1. (a) Prove that $B=\left\{v_{1}=(1,2,3), v_{2}=(2,3,1), v_{3}=(3,1,2)\right\}$ is a basis in \mathbb{R}^{3} and find the coordinates of $v=(2,0,4)$ with respect to this basis.
(b) Is $B^{\prime}=\left\{w_{1}=v_{1}+v_{2}, w_{2}=v_{2}+v_{3}, w_{3}=v_{3}-v_{1}\right\}$ a basis in \mathbb{R}^{3} ? What about $B^{\prime \prime}=\left\{w_{1}=v_{1}+v_{2}, w_{2}=v_{2}+v_{3}, w_{3}=v_{3}+v_{1}, w_{4}=v_{1}-v_{2}\right\}$?
(c) Find a basis in \mathbb{R}^{3} such that v has coordinates $1,0,1$ with respect to this basis.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+3 x_{2}, x_{1}-x_{2}+x_{3},-x_{1}+3 x_{2}+x_{3}\right)$.
(a) Find the matrix of T with respect to the canonical basis in \mathbb{R}^{3}.
(b) Find the matrix of T with respect to the basis $B^{\prime}=\left\{v_{1}=(1,1,1), v_{2}=(1,1,0)\right.$, $\left.v_{3}=(1,1,1)\right\}$ in \mathbb{R}^{3}.
(c) Prove that T is injective and surjective.
(d) Are there $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right)$ in $\mathbb{R}^{3}, x \neq y$, such that $T x=T y=$ $(8,9,10)$?

Grading: $2 p+2 p+4 p+1 p+1 p$

3. (a) Give an example of a linear subspace of \mathbb{R}^{4} of dimension 2.
(b) Let $S=\left\{\left(\begin{array}{cc}a & b \\ 2 b & a\end{array}\right) ; a, b \in \mathbb{R}\right\}$. Prove that S, equipped with the standard matrix addition and scalar matrix multiplication, is a linear subspace of $M_{2}(\mathbb{R})$ and find its dimension, together with a basis in S. Is S isomorphic to \mathbb{R}^{3} ?
(c) Find a linear subspace W of $M_{2}(\mathbb{R}), W \neq\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right\}$, such that $S \cap W=$ $\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right\}$
(d) Is there any linear subspace of S with dimension 10?
(e) Is it possible to find a system of 10 linearly independent vectors in S ?

$$
\text { Grading: } 1 p+5 p+1 p+1 p+1 p+1 p
$$

Each problem is graded from 1 to 10 . The final grade is the arithmetic mean of the grades received for each problem. Allotted time: 100 minutes.

