1. Let $A=\left(\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right)$.
(a) Find the eigenvalues and eigenspaces of A.
(b) Prove that A can be brought to a diagonal form and find its diagonal form.
(c) Find expressions for A^{n} and A^{-1}.
(d) Which are the eigenvalues of A^{-1} ? What about $2 A-3 I_{3}$?

$$
\text { Grading: } 4 p(2.5 p+0.5 p+0.5 p+0.5 p)
$$

2. Orthonormalize

$$
S=\left\{v_{1}=(1,0,1), v_{2}=(1,0,-1), v_{3}=(0,3,4)\right\}
$$

by means of the Gram-Schmidt procedure.
Grading: 2p
3. (a) Is

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}-x_{2} x_{3}
$$

a linear form?
(b) Consider the quadratic form

$$
h: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad h\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3} .
$$

i. Find the associated bilinear form and determine its rank.
ii. Find the canonical form of h (basis not requested) and its signature. Is h degenerate, or nondegenerate?
iii. Determine whether or not h is positive definite. Is there any $\left(x_{1}, x_{2}, x_{3}\right) \in$ \mathbb{R}^{3} such that $h\left(x_{1}, x_{2}, x_{3}\right)<0$?

$$
\text { Grading: } 3 p(0.5 p+2.5 p(1 p+1 p+0.5 p))
$$

Each problem has its own grading system. The final grade is the sum of the grades received for each problem+1p for showing up. Allotted time: 90 minutes.

