n —yn

i [ B0 —y) yrIn(l -y
n—oo Jg Yy Inn

dy.
We want to verify the conditions in the Lebesque dominated convergence theorem, so consider

In(1 — wIn(l -y~
Inly) = n( y).y nl( J ),foryE(O,l), and n > 2.
y nn

The pointwise convergence follows in a standard manner: we start from

1
n—1 1 1
limyl =Iny, hence 1imn<1—y5>:ln—>0,
Y

n—oo - n—oo
n

nll_}r{)lo (ln (1 — y%) —Hnn) =In (ln 5) .

which leads to

Then .
In <1 — 5)
In(1 — Y
n—oo Y n— 00 n— o0 nn
1
zln(l_y).ljm ln(l—yn>+lnn_1
Yy n—o00 lnn
In(1 — 1 1 In(1 —
_ -y (111 Q) .__1) _ A=Y g e 0,1).
Y Y &0 Yy

To check the domination condition, let g(t) = —In(1 —t) = In for t € [0,1). Note that g is

11—t
positive. Since 0 < y% < 1, it follows that

n(1—y) I (1 - ﬁ) gly) 9 (yl)

< < . = . > )
0<gn(y) < , T Yy o for all n > 2 and y € (0,1) (1)

From
1—-t"
1—t

g(t) —g(t") =1In =In(l+t+...+t" ) <Ilnn, forallte (0,1)andn>1,

it follows that ¢ (y%) — g(y) <1Inn, hence

1
g<y"> 9(y)
— <1+ <1+g¢g(y), foralln>3. (2)
Inn Inn

Combining (1) and (2) and replacing g, we finally obtain

In*(1—y) —In(1 —
0<gn(y) < n7(1 = y) = In y)’ for all n > 3 and y € (0, 1).
Y




'In*(1 —y) —In(1 —y)

It is an elementary exercise to check that dy is convergent, which con-

0 Y
cludes the proof of the domination condition and establishes that

11 1 — 2
L= lim i(z_xn):_/ =y,
0

n—oo 1NN y 6’

where the last equality is a well know result, that can be obtained by integrating the Maclaurin series
In(1 — 1 2

of _In—y) and then using Euler’s identity Y= — = T

Yy n>1 TL2 6

Marking scheme:
a)
e The convergence of the integral defining @, ........ ... . i 1p
e Apply a convergence theorem (e.g., Beppo—Levi monotone convergence) for the sequence of func-
tions

1
fn(x)zln(1+x+x2+...+$")-ln1 , xz€l0,1)andn>1
-
1 1 1
to obtain that lim x, = / lim f,dx = / In? dr 1p
n—00 g noo 0 11—z
! 1
e Compute / In? A = 2 1p
0 1l—a
b)
1
e Obtain 2 —x, = / In(1— 2™ In(1 —2)dz o 1p
0
e Use the change of variable y = 2!, and rewrite
n n In(n+1) [*In(l—y yn%rllnl—yn%l
—(2—x,) = . ( )/ ( ) ( ) Y 1p
Inn n+1 Inn J, Y In(n+1)
e For the sequence of functions
In(1 — wIn(1 — yo
gn(y) = nl-y) yr(-y ), for y € (0,1) and n > 2
Y Inn
In(1 —
compute lim g,(y) = —u, forally € (0,1) oo 2p
n—oo
e Apply a convergence theorem to obtain that
1 1
In(1 —
lim L(2 — Ty) :/ lim g,(y)dy = —/ udy ............................... 2 p*
n—oo lnn 0 n—oo 0 y

(*0.5 p for choosing a convergence theorem and stating the conditions that need to be verified,
without completing the corresponding computations)
E.g., use the Lebesgue dominated convergence with the domination

In*(1 —y) —In(1 — y)

0<gu(y) < , forallm>3andye (0,1)
)
"In*(1 —y) —In(1 —
and check that / n(l-y)—In—y) dy is convergent.
0 )
1 In(1 — 2
e Concluding, lim L(Q —x,) = —/ u dy = TR 1p*
n—oo Inn 0 Y 6

(*0.5 p for the value of the integral, without proof)



Problem 4. Let n € N, n > 2. Find all the values k € N, k£ > 1, for which the following statement
holds:
“If A€ M,(C) is such that A*A* = A, then A = A*.” (*)

(here, A* = A" denotes the transpose conjugate of A).

Solution (Author). First, we limit the range of the possible values for k, by choosing A = &I,
with suitable e € C, |¢| = 1, such that the implication in (*) is false, so we ask that A*A™ = A, but
A+ A" Thenel, = A= A*A" = ¢*2l, = '], and eI, = A # A" = €I, which are equivalent to

eh=2 =1 and ¢ ¢ R. In consequence,

o if £ =2, then let ¢ = 1.

