- 1. (a) Prove that $B = \{v_1 = (1,2,3), v_2 = (2,3,1), v_3 = (3,1,2)\}$ is a basis in \mathbb{R}^3 and find the coordinates of v = (2,0,4) with respect to this basis.
 - (b) Is $B' = \{w_1 = v_1 + v_2, w_2 = v_2 + v_3, w_3 = v_3 v_1\}$ a basis in \mathbb{R}^3 ? What about $B'' = \{w_1 = v_1 + v_2, w_2 = v_2 + v_3, w_3 = v_3 + v_1, w_4 = v_1 v_2\}$?
 - (c) Find a basis in \mathbb{R}^3 such that *v* has coordinates 1, 0, 1 with respect to this basis.

Grading: 5p+3p+1p+1p

- 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$, $T(x_1, x_2, x_3) = (2x_1 + 3x_2, x_1 x_2 + x_3, -x_1 + 3x_2 + x_3)$.
 - (a) Find the matrix of *T* with respect to the canonical basis in \mathbb{R}^3 .
 - (b) Find the matrix of *T* with respect to the basis $B' = \{v_1 = (1, 1, 1), v_2 = (1, 1, 0), v_3 = (1, 1, 1)\}$ in \mathbb{R}^3 .
 - (c) Prove that *T* is injective and surjective.
 - (d) Are there $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3)$ in \mathbb{R}^3 , $x \neq y$, such that Tx = Ty = (8, 9, 10)?

Grading: 2p+2p+4p+1p+1p

- 3. (a) Give an example of a linear subspace of \mathbb{R}^4 of dimension 2.
 - (b) Let $S = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix}; a, b \in \mathbb{R} \right\}$. Prove that *S*, equipped with the standard matrix addition and scalar matrix multiplication, is a linear subspace of $M_2(\mathbb{R})$ and find its dimension, together with a basis in *S*. Is *S* isomorphic to \mathbb{R}^3 ?
 - (c) Find a linear subspace W of $M_2(\mathbb{R})$, $W \neq \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$, such that $S \cap W = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$
 - (d) Is there any linear subspace of *S* with dimension 10?
 - (e) Is it possible to find a system of 10 linearly independent vectors in *S*?

Each problem is graded from 1 to 10. The final grade is the arithmetic mean of the grades received for each problem. Allotted time: 100 minutes.