1. Let 
$$A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
.

- (a) Find the eigenvalues and eigenspaces of *A*.
- (b) Prove that A can be brought to a diagonal form and find its diagonal form.
- (c) Find expressions for  $A^n$  and  $A^{-1}$ .
- (d) Which are the eigenvalues of  $A^{-1}$ ? What about  $2A 3I_3$ ?

2. Orthonormalize

$$S = \{v_1 = (1,0,1), v_2 = (1,0,-1), v_3 = (0,3,4)\}$$

by means of the Gram-Schmidt procedure.

Grading: 2p

3. (a) Is

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad f(x_1, x_2, x_3) = x_1 x_2 - x_2 x_3,$$

a linear form?

(b) Consider the quadratic form

$$h: \mathbb{R}^3 \to \mathbb{R}$$
,  $h(x_1, x_2, x_3) = x_1^2 - x_3^2 - 4x_1x_2 + 4x_2x_3$ .

- i. Find the associated bilinear form and determine its rank.
- ii. Find the canonical form of *h* (basis not requested) and its signature. Is *h* degenerate, or nondegenerate?
- iii. Determine whether or not h is positive definite. Is there any  $(x_1, x_2, x_3) \in \mathbb{R}^3$  such that  $h(x_1, x_2, x_3) < 0$ ?

**Grading: 3p** 
$$(0.5p+2.5p (1p+1p+0.5p))$$

Each problem has its own grading system. The final grade is the sum of the grades received for each problem+1p for showing up. Allotted time: 90 minutes.