5 ¢ R (since kzj € (0,m)).

2
e if £k > 5, then lete€:cosk_7T2 +isink_
This means that k € {1,3,4}. We prove next that the statement (*) is true for these values of k.
For k=1,iff A-A"= A, then A" = (A- A")" = (A")"- A" = A A" = A, so (*) is true.
For k € {3,4}, we provide two methods.
First method.
AFA" = A implies that rank A = rank (4*A") < rank A¥ < rank A, so rank A* = rank A =

rank A*. By the rank nullity theorem, it follows that dim ker A*¥ = dimker A = dimker A*. Since
Ker A* C Ker A (by A*A* = A) and Ker A C Ker A, we obtain

Ker A* = Ker A* = Ker A. (1)

Next, A¥FA*AF1 = A. AF1 = AF 5o AF (A*Ak*1 — In) = O,,, then A" (A*Ak*1 — In) = O,, by (1),
hence

(A%)? AR = A", (2)

For k = 3, (2) becomes (A*)” A2 = A" so A = ((A*)2 A2>* — (A%)® A2 = A*, which means that
the statement (*) is true.

For k = 4, (2) becomes (A*)* A3 = *, so (A*)? ATA" = (A%)° A% . AA" = A"AA". At the
same time, (A%)? 414" = (A")? A4, so (A*)° A = A" AA*, which leads to (A%)* A2 = (A*A)>. With
B=A"A— AA", we have B* = B and

Te BB* = Tr B? = Tr (A*A — AA™)? =2 <Tr (A"A)? — T <(A*)2 A2>) —0,

hence B = O,. This proves that A"A = AA" (i.e., A is normal), so A is unitarily diagonalizable,
A=U*DU, D =diag(A,Ns,...,A\y) With Aj, Ag,..., N\, € C, U € M, (C) with U~! = U*.Then
A* = U*DU, and A*A* = A becomes D*D = D, which means that A\}\; = \;, for alli = 1,2,...,n
It follows that \; € {—1,0,1}, foralli =1,2,...,n, so D = D, therefore A" = A, which means that
the statement (*) is true.

Second method. We continue from relation (1) (from the first method).
It is true in general, for any matrix A € M,,(C), that Ker A" | Tm A [indeed, if Y € Ker A* and
Z = AX € Im A, then (Z,Y) = (AX,Y) = (X, A"Y) = (X,0) = 0].



Next, by (1), it follows that Ker A 1 Im A, so C" = Ker A @ Im A.
Consider an orthonormal basis in Ker A and an orthonormal basis in Im A, which together give

an orthonormal basis in C" such that A = U*A,U, where A; = [g 8] with B € M,,,(C) invertible,
and U € M,,(C) with U~! = U*. Then the relation A¥*A* = A becomes B*B* = B, hence B* =
(B_l)kfl. From the Cayley-Hamilton theorem, it follows that B~! = f(B) for some polynomial f
of degree at most n — 1, so B* = (f(B))""", which leads to B*B = BB* (B is normal). Just like in
the previous approach, B is unitarily diagonalizable, B = V*DV, D = diag (A1, A2, ..., Ap) with
A2y A £ 0, V€ M,,(C) with V™! = V*Then B* = V*DV, and the relation B*B* = B
becomes D¥D = D, which leads to A¥™*)\; = 1, for all i. It follows that |\ = 1 and \*"2 = 1, for
all i. When k = 3 or k = 4, then \; € {—1,1} for all i, so D = D, therefore B* = B, then A" = A,
which means that the statement (*) is true.
Conclusion: k € {1,3,4}.

Marking scheme:

1. S0lve case b = 1 o 1p
2. Eliminate £ =2 and k& > 5 ... 3p
3. Find the relation Ker A" = Ker A¥ = Ker A ...... ... ... .. . . .. 2p

Now, we solve cases k € {3,4} with two methods.

First method

1. Find the relation (A*)? AR = A% 1p
2. S0IVE CASE k= 3 oo 1p
3. S0lVe CaSE k= 4 o 2p

Second method
1. G =Ker AD I A .o o 1p

2. Consider an orthonormal basis in Ker A and an orthonormal basis in Im A using these basis to

write A = U*A U, where A, = {g g} with B € M,,(C) invertible

.......................................................................................... 1p
3. Find B is normal and therefore B® = B from which the conclusion folows for k € {3,4}

.......................................................................................... 2p
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